
1 Summary

In this report, a variety of methods are used to evaluate the performance of an airfoil. Theoretical results
are known for how this airfoil should perform, and they are used as a benchmark to determine the efficacy
of a number of other methods. Finally, one of the assumptions of previous analysis, that the flow has no
viscosity, is removed and the airfoil is further investigated.

2 Generation of the airfoil

Figure 1: The Karman-Treffetz airfoil overlaid on the closest NACA airfoil

Through manually changing the parameters of a NACA 4-digit airfoil, the 3512 airfoil was found to be
the closest. The fact that it is somewhat difficult to see it under the Karman-Treffetz airfoil shows how
close a match this is. The NACA airfoil was generated using the python libaray written by Dirk Gorissen in
2011, and the KT airfoil was generated using Neil Sandham’s matlab file.

The camber line was also used as a point of comparison between the airfoils. This is shown in Figure 2.

Figure 2: The camber line of each airfoil

To generate this figure, each point on the upper surface of the airfoil was considered. The x value for
each point is known for the upper surface, but the lower surface doesn’t necessarily have a point at the
same coordinate. For this reason, the points at the upper surface considered were x+ ε1 and x− ε2, where
both values are positive. The y values at these points are known, so linear interpolation was used to find
the value of y on the upper surface at x. This will lead to small numerical inaccuracies, however sufficiently
high numbers of points were used, meaning that this is not an issue. Visually, both curves in Figure 2 appear
smooth, and that is all that is necessary for the camber lines.

2.1 Variation

For the k-t airfoil, β and ε were changed within 20% of their given values. 20% is an arbitrary value, 10%
was tried but the changes felt too minor to be commented on well.
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Figure 3: Altered airfoils

As is expected, the airfoil with maximum thickness clearly has the largest perimiter in Figure 3, and the
minimum thickness is the smallest. For the maximum thickness airfoil, it is only the ”outer” profile up until
x
c ≈ 0.5. Because the camber is far back on these airfoils, the maximum camber airfoil has a higher upper
surface towards the rear of the airfoil. Naturally, the overall thickness will still be higher, but it is interesting
nontheless.

Figure 4: Camber lines for altered airfoils

Figure 4 shows the camber lines of each airfoil. Changing thickness has no effect on camber, as is to be
expected. The values for maximum camber are reported in Table 1. The fact that the thicknessess are not
identical for the values of camber could suggest that the number of points used to construct the airfoils is
too low. However, these airfoils will not be analysed in other software, and the error is very small regardless.
This knowledge will be used to inform the number of points used to generate the airfoil for Xfoil in ??.

The percentage difference between the camber value and the maximum and minimum cambers is almost
exactly 20%, as expected.

Table 1: Maximum cambers for airfoils

maximum thickness minimum thickness maximum camber minimum camber

0.0324 0.0325 0.0259 0.0398

The thicknessess appear as expected.

3 Doublet panel method

To test that the doublet panel method is accurate, it will be demonstrated that it can bet incredibly close
to the exact solution given by the transformed flow. Figure 6 shows that at high numbers of panels, the
value is essentially the same.
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Figure 5

Table 2: Maximum thickness for airfoils

maximum thickness minimum thickness maximum camber minimum camber

0.1082 0.1426 0.1255 0.1258

Figure 6: Doublet panel method with exact value plotted against number of panels

It is important to estimate the order of accuracy to know what step size is needed for a given accuracy.
To do this, the gradient of the sloped section of Figure 7 is found. Using MATLAB, this is found to be 2.5.

Figure 7: log-log plot of error and step size

Figure 8 shows the error when using linear spacing instead of half cosine spacing. It is unable to correctly
measure the gradients, and the cyclic increase in error suggests that there are other issues in addition.
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Figure 8: error using linear spacing

4 Doublet panel method and Xfoil

4.1 Xfoil

Figure 9 shows the lift curve slopes from Xfoil’s inviscid analysis. It appears that the lift curve slope is
slightly lower for the kt airfoil. Upon finding the gradient of the data using numpy’s numpy.gradient—, clα
for the kt airfoil is 6.76, whereas for the NACA airfoil, it is 6.78. Thin airfoil theory dictates that these
should both be equal to 2 ∗ π ≈ 6.28. This suggests that there is some error present.

