{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "3b78fb3a-a8dd-4dec-8ca6-b11e35a3a942", "metadata": { "tags": [] }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "%config InlineBackend.figure_format = 'retina'\n", "from scipy.optimize import fsolve\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 23, "id": "baaea8a9-d8e1-4045-9581-136e7f55c6d9", "metadata": { "tags": [] }, "outputs": [], "source": [ "M_des = 2.4\n", "theta_min = 0.373\n", "num_lines = 4\n", "GAMMA = 1.4" ] }, { "cell_type": "markdown", "id": "2b865fe7-ea64-46fe-acf5-1dee555a173c", "metadata": {}, "source": [ "implements $\\mu = \\sin^{-1} \\frac{1}{M}$ to find the mach angle" ] }, { "cell_type": "code", "execution_count": 24, "id": "1a99fd50-01bf-4ea8-b0a9-e823ef648b1f", "metadata": { "tags": [] }, "outputs": [], "source": [ "def mach_angle(M):\n", " return np.degrees(np.arcsin(1/M))" ] }, { "cell_type": "markdown", "id": "590bdd98-b124-47fe-970f-97965fd85e40", "metadata": {}, "source": [ "implements $\\nu = \\sqrt{\\frac{\\gamma + 1}{\\gamma - 1}} \\tan^{-1} \\sqrt{\\frac{\\gamma -1}{\\gamma + 1}(M^2 - 1)} - \\tan ^{-1} \\sqrt{M^2 - 1}$ to find the prandtl-meyer function" ] }, { "cell_type": "code", "execution_count": 25, "id": "45a19c1d-44f3-4134-949e-c84f149d187d", "metadata": { "tags": [] }, "outputs": [], "source": [ "def PM(M, gamma = GAMMA):\n", " first = np.sqrt((gamma + 1)/(gamma - 1))\n", " second = np.degrees(np.arctan(np.sqrt((gamma - 1)/(gamma + 1) * (M**2 - 1))))\n", " third = np.degrees(np.arctan(np.sqrt(M**2 - 1)))\n", " return first*second - third" ] }, { "cell_type": "code", "execution_count": 26, "id": "dce01fc1-8276-482b-ad04-59c7b59509b3", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "49.75734674434608" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "PM(3, 1.4)" ] }, { "cell_type": "markdown", "id": "22052bad-e3be-4942-84ad-902a1b25d9bc", "metadata": {}, "source": [ "uses ```scipy.optimize.fsolve``` to find the mach number from prandtl-meyer function" ] }, { "cell_type": "code", "execution_count": 27, "id": "3b559c04-bfbb-436a-9a66-85f70401762b", "metadata": { "tags": [] }, "outputs": [], "source": [ "def M_from_nu(nu, gamma = GAMMA):\n", " def temp(M, nu, gamma = GAMMA):\n", " return PM(M, gamma) - nu\n", " \n", " return fsolve(temp, 1.5, args=(nu, gamma))[0]" ] }, { "cell_type": "markdown", "id": "0d2f53cd-8103-435c-ad88-52b2a48ae66b", "metadata": {}, "source": [ "testing for $M=2$ and $\\gamma = 1.4$" ] }, { "cell_type": "code", "execution_count": 28, "id": "d053c997-a6c4-4741-8ce4-7251486791e6", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "1.9862499490360108" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "M_from_nu(26, gamma = 1.4)" ] }, { "cell_type": "markdown", "id": "4c0395f4-cb5a-404c-8392-6840c871c440", "metadata": { "tags": [] }, "source": [ "init the dataframe to store everything, makes it easy to store data and display what its storing" ] }, { "cell_type": "code", "execution_count": 29, "id": "ff83964b-6f4e-4345-addf-c74ab3c87b7d", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "maximum number of characteristics: 109\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
R+R-thetanuMmutheta + mutheta - muxy
name
a0.00.00.00.00.00.00.00.00.00.0
b0.00.00.00.00.00.00.00.00.00.0
c0.00.00.00.00.00.00.00.00.00.0
d0.00.00.00.00.00.00.00.00.00.0
10.00.00.00.00.00.00.00.00.00.0
20.00.00.00.00.00.00.00.00.00.0
30.00.00.00.00.00.00.00.00.00.0
40.00.00.00.00.00.00.00.00.00.0
50.00.00.00.00.00.00.00.00.00.0
60.00.00.00.00.00.00.00.00.00.0
70.00.00.00.00.00.00.00.00.00.0
80.00.00.00.00.00.00.00.00.00.0
90.00.00.00.00.00.00.00.00.00.0
100.00.00.00.00.00.00.00.00.00.0
110.00.00.00.00.00.00.00.00.00.0
120.00.00.00.00.00.00.00.00.00.0
130.00.00.00.00.00.00.00.00.00.0
140.00.00.00.00.00.00.00.00.00.0
\n", "
" ], "text/plain": [ " R+ R- theta nu M mu theta + mu theta - mu x y\n", "name \n", "a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", "b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", "c 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", "d 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", "1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", "2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", "3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", "4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", "5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", "6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", "7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", "8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", "9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", "10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", "11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", "12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", "13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n", "14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "row = {'name': '', 'R+': 0.0, 'R-': 0.0, 'theta': 0.0, 'nu': 0.0, 'M': 0.0, 'mu': 0.0, 'theta + mu': 0.0, 'theta - mu': 0.0, 'x': 0.0, 'y': 0.0}\n", "temp = []\n", "\n", "\n", "alphabet = [*'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ±!@£$%^&*()_+{}:\"|<>?,./;\\[]-=§~`¡€#¢∞¶•ªº≠“‘…æ«≤≥Ω≈çµøπœ']\n", "print(f\"maximum number of characteristics: {len(alphabet)}\")\n", "num = int(num_lines*(num_lines+1)/2 + num_lines)\n", "\n", "for i in range(num_lines + num):\n", " temp.append(row)\n", "table = pd.DataFrame(temp)\n", "names = alphabet[:num_lines] + [str(i+1) for i in range(num)]\n", "table['name'] = names\n", "table.set_index('name', inplace=True)\n", "table" ] }, { "cell_type": "markdown", "id": "4c3633ee-6946-4f76-9e3f-e93e9ed8332f", "metadata": {}, "source": [ "init rows $a, b, c, d, e$ " ] }, { "cell_type": "code", "execution_count": 30, "id": "d0d1bef6-ef5b-48cf-b825-7725189d6f70", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
R+R-thetanuMmutheta + mutheta - muxy
name
a0.00.7460000.3730000.3730001.04168673.73622974.109229-73.3632290.01.0
b0.012.7461776.3730896.3730891.30739249.89643856.269527-43.5233490.01.0
c0.024.74635412.37317712.3731771.51587541.27585053.649027-28.9026720.01.0
d0.036.74653118.37326618.3732661.71920935.56758353.940848-17.1943170.01.0
10.00.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
20.00.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
30.00.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
40.00.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
50.00.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
60.00.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
70.00.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
80.00.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
90.00.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
100.00.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
110.00.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
120.00.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
130.00.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
140.00.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
\n", "
" ], "text/plain": [ " R+ R- theta nu M mu theta + mu \\\n", "name \n", "a 0.0 0.746000 0.373000 0.373000 1.041686 73.736229 74.109229 \n", "b 0.0 12.746177 6.373089 6.373089 1.307392 49.896438 56.269527 \n", "c 0.0 24.746354 12.373177 12.373177 1.515875 41.275850 53.649027 \n", "d 0.0 36.746531 18.373266 18.373266 1.719209 35.567583 53.940848 \n", "1 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "2 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "3 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "4 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "5 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "6 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "7 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "8 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "9 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "10 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "11 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "12 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "13 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "14 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "\n", " theta - mu x y \n", "name \n", "a -73.363229 0.0 1.0 \n", "b -43.523349 0.0 1.0 \n", "c -28.902672 0.0 1.0 \n", "d -17.194317 0.0 1.0 \n", "1 0.000000 0.0 0.0 \n", "2 0.000000 0.0 0.0 \n", "3 0.000000 0.0 0.0 \n", "4 0.000000 0.0 0.0 \n", "5 0.000000 0.0 0.0 \n", "6 0.000000 0.0 0.0 \n", "7 0.000000 0.0 0.0 \n", "8 0.000000 0.0 0.0 \n", "9 0.000000 0.0 0.0 \n", "10 0.000000 0.0 0.0 \n", "11 0.000000 0.0 0.0 \n", "12 0.000000 0.0 0.0 \n", "13 0.000000 0.0 0.0 \n", "14 0.000000 0.0 0.0 " ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "theta_max = PM(M_des)/2\n", "theta_starts = np.linspace(theta_min, theta_max, num=num_lines)\n", "\n", "things = alphabet[:num_lines]\n", "\n", "for i in range(len(things)):\n", " table.loc[things[i]]['theta'] = theta_starts[i]\n", " table.loc[things[i]]['nu'] = table.loc[things[i]]['theta']\n", " table.loc[things[i]]['M'] = M_from_nu(table.loc[things[i]]['nu'])\n", " table.loc[things[i]]['mu'] = mach_angle(table.loc[things[i]]['M'])\n", " table.loc[things[i]]['theta + mu'] = table.loc[things[i]]['theta'] + table.loc[things[i]]['mu']\n", " table.loc[things[i]]['theta - mu'] = table.loc[things[i]]['theta'] - table.loc[things[i]]['mu']\n", " table.loc[things[i]]['x'] = 0\n", " table.loc[things[i]]['y'] = 1\n", " table.loc[things[i]]['R-'] = table.loc[things[i]]['nu'] + table.loc[things[i]]['theta']\n", " \n", "table " ] }, { "cell_type": "markdown", "id": "d089cdc8-fa46-40ce-a698-ccf3c1798001", "metadata": { "tags": [] }, "source": [ "$R+$ for each of the reflected lines" ] }, { "cell_type": "code", "execution_count": 10, "id": "8430e452-162d-4a2a-9984-0a16857971d7", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
R+R-thetanuMmutheta + mutheta - muxy
name
a0.0000000.7460000.3730000.3730001.04168673.73622974.109229-73.3632290.01.0
b0.0000004.7460592.3730302.3730301.14964260.43960962.812639-58.0665800.01.0
c0.0000008.7461184.3730594.3730591.23239154.23595058.609009-49.8628910.01.0
d0.00000012.7461776.3730896.3730891.30739249.89643856.269527-43.5233490.01.0
e0.00000016.7462368.3731188.3731181.37860646.49966954.872787-38.1265510.01.0
.................................
6132.7464720.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
6232.7464720.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
6332.7464720.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
6436.7465310.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
6536.7465310.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00.0
\n", "

75 rows × 10 columns

\n", "
" ], "text/plain": [ " R+ R- theta nu M mu \\\n", "name \n", "a 0.000000 0.746000 0.373000 0.373000 1.041686 73.736229 \n", "b 0.000000 4.746059 2.373030 2.373030 1.149642 60.439609 \n", "c 0.000000 8.746118 4.373059 4.373059 1.232391 54.235950 \n", "d 0.000000 12.746177 6.373089 6.373089 1.307392 49.896438 \n", "e 0.000000 16.746236 8.373118 8.373118 1.378606 46.499669 \n", "... ... ... ... ... ... ... \n", "61 32.746472 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "62 32.746472 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "63 32.746472 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "64 36.746531 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "65 36.746531 0.000000 0.000000 0.000000 0.000000 0.000000 \n", "\n", " theta + mu theta - mu x y \n", "name \n", "a 74.109229 -73.363229 0.0 1.0 \n", "b 62.812639 -58.066580 0.0 1.0 \n", "c 58.609009 -49.862891 0.0 1.0 \n", "d 56.269527 -43.523349 0.0 1.0 \n", "e 54.872787 -38.126551 0.0 1.0 \n", "... ... ... ... ... \n", "61 0.000000 0.000000 0.0 0.0 \n", "62 0.000000 0.000000 0.0 0.0 \n", "63 0.000000 0.000000 0.0 0.0 \n", "64 0.000000 0.000000 0.0 0.0 \n", "65 0.000000 0.000000 0.0 0.0 \n", "\n", "[75 rows x 10 columns]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "index = 1\n", "length = num_lines + 1\n", "reflected_lines = []\n", "for i in range(num_lines):\n", " output = []\n", " for i in range(length):\n", " output.append(index)\n", " index += 1\n", " length -= 1\n", " reflected_lines.append([str(i) for i in output])\n", "\n", "for i in range(len(reflected_lines)):\n", " for point in reflected_lines[i]:\n", " table.loc[point][\"R+\"] = table.loc[things[i]]['R-']\n", "\n", "table" ] }, { "cell_type": "markdown", "id": "5b4a7982-4af6-4e7b-8012-eb80cd3894a9", "metadata": {}, "source": [ "copying $R-$ as is appropriate" ] }, { "cell_type": "code", "execution_count": 11, "id": "d57621b1-87c6-441e-a9fc-4e1a5fee0a22", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
R+R-thetanuMmutheta + mutheta - muxy
name
a0.0000000.7460000.3730000.3730001.04168673.73622974.109229-73.3632290.01.0
b0.0000004.7460592.3730302.3730301.14964260.43960962.812639-58.0665800.01.0
c0.0000008.7461184.3730594.3730591.23239154.23595058.609009-49.8628910.01.0
d0.00000012.7461776.3730896.3730891.30739249.89643856.269527-43.5233490.01.0
e0.00000016.7462368.3731188.3731181.37860646.49966954.872787-38.1265510.01.0
.................................
6132.74647232.7464720.0000000.0000000.0000000.0000000.0000000.0000000.00.0
6232.74647236.7465310.0000000.0000000.0000000.0000000.0000000.0000000.00.0
6332.746472NaN0.0000000.0000000.0000000.0000000.0000000.0000000.00.0
6436.74653136.7465310.0000000.0000000.0000000.0000000.0000000.0000000.00.0
6536.746531NaN0.0000000.0000000.0000000.0000000.0000000.0000000.00.0
\n", "

75 rows × 10 columns

\n", "
" ], "text/plain": [ " R+ R- theta nu M mu \\\n", "name \n", "a 0.000000 0.746000 0.373000 0.373000 1.041686 73.736229 \n", "b 0.000000 4.746059 2.373030 2.373030 1.149642 60.439609 \n", "c 0.000000 8.746118 4.373059 4.373059 1.232391 54.235950 \n", "d 0.000000 12.746177 6.373089 6.373089 1.307392 49.896438 \n", "e 0.000000 16.746236 8.373118 8.373118 1.378606 46.499669 \n", "... ... ... ... ... ... ... \n", "61 32.746472 32.746472 0.000000 0.000000 0.000000 0.000000 \n", "62 32.746472 36.746531 0.000000 0.000000 0.000000 0.000000 \n", "63 32.746472 NaN 0.000000 0.000000 0.000000 0.000000 \n", "64 36.746531 36.746531 0.000000 0.000000 0.000000 0.000000 \n", "65 36.746531 NaN 0.000000 0.000000 0.000000 0.000000 \n", "\n", " theta + mu theta - mu x y \n", "name \n", "a 74.109229 -73.363229 0.0 1.0 \n", "b 62.812639 -58.066580 0.0 1.0 \n", "c 58.609009 -49.862891 0.0 1.0 \n", "d 56.269527 -43.523349 0.0 1.0 \n", "e 54.872787 -38.126551 0.0 1.0 \n", "... ... ... ... ... \n", "61 0.000000 0.000000 0.0 0.0 \n", "62 0.000000 0.000000 0.0 0.0 \n", "63 0.000000 0.000000 0.0 0.0 \n", "64 0.000000 0.000000 0.0 0.0 \n", "65 0.000000 0.000000 0.0 0.0 \n", "\n", "[75 rows x 10 columns]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "valmatrix = []\n", "for i in range(len(reflected_lines)):\n", " values = list(range(i, len(reflected_lines)))\n", " values.append(False)\n", " valmatrix += (values)\n", "\n", "for i in range(1, num + 1):\n", " if valmatrix[i-1] or i == 1:\n", " table.loc[str(i)]['R-'] = table.loc[things[valmatrix[i-1]]]['R-']\n", " else:\n", " table.loc[str(i)]['R-'] = np.NAN\n", "\n", "table" ] }, { "cell_type": "code", "execution_count": 12, "id": "99ecb793-f2cd-4baa-a6ca-d0aec711ba27", "metadata": { "tags": [] }, "outputs": [], "source": [ "def theta_from_Rs(Rplus, Rminus):\n", " return abs((Rplus - Rminus)/2)\n", "\n", "def nu_from_Rs(Rplus, Rminus):\n", " return (Rplus + Rminus)/2" ] }, { "cell_type": "markdown", "id": "f38b5df0-ee72-47d5-a741-1264bcadcf52", "metadata": {}, "source": [ "filling out the rest of the values" ] }, { "cell_type": "code", "execution_count": 13, "id": "924f1e55-5d12-42ce-9b8c-517d22dcb9c3", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
R+R-thetanuMmutheta + mutheta - muxy
name
a0.0000000.7460000.3730000.3730001.04168673.73622974.109229-73.3632290.01.0
b0.0000004.7460592.3730302.3730301.14964260.43960962.812639-58.0665800.01.0
c0.0000008.7461184.3730594.3730591.23239154.23595058.609009-49.8628910.01.0
d0.00000012.7461776.3730896.3730891.30739249.89643856.269527-43.5233490.01.0
e0.00000016.7462368.3731188.3731181.37860646.49966954.872787-38.1265510.01.0
.................................
6132.74647232.7464720.00000032.7464722.23935626.52299126.522991-26.5229910.00.0
6232.74647236.7465312.00003034.7465022.31855525.55028727.550317-23.5502580.00.0
6332.746472NaN0.0000000.0000000.0000000.0000000.0000000.0000000.00.0
6436.74653136.7465310.00000036.7465312.40000024.62431824.624318-24.6243180.00.0
6536.746531NaN0.0000000.0000000.0000000.0000000.0000000.0000000.00.0
\n", "

75 rows × 10 columns

\n", "
" ], "text/plain": [ " R+ R- theta nu M mu \\\n", "name \n", "a 0.000000 0.746000 0.373000 0.373000 1.041686 73.736229 \n", "b 0.000000 4.746059 2.373030 2.373030 1.149642 60.439609 \n", "c 0.000000 8.746118 4.373059 4.373059 1.232391 54.235950 \n", "d 0.000000 12.746177 6.373089 6.373089 1.307392 49.896438 \n", "e 0.000000 16.746236 8.373118 8.373118 1.378606 46.499669 \n", "... ... ... ... ... ... ... \n", "61 32.746472 32.746472 0.000000 32.746472 2.239356 26.522991 \n", "62 32.746472 36.746531 2.000030 34.746502 2.318555 25.550287 \n", "63 32.746472 NaN 0.000000 0.000000 0.000000 0.000000 \n", "64 36.746531 36.746531 0.000000 36.746531 2.400000 24.624318 \n", "65 36.746531 NaN 0.000000 0.000000 0.000000 0.000000 \n", "\n", " theta + mu theta - mu x y \n", "name \n", "a 74.109229 -73.363229 0.0 1.0 \n", "b 62.812639 -58.066580 0.0 1.0 \n", "c 58.609009 -49.862891 0.0 1.0 \n", "d 56.269527 -43.523349 0.0 1.0 \n", "e 54.872787 -38.126551 0.0 1.0 \n", "... ... ... ... ... \n", "61 26.522991 -26.522991 0.0 0.0 \n", "62 27.550317 -23.550258 0.0 0.0 \n", "63 0.000000 0.000000 0.0 0.0 \n", "64 24.624318 -24.624318 0.0 0.0 \n", "65 0.000000 0.000000 0.0 0.0 \n", "\n", "[75 rows x 10 columns]" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rows = [str(i) for i in range(1, num + 1)]\n", "\n", "for row in rows:\n", " if not(pd.isnull(table.loc[row]['R-'])):\n", " table.loc[row]['theta'] = theta_from_Rs(table.loc[row][\"R+\"], table.loc[row][\"R-\"])\n", " table.loc[row]['nu'] = nu_from_Rs(table.loc[row][\"R+\"], table.loc[row][\"R-\"])\n", " table.loc[row]['M'] = M_from_nu(table.loc[row]['nu'])\n", " table.loc[row]['mu'] = mach_angle(table.loc[row]['M'])\n", " table.loc[row]['theta + mu'] = table.loc[row]['theta'] + table.loc[row]['mu']\n", " table.loc[row]['theta - mu'] = table.loc[row]['theta'] - table.loc[row]['mu']\n", " \n", "table" ] }, { "cell_type": "markdown", "id": "bbefb1f3-4350-4a0f-afee-471847a93068", "metadata": {}, "source": [ "copying the wall points as appropriate" ] }, { "cell_type": "code", "execution_count": 14, "id": "a723fdc1-562e-4824-98e5-5dcd4adc46cd", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
R+R-thetanuMmutheta + mutheta - muxy
name
a0.0000000.7460000.3730000.3730001.04168673.73622974.109229-73.3632290.01.0
b0.0000004.7460592.3730302.3730301.14964260.43960962.812639-58.0665800.01.0
c0.0000008.7461184.3730594.3730591.23239154.23595058.609009-49.8628910.01.0
d0.00000012.7461776.3730896.3730891.30739249.89643856.269527-43.5233490.01.0
e0.00000016.7462368.3731188.3731181.37860646.49966954.872787-38.1265510.01.0
.................................