Figure 9: Lift curve slope from Xfoil

4.2 Doublet panel method

As is evident from Figure 10, the lift curve slopes are almost identical. The relatively coarse control over
camber from a NACA airfoil means that the camber for the NACA airfoil is slightly higher than that of the
Karman-Treffetz airfoil. Stalls cannot be modelled, so as expected, these are just straight lines.

Figure 10: Lift curve slope from the doublet panel method

In Figure 11, the pressure distribution over the airfoils is shown. The fact that on the suction surface,
the NACA airfoil consistently has a lower coefficient of pressure is what leads to the higher lift curve slope.
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Because the peak is so sharp on the naca airfoil, it is possible that the high gradients on the leading edge
have not been captured. This reinforces the need for half-cosine spacing, as does the fact that midway
through the chord, the gradients of pressure are very low.

Figure 11: cp plotted along x
c for upper and lower surfaces of both airfoils

5 Comparison with existing software

To validate the results above, Xfoil was also used to find various parameters of the airfoils’ performance.
Generating the NACA 3512 was done by using NACA 3512 built into Xfoil. The load command was used
to import the kt airfoil, and then ppar was used to smooth out the panneling. If this was not done, the
cp against x

c graph was not smooth, as is shown in Figure 12a. After repanneling, the graph is a lot more
realistic. This is shown in Figure 12b

(a) k-t airfoil before repanelling (b) after repanelling

6 Viscous effects

Both airfoils were simulated at Re = 1 × 105, 5 × 106. The characteristic length in this case is the chord
length.

6.1 NACA airfoil, 20 degree angle of attack

As the lower Reynolds number flow will likely have a laminar boundary layer, it will separate more quickly.
This will result in a large wake and a very high momentum thickness. As is clear in Figure 13, this is the case,
as the coefficient of drag is approximately 4 times larger for the low Reynolds number airfoil. Separation
occurs at around x

c = 0.1, as is visible from the boundary layer profiles. Unsurprisingly, this results in a
massively reduced coefficient of lift. This is also evident by comparing the pressure distributions.

In Figure 14, theta is given by the straight line, and δ∗ is the dashed line. As expected from Figure 13a,
the boundary layer separates at around x

x = 0.1. This is evidenced by the sudden increase in δ∗ around this
point in the low Reynolds number case.

The boundary layer remains attached much longer in the higher Reynolds number case. Additionally,
the scale on the lower Reynolds number goes much higher, showing the higher thickness and therefore drag
that is present.
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(a) Re = 1× 105 (b) Re = 5× 106

Figure 13: Outputs of Xfoil’s BL

(a) Re = 1× 105 (b) Re = 5× 106

Figure 14: Plots of θ and δ∗ against x

Because the boundary layer has separated and flow is flowing from trailing edge to leading edge, Figure
16a should show a negative coefficient of friction over much of the airfoil. However, this is not the case and
cf for the upper surface remains at zero after separation.

On the lower surface, which does not detach, the low Reynolds number case clearly has a significantly
higher coefficient of friction.

(a) Re = 1× 105 (b) Re = 5× 106

Figure 15: Plots of cf against x

Figure 16 shows that on the lower surface, H ≈ 2.25. This is consistent with the theory for a laminar
boundary layer over a flat plate with a favourable pressure gradient, as shown by Pohlhausen’s solution. This
suggests that both of these boundary layers remain laminar due to the pressure they experience, and this is
confirmed by the values of xtr/c = 1 seen in both graphs.
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(a) Re = 1× 105 (b) Re = 5× 106

Figure 16: Plots of H against x. Solid line shows H

6.2 k-t airfoil, 20 degree angle of attack

As above, it is clear that the lower Reynolds number separates earlier in Figure 17. Again, this is because
the lower Reynolds number leads to a laminar boundary layer, which will separate more quickly. The lift and
drag coefficients clearly show this, as the turbulent case once again has better performance

(a) Re = 1× 105 (b) Re = 5× 106

Figure 17: Output of Xfoil’s bl for the k-t airfoil

As expected, the other graphs are much the same and have been omitted for brevity.

6.3 kt airfoil, 6 degrees

This angle of attack was chosen to be a reasonable angle before stall, but with enough of a pressure gradient
to provide interesting effects.

In Figure 18b, it is clear that there is a separation bubble between about halfway and two-thirds the
chord length. This will of course lead to a bump in the displacement thickness, and a section with a negative
coefficient of friction. There is a higher coefficient of drag on the airfoil at Re = 1 × 105. Observing the
line around the airfoil, the displacement thickness, it is clearly thicker for the low Reynolds number. This
will of course cause the larger amount of drag.