6132.74647232.7464720.00000032.7464722.23935626.52299126.522991-26.5229910.00.0
6232.74647236.7465312.00003034.7465022.31855525.55028727.550317-23.5502580.00.0
6332.746472NaN2.00003034.7465022.31855525.55028727.550317-23.5502580.00.0
6436.74653136.7465310.00000036.7465312.40000024.62431824.624318-24.6243180.00.0
6536.746531NaN0.00000036.7465312.40000024.62431824.624318-24.6243180.00.0
\n", "

75 rows × 10 columns

\n", "
" ], "text/plain": [ " R+ R- theta nu M mu \\\n", "name \n", "a 0.000000 0.746000 0.373000 0.373000 1.041686 73.736229 \n", "b 0.000000 4.746059 2.373030 2.373030 1.149642 60.439609 \n", "c 0.000000 8.746118 4.373059 4.373059 1.232391 54.235950 \n", "d 0.000000 12.746177 6.373089 6.373089 1.307392 49.896438 \n", "e 0.000000 16.746236 8.373118 8.373118 1.378606 46.499669 \n", "... ... ... ... ... ... ... \n", "61 32.746472 32.746472 0.000000 32.746472 2.239356 26.522991 \n", "62 32.746472 36.746531 2.000030 34.746502 2.318555 25.550287 \n", "63 32.746472 NaN 2.000030 34.746502 2.318555 25.550287 \n", "64 36.746531 36.746531 0.000000 36.746531 2.400000 24.624318 \n", "65 36.746531 NaN 0.000000 36.746531 2.400000 24.624318 \n", "\n", " theta + mu theta - mu x y \n", "name \n", "a 74.109229 -73.363229 0.0 1.0 \n", "b 62.812639 -58.066580 0.0 1.0 \n", "c 58.609009 -49.862891 0.0 1.0 \n", "d 56.269527 -43.523349 0.0 1.0 \n", "e 54.872787 -38.126551 0.0 1.0 \n", "... ... ... ... ... \n", "61 26.522991 -26.522991 0.0 0.0 \n", "62 27.550317 -23.550258 0.0 0.0 \n", "63 27.550317 -23.550258 0.0 0.0 \n", "64 24.624318 -24.624318 0.0 0.0 \n", "65 24.624318 -24.624318 0.0 0.0 \n", "\n", "[75 rows x 10 columns]" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "walls = [str(line[-1]) for line in reflected_lines]\n", "copy_from = [str(line[-2]) for line in reflected_lines]\n", "\n", "for i in range(len(walls)):\n", " table.loc[walls[i]]['theta'] = table.loc[copy_from[i]]['theta']\n", " table.loc[walls[i]]['nu'] = table.loc[copy_from[i]]['nu']\n", " table.loc[walls[i]]['M'] = table.loc[copy_from[i]]['M']\n", " table.loc[walls[i]]['mu'] = table.loc[copy_from[i]]['mu']\n", " table.loc[walls[i]]['theta + mu'] = table.loc[copy_from[i]]['theta + mu']\n", " table.loc[walls[i]]['theta - mu'] = table.loc[copy_from[i]]['theta - mu']\n", "table" ] }, { "cell_type": "code", "execution_count": 15, "id": "3b0d99ec-3a27-45b3-be68-e49883b93cfd", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
R+R-thetanuMmutheta + mutheta - muxy
name
a0.0000000.7460000.3730000.3730001.04168673.73622974.109229-73.3632290.0000001.0
b0.0000004.7460592.3730302.3730301.14964260.43960962.812639-58.0665800.0000001.0
c0.0000008.7461184.3730594.3730591.23239154.23595058.609009-49.8628910.0000001.0
d0.00000012.7461776.3730896.3730891.30739249.89643856.269527-43.5233490.0000001.0
e0.00000016.7462368.3731188.3731181.37860646.49966954.872787-38.1265510.0000001.0
.................................
6132.74647232.7464720.00000032.7464722.23935626.52299126.522991-26.5229912.2768060.0
6232.74647236.7465312.00003034.7465022.31855525.55028727.550317-23.5502580.0000000.0
6332.746472NaN2.00003034.7465022.31855525.55028727.550317-23.5502580.0000000.0
6436.74653136.7465310.00000036.7465312.40000024.62431824.624318-24.6243182.6174640.0
6536.746531NaN0.00000036.7465312.40000024.62431824.624318-24.6243180.0000000.0
\n", "

75 rows × 10 columns

\n", "
" ], "text/plain": [ " R+ R- theta nu M mu \\\n", "name \n", "a 0.000000 0.746000 0.373000 0.373000 1.041686 73.736229 \n", "b 0.000000 4.746059 2.373030 2.373030 1.149642 60.439609 \n", "c 0.000000 8.746118 4.373059 4.373059 1.232391 54.235950 \n", "d 0.000000 12.746177 6.373089 6.373089 1.307392 49.896438 \n", "e 0.000000 16.746236 8.373118 8.373118 1.378606 46.499669 \n", "... ... ... ... ... ... ... \n", "61 32.746472 32.746472 0.000000 32.746472 2.239356 26.522991 \n", "62 32.746472 36.746531 2.000030 34.746502 2.318555 25.550287 \n", "63 32.746472 NaN 2.000030 34.746502 2.318555 25.550287 \n", "64 36.746531 36.746531 0.000000 36.746531 2.400000 24.624318 \n", "65 36.746531 NaN 0.000000 36.746531 2.400000 24.624318 \n", "\n", " theta + mu theta - mu x y \n", "name \n", "a 74.109229 -73.363229 0.000000 1.0 \n", "b 62.812639 -58.066580 0.000000 1.0 \n", "c 58.609009 -49.862891 0.000000 1.0 \n", "d 56.269527 -43.523349 0.000000 1.0 \n", "e 54.872787 -38.126551 0.000000 1.0 \n", "... ... ... ... ... \n", "61 26.522991 -26.522991 2.276806 0.0 \n", "62 27.550317 -23.550258 0.000000 0.0 \n", "63 27.550317 -23.550258 0.000000 0.0 \n", "64 24.624318 -24.624318 2.617464 0.0 \n", "65 24.624318 -24.624318 0.000000 0.0 \n", "\n", "[75 rows x 10 columns]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# find on symmetries\n", "\n", "symmetries = [str(line[0]) for line in reflected_lines]\n", "above = alphabet[:num_lines]\n", "\n", "for i in range(len(symmetries)):\n", " alpha_bs = 0.5 * np.radians((table.loc[above[i]]['theta - mu']) - (table.loc[symmetries[i]]['mu']))\n", " #print(np.degrees(alpha_bs))\n", " table.loc[symmetries[i]]['x'] = -(1/np.tan(alpha_bs))\n", "\n", " \n", "table" ] }, { "cell_type": "code", "execution_count": 16, "id": "145bfb75-30e7-467c-b716-7b6ead19525e", "metadata": { "tags": [] }, "outputs": [], "source": [ "def find_x(x_a, y_a, alpha_a, x_b, y_b, alpha_b):\n", " alpha_ap = alpha_a\n", " alpha_bp = alpha_b\n", " \n", " top = ((x_b * np.tan(alpha_bp)) - (x_a * np.tan(alpha_ap)) + y_a - y_b)/(np.tan(alpha_bp) - np.tan(alpha_ap))\n", " \n", " return top\n", "\n", "def find_y(x_a, y_a, alpha_a, x_p):\n", " alpha_ap = alpha_a\n", " \n", " return y_a + ((x_p - x_a) * np.tan(alpha_ap))" ] }, { "cell_type": "markdown", "id": "09a38d18-e6e8-44af-8c30-9480990c3111", "metadata": {}, "source": [ "find the coordinates of all of the points that arent on the symmetry or edge" ] }, { "cell_type": "code", "execution_count": 17, "id": "7b14d891-95aa-4e02-ba86-86519fa2b02f", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
R+R-thetanuMmutheta + mutheta - muxy
name
a0.0000000.7460000.3730000.3730001.04168673.73622974.109229-73.3632290.0000001.0000
b0.0000004.7460592.3730302.3730301.14964260.43960962.812639-58.0665800.0000001.0000
c0.0000008.7461184.3730594.3730591.23239154.23595058.609009-49.8628910.0000001.0000
d0.00000012.7461776.3730896.3730891.30739249.89643856.269527-43.5233490.0000001.0000
e0.00000016.7462368.3731188.3731181.37860646.49966954.872787-38.1265510.0000001.0000
.................................
6132.74647232.7464720.00000032.7464722.23935626.52299126.522991-26.5229912.2768060.0000
6232.74647236.7465312.00003034.7465022.31855525.55028727.550317-23.5502582.5376180.1331
6332.746472NaN2.00003034.7465022.31855525.55028727.550317-23.5502580.0000000.0000
6436.74653136.7465310.00000036.7465312.40000024.62431824.624318-24.6243182.6174640.0000
6536.746531NaN0.00000036.7465312.40000024.62431824.624318-24.6243180.0000000.0000
\n", "

75 rows × 10 columns

\n", "
" ], "text/plain": [ " R+ R- theta nu M mu \\\n", "name \n", "a 0.000000 0.746000 0.373000 0.373000 1.041686 73.736229 \n", "b 0.000000 4.746059 2.373030 2.373030 1.149642 60.439609 \n", "c 0.000000 8.746118 4.373059 4.373059 1.232391 54.235950 \n", "d 0.000000 12.746177 6.373089 6.373089 1.307392 49.896438 \n", "e 0.000000 16.746236 8.373118 8.373118 1.378606 46.499669 \n", "... ... ... ... ... ... ... \n", "61 32.746472 32.746472 0.000000 32.746472 2.239356 26.522991 \n", "62 32.746472 36.746531 2.000030 34.746502 2.318555 25.550287 \n", "63 32.746472 NaN 2.000030 34.746502 2.318555 25.550287 \n", "64 36.746531 36.746531 0.000000 36.746531 2.400000 24.624318 \n", "65 36.746531 NaN 0.000000 36.746531 2.400000 24.624318 \n", "\n", " theta + mu theta - mu x y \n", "name \n", "a 74.109229 -73.363229 0.000000 1.0000 \n", "b 62.812639 -58.066580 0.000000 1.0000 \n", "c 58.609009 -49.862891 0.000000 1.0000 \n", "d 56.269527 -43.523349 0.000000 1.0000 \n", "e 54.872787 -38.126551 0.000000 1.0000 \n", "... ... ... ... ... \n", "61 26.522991 -26.522991 2.276806 0.0000 \n", "62 27.550317 -23.550258 2.537618 0.1331 \n", "63 27.550317 -23.550258 0.000000 0.0000 \n", "64 24.624318 -24.624318 2.617464 0.0000 \n", "65 24.624318 -24.624318 0.000000 0.0000 \n", "\n", "[75 rows x 10 columns]" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# find all of the points that arent wall or symmetry\n", "ps = [line[1:-1] for line in reflected_lines]\n", "p = []\n", "for i in ps:\n", " for j in i:\n", " p.append(str(j))\n", "\n", "# find the points above p\n", "bs = alphabet[1:num_lines]\n", "for line in reflected_lines:\n", " bs.append(line[2:-1])\n", "b = []\n", "for i in bs:\n", " for j in i:\n", " b.append(str(j))\n", " \n", "# find the points below p\n", "a_s = []\n", "for line in reflected_lines:\n", " a_s.append(line[0:-2])\n", "a = []\n", "for i in a_s:\n", " for j in i:\n", " a.append(str(j))\n", "\n", "for i in range(len(p)):\n", " alpha_ap = 0.5 * np.radians((table.loc[a[i]]['theta + mu']) + (table.loc[p[i]]['theta + mu']))\n", " alpha_bp = 0.5 * np.radians((table.loc[b[i]]['theta - mu']) + (table.loc[p[i]]['theta - mu']))\n", " \n", " x_p = find_x(table.loc[a[i]]['x'], table.loc[a[i]]['y'], alpha_ap, table.loc[b[i]]['x'], table.loc[b[i]]['y'], alpha_bp)\n", " y_p = find_y(table.loc[a[i]]['x'], table.loc[a[i]]['y'], alpha_ap, x_p)\n", " # print(f\"p: {p[i]} x_a {table.loc[a[i]]['x']}, y_a {table.loc[a[i]]['y']}, alpha_a {alpha_ap}\\nx_b {table.loc[b[i]]['x']}, y_b {table.loc[b[i]]['y']}, alpha_b {alpha_bp}\\n\")\n", " table.loc[p[i]]['x'] = x_p\n", " table.loc[p[i]]['y'] = y_p\n", "\n", "#for index, row in table.iterrows():\n", "# plt.scatter(row['x'], row['y'])\n", "\n", "table" ] }, { "cell_type": "code", "execution_count": 18, "id": "18833cda-9ac5-4619-8386-021fbbf3ffa4", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
R+R-thetanuMmutheta + mutheta - muxy
name
a0.0000000.7460000.3730000.3730001.04168673.73622974.109229-73.3632290.0000001.000000
b0.0000004.7460592.3730302.3730301.14964260.43960962.812639-58.0665800.0000001.000000
c0.0000008.7461184.3730594.3730591.23239154.23595058.609009-49.8628910.0000001.000000
d0.00000012.7461776.3730896.3730891.30739249.89643856.269527-43.5233490.0000001.000000
e0.00000016.7462368.3731188.3731181.37860646.49966954.872787-38.1265510.0000001.000000
.................................
6132.74647232.7464720.00000032.7464722.23935626.52299126.522991-26.5229912.2768060.000000
6232.74647236.7465312.00003034.7465022.31855525.55028727.550317-23.5502582.5376180.133100
6332.746472NaN2.00003034.7465022.31855525.55028727.550317-23.5502586.2288492.058755
6436.74653136.7465310.00000036.7465312.40000024.62431824.624318-24.6243182.6174640.000000
6536.746531NaN0.00000036.7465312.40000024.62431824.624318-24.6243187.1439892.074730
\n", "

75 rows × 10 columns

\n", "