The location of transition is unclear for Re = 1× 105, as the associated drop in pressure coefficient on
the x against cp graph is in the region where the boundary layer profiles show recirculation. It will be evident
on the other graphs, and the exact value will also be given. There appears to be a minor change around
x
c = 0.1 on the high Reynolds number case, which indicates the transition. This will be a location with a
fast-changing pressure gradient, as it is so close to the stagnation point, so this makes sense. The boundary
layer profiles are as expected. Interestingly, the boundary layers on the pressure surfaces are very different,
even though they would be expected to have very similar laminar profiles, as a result of their favourable
pressure gradient.

Figure 22 shows the shape factor, from which the type of boundary layer can be deduced. The separation
bubble, where the displacement thickness will grow significantly, is immediately obvious in Figure 22. When
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(a) Re = 1× 105 (b) Re = 5× 106

Figure 18: Output of Xfoil’s bl for the k-t airfoil at α = 6

the boundary layer reattaches, there is clearly a change from a laminar shape factor, with or without a
pressure gradient, to one more indicative of a turbulent boundary layer. This is also reflected by the point
of transition listed in the top right corner of 0.62, near the peak of the separation bubble.

In the high Reynolds number case, the H value of almost 3 is typical of a laminar boundary layer in
an adverse pressure gradient. The sharp drop to around 1.5 occurs almost exactly where Xfoil reports the
transition location. The fact that the drop is so steep suggests that the transitional area is very short.

As the shape factors for the lower surfaces are now almost identical, it suggests that Figure ?? may be
incorrect. Their value of around 2.5 is typical of zero pressure gradient, but the increase to over 3 suggests
that the curvature of the lower surface is adequate to lead to an adverse pressure gradient.

(a) Re = 1× 105 (b) Re = 5× 106

Figure 19: Plots of H against x at α = 6. Solid line shows H

Once again, the high reynolds number shows a low coefficient of friction, which is hard to believe. As
shown above, the lower surface boundary layers are almost identical, however the coefficient of friction for
the high Reynolds number is almost 10 times smaller that of the low Reynolds number. Before x

c = 0.1
in Figure 20b, cf ≈ 0.001. However for the same point in Figure 20b, cf ≈ 0.01. Blasius’ solution to a
boundary layer gives the equation below.

cf =
0.664√
Rex

The Reynolds number entered into Xfoil is the Reynolds number based on the chord length. This means
that to find the friction coefficient at a point x

c , the equation below should be used.

cf =
0.664√
x
cRex

While this equation is for no pressure gradient, it can be used to inform the expected order of magnitude.
It should only be used for laminar boundary layers.

For the case with a low Reynolds number, the predicted coefficient of friction is 0.0064. At a high
Reynolds number, the predicted coefficient of friction is 0.00094. For a higher Reynolds number, the value
from Xfoil is accurate. It is unclear why the value at lower Reynolds numbers is so inaccurate.
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Regardless, the separation bubble is present exactly where it is expected from the other measures.

(a) Re = 1× 105 (b) Re = 5× 106

Figure 20: Plots of cf against x at α = 6

6.4 Overall performance

This section looks at the general performance of the airfoils.
The in Figure 21a kt airfoil clearly fluctuates in a way that thin airfoil theory would not predict. It

is assumed that the panelling is still imperfect, and these small perturbations will be ignored. In both
figures, the performance of the different airfoils is very similar, with similar stall points and zero-degree lift.
Interestingly, the stall performance is different, with Figure 21b showing a lower ultimate cl for the kt airfoil,
where Figure 21a shows that the kt airfoil has better performance at high angles of attack. Additionally,
21a validates the choice of 6 degrees angle of attack above. This is out of the linear region of the lift-curve
slope, and the effect of the separation bubble is clear on both airfoils.

Further study could be useful at around 15◦ at high Reynolds numbers.

(a) Re = 1× 105 (b) Re = 5× 106

Figure 21: Lift curve slopes for each combination of airfoil and flow

Usually, a quadratic function can be fit to small angles of attack. At low Reynolds numbers, this is
clearly less possible. However, this seems to hold to a reasonable degree for the higher Reynolds number
case.
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(a) Re = 1× 105 (b) Re = 5× 106

Figure 22: Drag polars for each combination of airfoil and flow
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