" ], "text/plain": [ " R+ R- theta nu M mu \\\n", "name \n", "a 0.000000 0.746000 0.373000 0.373000 1.041686 73.736229 \n", "b 0.000000 4.746059 2.373030 2.373030 1.149642 60.439609 \n", "c 0.000000 8.746118 4.373059 4.373059 1.232391 54.235950 \n", "d 0.000000 12.746177 6.373089 6.373089 1.307392 49.896438 \n", "e 0.000000 16.746236 8.373118 8.373118 1.378606 46.499669 \n", "... ... ... ... ... ... ... \n", "61 32.746472 32.746472 0.000000 32.746472 2.239356 26.522991 \n", "62 32.746472 36.746531 2.000030 34.746502 2.318555 25.550287 \n", "63 32.746472 NaN 2.000030 34.746502 2.318555 25.550287 \n", "64 36.746531 36.746531 0.000000 36.746531 2.400000 24.624318 \n", "65 36.746531 NaN 0.000000 36.746531 2.400000 24.624318 \n", "\n", " theta + mu theta - mu x y \n", "name \n", "a 74.109229 -73.363229 0.000000 1.000000 \n", "b 62.812639 -58.066580 0.000000 1.000000 \n", "c 58.609009 -49.862891 0.000000 1.000000 \n", "d 56.269527 -43.523349 0.000000 1.000000 \n", "e 54.872787 -38.126551 0.000000 1.000000 \n", "... ... ... ... ... \n", "61 26.522991 -26.522991 2.276806 0.000000 \n", "62 27.550317 -23.550258 2.537618 0.133100 \n", "63 27.550317 -23.550258 6.228849 2.058755 \n", "64 24.624318 -24.624318 2.617464 0.000000 \n", "65 24.624318 -24.624318 7.143989 2.074730 \n", "\n", "[75 rows x 10 columns]" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "if walls[0] != 'a':\n", " walls.insert(0, 'a')\n", "wall_points = walls[1:]\n", "b = walls[:-1]\n", "a = copy_from\n", "for i in range(len(wall_points)):\n", " alpha_aw = np.radians(table.loc[a[i]]['theta + mu'])\n", " alpha_bw = 0.5 * np.radians(table.loc[b[i]]['theta'] + table.loc[wall_points[i]]['theta'])\n", "\n", " x_w = find_x(table.loc[a[i]]['x'], table.loc[a[i]]['y'], alpha_aw, table.loc[b[i]]['x'], table.loc[b[i]]['y'], alpha_bw)\n", " y_w = find_y(table.loc[a[i]]['x'], table.loc[a[i]]['y'], alpha_aw, x_w)\n", " \n", " #print(f\"w: {wall_points[i]} x_a {table.loc[a[i]]['x']}, y_a {table.loc[a[i]]['y']}, alpha_a {alpha_aw}\\nx_b {table.loc[b[i]]['x']}, y_b {table.loc[b[i]]['y']}, alpha_b {alpha_bw}\\n\")\n", " \n", " table.loc[wall_points[i]]['x'] = x_w\n", " table.loc[wall_points[i]]['y'] = y_w\n", "\n", "table" ] }, { "cell_type": "code", "execution_count": 19, "id": "65a0464d-0c42-4620-992b-ef3ef4753bdd", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABEcAAAM6CAYAAABjPS0fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AACEJElEQVR4nOzdZ2BU5bbG8WcyqaRCAqEkEHrvBAREsaAioqJYQFG4etRjxV5BsHeP/ehBAVFERWxgQRRRAoL0XgIkJBBKEkivM3M/oJHtBCQhM3vK//eFYb07ey9v7klmHva7tsXhcDgEAAAAAADgpwLMbgAAAAAAAMBMhCMAAAAAAMCvEY4AAAAAAAC/RjgCAAAAAAD8GuEIAAAAAADwa4QjAAAAAADArxGOAAAAAAAAv0Y4AgAAAAAA/BrhCAAAAAAA8GuEIwAAAAAAwK8RjgAAAAAAAL9GOAIAAAAAAPwa4QgAAAAAAPBrhCMAAAAAAMCvEY4AAAAAAAC/RjgCAAAAAAD8WqDZDfiK0tJSrV+/XpLUsGFDBQbyf1oAAAAAAOpaZWWlDh48KEnq2rWrQkNDT/qcfIKvI+vXr1ffvn3NbgMAAAAAAL+xfPlyJScnn/R52FYDAAAAAAD8GneO1JGGDRtWvV6+fLmaNGliYjcAAAAAAPimrKysqp0bR38WPxmEI3Xk6BkjTZo0UUJCgondAAAAAADg++pq3ifbagAAAAAAgF8jHAEAAAAAAH6NcAQAAAAAAPg1whEAAAAAAODXCEcAAAAAAIBfIxwBAAAAAAB+jXAEAAAAAAD4NcIRAAAAAADg1whHAAAAAACAXyMcAQAAAAAAfo1wBAAAAAAA+DXCEQAAAAAA4NcIRwAAAAAAgF8jHAEAAAAAAH6NcAQAAAAAAPg1whEAAAAAAODXCEcAAAAAAIBfIxwBAAAAAAB+jXAEAAAAAAD4NcIRAAAAAADg1whHAAAAAACAXyMcAQAAAAAAfo1wBAAAAAAA+DXCEQAAAAAA4NcIRwAAAAAAgF8jHAEAAAAAAH6NcAQAAAAAAPg1whEAAAAAAODXAs1uAAAAAAAAuJ/D4VBhWaVyCsuVU1SmJtFhahoTZnZbpiAcAQAAAADAR5RX2pVbVK7swjLlFJUrp7BMOYXlyi468mdOYZmy//yzqFzllfaqr31kWEddP6iVid2bh3AEAAAAAAAP5XA4lF9SaQw3isqVXVCmnKraX+FHXklFra+VU1Reh517F8IRAAAAAADcqLTC9tfdHYXV3eXx5x0eZcotKleFzeGWvrILytxyHU9EOAIAAAAAwEmw2x06XFLx15aVo+7yOPjHn0eHHwVllWa37CQ0yL+f10I4AgAAAADA35SU26ru6PhzC0v2H1tY/gw//lzPLSqXze6euztOVIBFahAeoriIYMVGBCs2PESxEcGKiwhRbPgff0b89We9YP+OB/z7vx4AAAAA4Bdsdodyi/4WbPwt6Dj6ro/icpvZLTuJCAn8I+gIVmxEiOIi/gg//vj70eFHTL1gWQMsZrfsNQhHAAAAAABex+FwqKjcZnz6ylFbWP4efuQWl8vhWTd3KDDAUu1dHX8GHQ3/+DP2j3pokNXsln0W4QgAAAAAwCNU2OyGQaV/3dXhHHpkF5ap7KjH0HqKqNDAqq0qseEhiov848+jQo7YP+74iAoNUgB3d3gEwhEAAAAAgEs4HA7ll1YaBpJm/21Ly9HBx+Hi2j+G1lWCrQF/BRsRRwcdf4Yff83waBAerOBA/x5s6q0IRwAAAAAANZJbVK49h0qUfdRTWf5+V8ef4Ye7HkNbE/XrBVXdxVE1t8Mp/Djy98iQQFks3N3h6whHAAAAAADHlVdcoaU7c7R0R7ZSduQo9UCh2S0ZhAYF/LGVJURx4cGGOR1/fypL/XrBCrJydweMCEcAAAAAAAbF5ZX6Pe2QlqRma8mOHG3Ym+fWYaZHHkP716DSP4OOhpHGgaVx4X8+htbK3R04KYQjAAAAAODnyivtWpNxWCmp2Vq6I0erMw7V+XaY8GBr1SDSqj+PCj/iwoOr5nfwGFq4G+EIAAAAAPgZm92hTXvzlbLjyJ0hv+/KVUmFrUbnsAZYDE9e+ev1n9tYjgo/wkMUFsxjaOG5CEcAAAAAwMc5HA7tOFiolNQcLdmRrd925iqvpGZPhgkJDFByUgP1bx2rgW3i1KVplAKZ3QEfQTgCAAAAAD4oI7dYS3fkVN0dcrCgrEZfbw2wqEdijAa0jtWA1nHq2TxGoUHc/QHfRDgCAAAAAD7gYEGZlu7MqRqiuju3uMbn6NQkSgPbHAlDkls2UEQIHxnhH/j/dAAAAADwQnklFVq2M0dLdhzZKrNtf80fr9sqLlwD/ghDTmkVqwbhwS7oFPB8hCMAAAAA4AVKym1akZ57JAxJzdb6PXmy1/CBMk2iQzWgddyRrTJtYtUkOsw1zQJehnAEAAAAADxQhc2utRmHtWRHjlJSs7V692GV2+w1OkeD8GD1bxVbdXdIUmw9WSw8Ihf4O8IRAAAAAPAAdrtDm7Lyq4aoLt+Vq+Lymj1eNzzYqn6tYquGqHZoHKmAAMIQ4J8QjgAAAACACRwOh3ZmF1UNUF26M0eHi2v2eN3gwAD1bl5fA9vEqn/rOHVLiFYQj9cFaoxwBAAAAADcZO/hEqWkZmvpjiODVPfll9bo660BFnVLiNaA1rEa2DpOvVrU5/G6QB0gHAEAAAAAF8kp/OPxun8MUU3LqfnjdTs0jtSA1nEa2CZWyS0bKCo0yAWdAv6NcAQAAAAA6khBaYWW78qtGqK6ZV9Bjc+RFFtP/f8IQ05pFau4iBAXdArgaIQjAAAAAFBLpRU2rUo/pJQdR+aGrMvMk62Gz9eNjwo56vG6cWoWw+N1AXcjHAEAAACAE1Rps2ttZp6W/hGGrEg/pPLKmj1eN6Ze0JHH6/4RhrSKC+fxuoDJCEcAAAAA4Bjsdoe27CvQkj/CkOW7clVYVlmjc9QLtqpvywZVj9ft1CSKx+sCHoZwBAAAAAD+4HA4lJZTfCQMST3yeN3covIanSPYGqCezWM0sM2RrTLdE2N4vC7g4QhHAAAAAPi1fXmlWrIjWympOVq6I1t782r2eN0Ai9S1WbQG/BGG9GnRQGHBPF4X8CaEIwAAAAD8yqGi8j8er3tkq8zOg0U1Pke7+IiqIar9WsUqOozH6wLejHAEAAAAgE8rKqv84/G6R+4O2bwvX46aPVBGzRvU04DWser/x9yQhpE8XhfwJYQjAAAAAHxKWaVNq9IPa+mObKXsyNHajMOqrOHjdRtGhmhA61gNbB2n/q1jldignou6BeAJCEcAAAAAeLVKm10b9uYrJTVbS3fk6Pe0XJXV8PG6UaGBOqVVbNUQ1TaNIni8LuBHCEcAAAAAeBWHw6Ft+wuVknpkZsiynTkqqOHjdcOCrEr+4/G6A1vHqVPTKFl5vC7gtwhHAAAAAHg0h8OhjNwSpfwxQHXpjmxlF9bs8bpBVot6JtZX/9ZH7g7pkRij4EAerwvgCMIRAAAAAB5p0958fbgsXT9vPag9h0tq9LUWi9SlabQGtI7VgDZxSk6qr3rBfPwBUD1+OgAAAADwGDa7Qz9s2qepKWlatiu3Rl/bplGEBraOVf/WcTqlVQPF1At2UZcAfA3hCAAAAADT5RVX6OMVuzV9SfoJ3yXSLCZMA9scebTugNaxahQV6uIuAfgql4Yjq1at0nfffadff/1VGzZs0IEDBxQUFKSmTZtqwIABuu666zRo0KA6veasWbM0depUrVu3TocOHVLjxo01aNAg3XLLLTrllFPq9FoAAAAATk7qgUJNW7JLn63co5IK23GPjYsIVv8/gpCBreOU2CCMJ8oAqBMWh8NRswd+n6DTTz9dv/zyyz8eN2bMGE2ZMkXBwSd3y1tpaakuu+wyzZ07t9r1gIAATZo0SRMmTDip6xxLZmamEhMTJUkZGRlKSEhwyXUAAAAAb2e3O7Ro+0FNTUnTL9sOHvfYhpEhuqpfcw3t0kTt4nm8LgDXfP522Z0je/bskSQ1bdpUl112mQYNGqTmzZvLZrNp6dKlevHFF7Vnzx7NmDFDlZWVmjlz5kld77rrrqsKRs444wzdcccdatq0qdavX6+nnnpKO3bs0MSJE9WkSRNdf/31J/3fBwAAAKBmisoq9dmqTE1bkqadB4uOe2y3hGiNG5ikYV2b8lQZAC7nsjtHLrjgAl1zzTW69NJLZbVandazs7M1cOBAbdu2TZL0yy+/1HqLzaJFizR48GBJ0vDhw/X5558brpmdna3evXtr9+7dql+/vnbu3KmYmJhaXetYuHMEAAAAqF5GbrGmL0nTxysyVFBaeczjrAEWDe3SWOMGJqlX8/rcJQKgWl5158ixtrf8KS4uTi+++KKGDx8uSZo9e3atw5HnnntOkmS1WvXmm286hTFxcXF69tlnNWrUKB06dEjvvvuu7r777lpdCwAAAMA/czgc+m1nrqam7NKCzftlP84/ycbUC9Lovs01pn8LNYkOc1+TAPAHU59W8+fdHpK0Y8eOWp2jsLBQP/74oyRpyJAhx0yMLrnkEkVFRSk/P19z5swhHAEAAABcoLTCpq/W7NV7Kbu0ZV/BcY9tHx+pcQOTdFGPZgoLdr7bHADcxdRwpLy8vOp1QEDt9hEuX75cZWVlko4MgT2W4OBgnXLKKZo/f76WL1+uiooKBQUF1eqaAAAAAIz25ZVqxm9p+mh5hnKLyo95nMUindUhXv83MEn9W8eydQaARzA1HFm0aFHV6w4dOtTqHJs3bz7hc3To0EHz589XZWWltm/frk6dOtXqmgAAAACOWLX7kKampOnb9VmqPM7emYiQQF3eJ1HXDmihFrHhbuwQAP6ZaeGI3W7XM888U/X3yy+/vFbnycjIqHr9T0NY/hzY8ufX1SQcyczMPO56VlbWCZ8LAAAA8GbllXZ9uyFL76WkaW3G4eMemxRbT2MHJGlkn0RFhJj6b7MAcEym/XR6+eWXtXz5cknSiBEj1KdPn1qdp6Dgr32MERERxz02PPyvhLqwsLBG1zk6WAEAAAD8UU5hmWYu260Zv6XrQEHZcY8d1DZO4wYmaXC7RgoIYOsMAM9mSjiyaNEiPfDAA5KkRo0a6a233qr1uUpLS6teBwcHH/fYkJCQqtclJSW1viYAAADgTzbtzdfUlF36cu1elVfaj3lcaFCALumVoHEDktQ2PtKNHQLAyXF7OLJx40aNGDFClZWVCgkJ0SeffKL4+Phany80NLTq9dEDXqvz5+BWSQoLq9kjwo7evlOdrKws9e3bt0bnBAAAADyVze7QD5v2a2rKLi3blXvcY5tGh+qaAUm6MjlRMfWO/w+WAOCJ3BqO7Nq1S+ecc44OHTokq9Wqjz766LhPmDkRkZF/JdL/tFWmqKio6vU/bcH5u3+aZwIAAAD4grySCn3ye4amL01T5qHj323dN6mBxg5M0jmd4hVord3TJwHAE7gtHNm7d6/OPvts7d27VxaLRe+9955GjBhx0uc9OrTIzMw87uySo+/+YIYIAAAA8JfUA4WatmSXPlu5RyUVtmMeF2wN0PDuTTVuYJK6NIt2Y4cA4DpuCUeys7M1ZMgQ7dy5U5L02muv6ZprrqmTcx/9xJktW7Yc99g/1wMDA9WmTZs6uT4AAADgrex2hxZtP6ipKWn6ZdvB4x7bMDJEV/drodH9mqthZMhxjwUAb+PycCQvL0/nnnuuNm3aJEl65plndMstt9TZ+ZOTkxUcHKzy8nLDoNe/Ky8v12+//Wb4GgAAAMAfFZVV6rNVmZq2JE07DxYd99huCdEaNzBJw7o2VXAgW2cA+CaXhiPFxcUaNmyYVq1aJUl6+OGHdf/999fpNSIjI3XWWWfp22+/1YIFC5SZmVntfJA5c+YoPz9fkupkOw8AAADgbTJyizV9SZo+XpGhgtLKYx5nDbDovC6N9X8Dk9SreX1ZLDyKF4Bvc1n0W15erhEjRiglJUWSdMcdd+iJJ56o8XmmTZsmi8Uii8WiSZMmVXvMPffcI0mqrKzULbfcIpvNuEcyOzu7KpSJiYnR9ddfX+M+AAAAAG/kcDi0dEeObnh/hU5/fqGmLN51zGAkpl6Q/j24tX697wy9MbqXerdoQDACwC+47M6RUaNGaf78+ZKkM888U9ddd502bNhwzOODg4PVrl27Wl3rzDPP1JVXXqlZs2bpq6++0pAhQzR+/Hg1bdpU69ev15NPPqndu3dLOrKtp379+rW6DgAAAOAtSits+mrNXr2Xsktb9hUc99h28REaN7ClLu7RTGHBVjd1CACew2XhyJw5c6pe//TTT+rWrdtxj2/RooXS0tJqfb333ntP+fn5+uabb7Rw4UItXLjQsB4QEKAJEyboxhtvrPU1AAAAAE+3P79UM5ama+by3cotKj/mcRaLdFaHRho3sKUGtI7lDhEAfs1tj/J1tbCwMM2bN08zZ87UtGnTtHbtWh0+fFjx8fEaNGiQbr31VvXv39/sNgEAAACXWLX7kKalpOmb9VmqtDuOeVxESKAu75Ooawe0UIvYcDd2CACey+JwOI79kxMnLDMzU4mJiZKkjIyMaofCAgAAAHWpwmbXN+uz9F5KmtZmHD7usUmx9TR2QJJG9klURIjP/BspAD/kis/f/FQEAAAAvExOYZlmLtutD5ala39+2XGPHdQ2TuMGJmlwu0YKCGDrDABUh3AEAAAA8BKb9uZrasoufbl2r8or7cc8LjQoQJf0StC4AUlqGx/pxg4BwDsRjgAAAAAezGZ36IdN+zU1ZZeW7co97rFNo0N1zYAkXZmcqJh6wW7qEAC8H+EIAAAA4IHySir0ye8Zmr40TZmHSo57bHJSfY0b2FLndIpXoDXATR0CgO8gHAEAAAA8yI6DhZqWkqbPVmWquNx2zOOCrQG6oHsT/d/AlurSLNqNHQKA7yEcAQAAAExmtzv0y/aDmpqSpkXbDh732IaRIbq6XwuN7tdcDSND3NQhAPg2whEAAADAJEVllfpsVaamLUnTzoNFxz22W0K0xg1M0rCuTRUcyNYZAKhLhCMAAACAm2XkFmv6kjR9vCJDBaWVxzzOGmDReV0a6/8GJqlX8/qyWHgULwC4AuEIAAAA4AYOh0O/7czV1JRdWrB5v+yOYx8bUy9Io/o215hTWqhpTJj7mgQAP0U4AgAAALhQaYVNX63Zq6lL0rQ5K/+4x7aLj9C4gS11cY9mCgu2uqlDAADhCAAAAOAC+/NLNWNpumYu363covJjHmexSGd1aKRxA1tqQOtYts4AgAkIRwAAAIA6tHr3IU1NSdM367NUeZy9MxEhgbqsT4Ku7Z+kpLhwN3YIAPg7whEAAADgJFXY7PpmfZampqRpTcbh4x6bFFtP1w5I0sjeCYoMDXJPgwCA4yIcAQAAAGopp7BMM5ft1gfL0rU/v+y4x57aJk7jBibpjPaNFBDA1hkA8CSEIwAAAEANbdtfoCm/7tQXa/aqvNJ+zONCgwJ0Sa8EjR2QpHbxkW7sEABQE4QjAAAAwAnKK6nQS/O3asZv6cd9FG/T6FBdMyBJVyYnKqZesPsaBADUCuEIAAAA8A8cDoe+XLNXT8zbrOzCY2+fSU6qr3EDW+qcTvEKtAa4sUMAwMkgHAEAAACOY/v+Ak34coN+25lb7XqwNUAXdG+icQNaqmtCtJu7AwDUBcIRAAAAoBrF5ZV69cdUTfl1Z7WP5A0JDNANp7XSNf2T1DAyxIQOAQB1hXAEAAAAOIrD4dD3G/frsa83am9eabXHnNmhkSZf2FmJDeq5uTsAgCsQjgAAAAB/2J1TrEe/2qCFWw9Wu94sJkyPDu+kIZ3iZbHwOF4A8BWEIwAAAPB7pRU2vb1op974ObXaR/MGWS3616BWuvXMNqoXzFtoAPA1/GQHAACAX1u07aAe/XKD0nKKq10f0DpWj13URW0aRbi5MwCAuxCOAAAAwC9l5ZXo8bmb9M36fdWuN4wM0SPDOurC7k3ZQgMAPo5wBAAAAH6lwmbX1JRd+s+C7SoutzmtB1ikawck6c4h7RQVGmRChwAAdyMcAQAAgN9YvitXj3yxXtv2F1a73rN5jJ64uIs6N412c2cAADMRjgAAAMDnZReW6alvNmvOqj3VrsfUC9KDQzvost6JCghgCw0A+BvCEQAAAPgsm92hmct36/nvtii/tLLaY65MTtR953VQg/BgN3cHAPAUhCMAAADwSesyD+uRLzZoXWZeteudmkTp8Yu7qHeL+m7uDADgaQhHAAAA4FPyiiv0/Pwt+nDZbjkczuuRIYG665x2GnNKCwVaA9zfIADA4xCOAAAAwCc4HA7NWbVHT32zWTlF5dUec1GPpnr4/I5qFBXq5u4AAJ6McAQAAABeb+u+Ak34YoOWp+VWu966Ybgev6iLBrSJc3NnAABvQDgCAAAAr1VUVqlXftyudxfvks3uvIcmNChAt5/VVtef2krBgWyhAQBUj3AEAAAAXsfhcOjbDfv02NebtC+/tNpjzukUr4nDOymhfj03dwcA8DaEIwAAAPAqu7KL9OhXG/XLtoPVrifUD9PkCzvrrI7xbu4MAOCtCEcAAADgFUorbHrz5x367887VG6zO60HWwN04+mtdPPgNgoLtprQIQDAWxGOAAAAwOMt3HJAj361Ubtzi6tdP7VNnB67qLNaNYxwc2cAAF9AOAIAAACPtedwiR77eqO+37i/2vX4qBBNuKCThnVtIovF4ubuAAC+gnAEAAAAHqe80q53F+/Sqz9uV0mFzWndGmDRuAFJGj+knSJCeEsLADg5/CYBAACAR1m6I0cTvtyg1AOF1a73aVFfj1/cRR2bRLm5MwCAryIcAQAAgEc4UFCqp7/Zos9X76l2vUF4sB4c2kGX9kpQQABbaAAAdYdwBAAAAKay2R364Ld0vTB/qwpKK53WLRZpVN/muu/c9oqpF2xChwAAX0c4AgAAANOs3n1IE77coA178qtd79IsSk9c3FU9EmPc2xgAwK8QjgAAAMDtDheX69nvtmrW77vlcDivR4YG6t5z2+uqfi1kZQsNAMDFCEcAAADgNna7Q7NXZeqZb7cot6i82mMu6dlMD57fUQ0jQ9zcHQDAXxGOAAAAwC02Z+XrkS82aGX6oWrX2zaK0OMXd9EprWLd3BkAwN8RjgAAAMClCkor9J8F2zVtSZpsduc9NGFBVo0/u63+79SWCrIGmNAhAMDfEY4AAADAJRwOh+auy9LjczfpQEFZtccM7dJYEy7opKYxYW7uDgCAvxCOAAAAoM7tOFioR7/cqMWp2dWut4itp0kXdtYZ7Ru5uTMAAJwRjgAAAKDOlJTb9MbCVL39yw5V2Jy30AQHBujmwa110+mtFRpkNaFDAACcEY4AAACgTizYtF+Tvt6ozEMl1a6f3q6hJl/YWUlx4W7uDACA4yMcAQAAwEnJyC3W5K83acHm/dWuN4kO1aPDO+nczo1lsVjc3B0AAP+McAQAAAC1Ul5p1/9+3anXftqu0gq703pggEXXndpSt5/VVuEhvO0EAHgufksBAACgxpakZmvClxu042BRtet9WzbQExd3Ubv4SDd3BgBAzRGOAAAA4IQdyC/VE/M266u1e6tdj4sI1kPnd9SIns3YQgMA8BqEIwAAAPhHlTa73l+arpd+2KbCskqndYtFurpfC91zTntF1wsyoUMAAGqPcAQAAADHtTL9kB75YoM2Z+VXu949IVqPX9xF3RJi3NsYAAB1hHAEAAAA1cotKtez327Rxysyql2PCg3Ufed10Ki+zWUNYAsNAMB7EY4AAADAwG536JMVGXrmuy06XFxR7TEjeyfogaEdFBcR4ubuAACoe4QjAAAAqLJhT54mfLlBq3cfrna9fXyknhjRRclJDdzbGAAALkQ4AgAAAOWXVuil+dv0/tI02R3O6+HBVt05pJ2uHZCkIGuA+xsEAMCFCEcAAAD8mMPh0Fdr9+qJeZt1sKCs2mOGdWuiCcM6qXF0qJu7AwDAPQhHAAAA/FTqgQJN+GKjlu7MqXa9ZVy4Jl/YWae1a+jmzgAAcC/CEQAAAD9TXF6p135K1ZRfd6rC5ryHJiQwQLee0UY3nN5KIYFWEzoEAMC9CEcAAAD8yK/bD+qBz9Zrz+GSatfP7NBIk4Z3VvPYem7uDAAA8xCOAAAA+AG73aE3f07Viz9sk6OagavNYsL06PBOGtIpXhaLxf0NAgBgIsIRAAAAH5dfWqG7Pl6rBZv3O60FWS26flAr3XZmG9UL5q0hAMA/8RsQAADAh23dV6AbZ6xQWk6x01r/VrF6/OLOatMo0oTOAADwHIQjAAAAPuqrtXt1/+x1KqmwGeoBFuneczvoptNbsYUGAAARjgAAAPicCptdT3+zRe+l7HJaaxAerNdG9dTANnEmdAYAgGciHAEAAPAhBwpKdeuHq7U8LddprXtCtN68ureaxYSZ0BkAAJ6LcAQAAMBHrEzP1b8/WKUDBWVOa6P6JurR4Z0VGmQ1oTMAADwb4QgAAICXczgcen9puh6fu0mVduNzeoMDA/T4RZ11RXJzk7oDAMDzEY4AAAB4sZJymx76fL0+X73Haa1ZTJjeurqXuiXEuL8xAAC8COEIAACAl0rPKdJNH6zS5qx8p7VT28Tp1VE91SA82ITOAADwLoQjAAAAXmjhlgO6Y9Zq5ZdWOq3dPLi17j6nvawBPKYXAIATQTgCAADgRex2h179abte+XG7HMbxIooICdQLl3XXeV0am9McAABeinAEAADAS+QVV2j8x6u1cOtBp7W2jSL03zG91bphhAmdAQDg3QhHAAAAvMCmvfm66YOV2p1b7LQ2rGsTPTeym8JDeGsHAEBt8BsUAADAw32+OlMPzlmv0gq7oW4NsOiB8zro+kEtZbEwXwQAgNoiHAEAAPBQ5ZV2PTlvk6YvTXdaiw0P1uuje6l/61gTOgMAwLcQjgAAAHig/fmluvnDVVqZfshprWfzGL15VS81iQ4zoTMAAHwP4QgAAICHWbYzR7fMXK3swjKntatPaa4JF3RSSKDVhM4AAPBNhCMAAAAewuFw6L2UND31zWbZ7Mbn9IYEBujJEV01sneCSd0BAOC7CEcAAAA8QHF5pe7/bL2+XrvXaS2hfpj+e3VvdWkWbUJnAAD4PsIRAAAAk+3KLtJNM1Zq6/4Cp7XT2zXUK1f2UEy9YBM6AwDAPxCOAAAAmOiHTft118drVFBW6bR2+5ltdMfZ7WQN4DG9AAC4EuEIAACACWx2h17+YZteX5jqtBYZGqiXL++hszvFm9AZAAD+h3AEAADAzQ4VleuOj9fol20Hndbax0fq7TG9lRQXbkJnAAD4J8IRAAAAN9qwJ083fbBSmYdKnNYu7N5Uz1zaVfWCeYsGAIA78ZsXAADATT5dkaFHvtigskq7oR4YYNFD53fUuIFJsliYLwIAgLsRjgAAALhYWaVNk7/epJnLdjutNYwM0Ruje6lvywYmdAYAACTCEQAAAJfKyivRvz9YpTUZh53W+rSorzev6qVGUaHubwwAAFQhHAEAAHCRJTuyddvM1copKndaGzsgSQ+d31HBgQEmdAYAAI5GOAIAAFDHHA6H/vfrTj3z7RbZHca10KAAPX1JV43omWBOcwAAwAnhCAAAQB0qLKvU/bPXad76LKe1FrH19N+re6tjkygTOgMAAMdCOAIAAFBHUg8U6qYPVir1QKHT2pkdGunly3soul6QCZ0BAIDjIRwBAACoA99tyNI9n65TYVmloW6xSOPPaqfbzmyjgAAe0wsAgCciHAEAADgJlTa7Xpi/Tf9dtMNpLSo0UK9c2VNndGhkQmcAAOBEEY4AAADUUk5hmW6ftVopqTlOax2bROntq3ureWw9EzoDAAA1QTgCAABQC2szDuvfH6zU3rxSp7VLejbTkyO6KizYakJnAACgpghHAAAAauij5bv16JcbVW6zG+pBVosmXtBJV5/SQhYL80UAAPAWhCMAAAAnqLTCpke/3KiPV2Q4rcVHhejNq3qrd4v6JnQGAABORoArT37gwAHNnTtXEydO1NChQxUXFyeLxSKLxaKxY8fW+fU2bdqk2267TV27dlVUVJSCg4PVsGFDnXHGGXr55ZdVUFBQ59cEAAD+IfNQsS5/e2m1wUjflg309W2nEowAAOClXHrnSHx8vCtPb/Diiy/qgQceUGWl8fF52dnZ+vnnn/Xzzz/rlVde0VdffaVu3bq5rS8AAOD9Fm/P1m0frdKh4gqntetObakHhnZQkNWl/+YEAABcyG2/xRMTE3XOOee45NyffPKJ7rnnHlVWVio4OFh33nmn5s2bp2XLlmnmzJk69dRTJUnp6ek677zzlJeX55I+AACAb3E4HHrz51Rd894yp2AkLMiqV0f11IQLOhGMAADg5Vx658jEiROVnJys5ORkxcfHKy0tTS1btqzz6zz++ONVr+fMmaNhw4ZV/b1v374aNWqULr30Us2ZM0dZWVl69913ddddd9V5HwAAwHcUlFbonk/X6vuN+53WWsaF6+0xvdUuPtKEzgAAQF1z6T9zTJ48WRdccIFLt9fk5+drw4YNkqRevXoZgpGjPfroo1WvlyxZ4rJ+AACA99u+v0AXvZ5SbTAypFO8vrx1IMEIAAA+xOufVlNeXl71ulWrVsc8rnXr1lWvy8rKXNoTAADwXvPWZene2WtVXG4z1C0W6Z5z2uvfp7dWQACP6QUAwJd4fTgSFxenBg0aKDc3Vzt37jzmcTt27Kh63a5dO3e0BgAAvEilza5nv9ui//26y2ktpl6QXr2yp05r19CEzgAAgKv5xPSwG264QZK0atUqffvtt9Ue8+dcEqvVquuvv95tvQEAAM93sKBMV01ZVm0w0qVZlL6+9VSCEQAAfJjX3zkiSQ8//LBWrFihBQsWaMSIEbr11lt11llnKS4uTjt37tRbb72lRYsWyWq16tVXX1XHjh1rfI3MzMzjrmdlZdW2fQAAYKJVuw/p5g9WaV9+qdPaZb0T9PjFXRQaZDWhMwAA4C4+EY5ERETo22+/1bRp0/TMM8/oxRdf1Isvvmg45pJLLtF9992nfv361eoaiYmJddEqAADwEA6HQx8s263Hvt6oCpvDsBZsDdCkCztrVN9EWSzMFwEAwNf5RDgiSStWrNBHH310zLkjCxYsUHx8vDp27KioqCg3dwcAADxJaYVND3++QZ+tcr4ztEl0qN66urd6JMa4vzEAAGAKnwhHZs+erauvvlplZWXq1q2bJk+erNNOO02RkZHKyMjQxx9/rMcff1xvvfWWfvnlFy1YsECNGzeu0TUyMjKOu56VlaW+ffuezH8GAABwg4zcYt30wUpt3JvvtNa/VaxeG91TcREhJnQGAADM4vXhyP79+zV27FiVlZWpc+fOWrJkicLDw6vWW7VqpQcffFB9+/bVkCFDtHHjRt1222369NNPa3SdhISEum4dAAC42c9bD+iOWWuUV1LhtHbj6a107zntFWj1iXn1AACgBrz+t/+sWbNUVFQkSXrooYcMwcjRzjrrLJ111lmSpDlz5ujQoUNu6xEAAJjLbnfo1R+3a9y0352CkfBgq966qpceHNqRYAQAAD/l9e8ANm/eXPW6V69exz22d+/ekiS73a5t27a5tC8AAOAZ8koqdMOMFXrph21yGOeuqlXDcH1560AN7drEnOYAAIBH8PptNYGBf/0nVFZWHvfYioq//qXo6K8DAAC+acu+fN00Y6XScoqd1oZ2aaznRnZTZGiQCZ0BAABP4vV3jrRs2bLq9a+//nrcY3/55RdJksViUVJSkivbAgAAJvtyzR6NeGOJUzASYJEeGNpBb17Vi2AEAABI8oJwZNq0abJYLLJYLJo0aZLT+rBhw2SxWCRJTz75pPbs2VPted555x2tWLFCknTKKacoNjbWZT0DAADzVNjsmvTVRt0xa41KKmyGtQbhwZpxXT/ddHrrqvcPAAAALt1bsnjxYqWmplb9PTs7u+p1amqqpk2bZjh+7NixNb5Ghw4dNG7cOL333nvas2ePevbsqfHjx2vQoEFVj/KdNWuWZs6cKUmyWq166qmnavXfAwAAPNuB/FLdMnOVfk9zHrzePSFab17dW81iwkzoDAAAeDKXhiNTpkzR9OnTq11LSUlRSkqKoVabcESS3nzzTRUVFenjjz/WwYMH9fDDD1d7XHh4uN555x0NHjy4VtcBAACea2V6rv79wSodKChzWhvVt7keHd5JoUFWEzoDAACeziemkoaEhGjWrFm68cYbNW3aNP3222/as2ePysrKFBUVpfbt2+vss8/WDTfcoISEBLPbBQAAdWzRtoO64f0VKqu0G+rBgQF64qIuujw50aTOAACAN7A4HH9/qB1qIzMzU4mJR954ZWRkEMIAAOAm8zfu060zV6vcZgxGmsWE6a2re6lbQow5jQEAAJdwxedvn7hzBAAA+Kev1+7VnR+vUaXd+G89p7aJ06ujeqpBeLBJnQEAAG9COAIAALzS7JWZum/2Wv0tF9GIns30/MhuCrR6/EP5AACAhyAcAQAAXueD39L1yBcbnOpXJifqqRFdFRDAY3oBAMCJIxwBAABe5d3Fu/T43E1O9bEDkjTxgk4EIwAAoMYIRwAAgNd4Y2Gqnv9+q1P9xtNb6YHzOshiIRgBAAA1RzgCAAA8nsPh0Ivzt+n1halOa+PPbqs7zmpLMAIAAGqNcAQAAHg0h8OhJ+dt1pTFu5zWHhjaQTed3tqErgAAgC8hHAEAAB7Lbnfo0a82asZv6U5rky/srGsHJLm/KQAA4HMIRwAAgEey2R164LN1+nRlpqFusUhPj+iqK/s2N6kzAADgawhHAACAx6mw2XXXJ2v19dq9hro1wKIXL+uui3s2M6kzAADgiwhHAACARymrtOn2j1br+437DfXAAIteG9VTQ7s2MakzAADgqwhHAACAxyitsOmmD1bq560HDfVga4DeurqXzuoYb1JnAADAlxGOAAAAj1BUVqnrp6/Q0p05hnpoUID+d00fDWrb0KTOAACAryMcAQAApssvrdD/Tf1dK9IPGerhwVa9NzZZ/VrFmtQZAADwB4QjAADAVIeLy3XNe8u1LjPPUI8KDdT0/+urns3rm9QZAADwF4QjAADANNmFZbp6yjJt2VdgqNevF6QZ1/VTl2bRJnUGAAD8CeEIAAAwxf78Ul01ZZlSDxQa6nERIZr5r35qFx9pUmcAAMDfEI4AAAC3yzxUrKumLFN6TrGh3iQ6VB9e30+tGkaY1BkAAPBHhCMAAMCt0nOKNPp/y7TncImhntggTDOvP0WJDeqZ1BkAAPBXhCMAAMBtUg8UaPT/lulAQZmh3iouXB/+q5+aRIeZ1BkAAPBnhCMAAMAtNu3N15h3lymnqNxQbx8fqQ+u76eGkSEmdQYAAPwd4QgAAHC5dZmHNebd5corqTDUOzeN0ozr+qlBeLBJnQEAABCOAAAAF1uRlqtxU39XQVmlod6zeYymjeur6LAgkzoDAAA4gnAEAAC4zJLUbF03fYVKKmyGet+WDfTe2GRFhPBWBAAAmI93JAAAwCUWbj2gm2asVFml3VAf1DZO74zpo7Bgq0mdAQAAGBGOAACAOvf9xn26deYqVdgchvrZHRvp9dG9FBpEMAIAADwH4QgAAKhTX6/dq/Efr5HNbgxGhnVtopev6KHgwACTOgMAAKge4QgAAKgzn67I0P2frdPfchFd0rOZnhvZTYFWghEAAOB5CEcAAECdmPFbuiZ8scGpPqpvcz15cRcFBFhM6AoAAOCfEY4AAICTNuXXnXpi3man+tgBSXp0eCdZLAQjAADAcxGOAACAk/L6T9v1wvxtTvV/D26t+85tTzACAAA8HuEIAACoFYfDoRfmb9UbC3c4rd15djvdflYbghEAAOAVCEcAAECNORwOPTFvs95dvMtp7cGhHXTj6a1N6AoAAKB2CEcAAECN2O0OTfhygz5ctttpbfKFnXXtgCT3NwUAAHASCEcAAMAJs9kduv+zdZq9MtNQt1ikZy7pqiuSm5vUGQAAQO0RjgAAgBNSYbPrzo/XaO66LEPdGmDRS5d310U9mpnUGQAAwMkhHAEAAP+orNKm22au1vxN+w31IKtFr17ZU0O7NjGpMwAAgJNHOAIAAI6rtMKmG2es1KJtBw314MAA/ffqXjqzQ7xJnQEAANQNwhEAAHBMRWWVun76Ci3dmWOohwVZNeXaPhrYJs6kzgAAAOoO4QgAAKhWfmmFxk39XSvTDxnqESGBem9ssvq2bGBSZwAAAHWLcAQAADg5VFSua95brvV78gz1qNBAvX9dP/VIjDGnMQAAABcgHAEAAAbZhWW6esoybdlXYKg3CA/WjOv6qnPTaJM6AwAAcA3CEQAAUGVfXqmumvKbdhwsMtQbRobow+v7qV18pEmdAQAAuA7hCAAAkCRlHirW6P8t0+7cYkO9aXSoPvzXKWoZF25SZwAAAK5FOAIAAJSWXaTR//tNe/NKDfXEBmGaef0pSmxQz6TOAAAAXI9wBAAAP5d6oECj/7dMBwrKDPVWDcM18/pT1Dg61KTOAAAA3INwBAAAP7Zpb77GvLtMOUXlhnqHxpGacV0/NYwMMakzAAAA9yEcAQDAT63NOKxr3luuvJIKQ71LsyjN+L9+qh8ebFJnAAAA7kU4AgCAH/o9LVfjpv6uwrJKQ71X8xhNHddX0WFBJnUGAADgfoQjAAD4mSWp2bpu+gqVVNgM9X4tG+jdscmKCOHtAQAA8C+8+wEAwI8s3HJAN36wUuWVdkN9UNs4vTOmj8KCrSZ1BgAAYB7CEQAA/MR3G/bpto9WqcLmMNTP7hivN67qqZBAghEAAOCfCEcAAPADX67Zo7s+WSub3RiMDOvaRP+5soeCrAEmdQYAAGA+whEAAHzcJysydP9n6+Qw5iK6pFczPXdpNwUSjAAAAD9HOAIAgA+bsTRNE77c6FQf3a+5nrioiwICLCZ0BQAA4FkIRwAA8FFTft2pJ+ZtdqqPG5ikiRd0ksVCMAIAACARjgAA4JNe+3G7Xvxhm1P95sGtde+57QlGAAAAjkI4AgCAD3E4HHph/la9sXCH09rdQ9rptrPamtAVAACAZyMcAQDARzgcDj0+d7PeS9nltPbw+R31r9NamdAVAACA5yMcAQDAB9jtDj3y5QbNXLbbae3xizprTP8k9zcFAADgJQhHAADwcpU2u+77bJ3mrNpjqFss0rOXdNPlyYkmdQYAAOAdCEcAAPBiFTa7xn+8RvPWZRnq1gCLXrq8uy7q0cykzgAAALwH4QgAAF6qrNKmWz5crQWb9xvqQVaLXhvVU+d1aWJSZwAAAN6FcAQAAC9UUm7TjR+s1C/bDhrqwYEBevvq3jqjQyOTOgMAAPA+hCMAAHiZSptdt85c5RSMhAVZNeXaPhrYJs6kzgAAALwT4QgAAF7E4XBo0tcb9eOWA4Z6REigpo5LVnJSA5M6AwAA8F6EIwAAeJF3ftmpD34zPq43KjRQ71/XTz0SY8xpCgAAwMsFmN0AAAA4MV+v3aunv91iqAUHBujdsckEIwAAACeBcAQAAC+wfFeu7v5krVP95ct7sJUGAADgJBGOAADg4VIPFOpf769Quc1uqD90fgcN68bjegEAAE4W4QgAAB7sYEGZxk5drrySCkP9mv4t9K9BrUzqCgAAwLcQjgAA4KGKyyt13fTflXmoxFA/u2MjPTq8sywWi0mdAQAA+BbCEQAAPJDN7tDtH63Wusw8Q717QrReHdVT1gCCEQAAgLpCOAIAgIdxOBya9NVGLdh8wFBPbBCmKdcmq15woEmdAQAA+CbCEQAAPMz/ft2pGb+lG2ox9YI0bVxfNYwMMakrAAAA30U4AgCAB5m7bq+e+maLoRZsDdA7Y/qodcMIk7oCAADwbYQjAAB4iOW7cnXXx2ud6i9e3l19WzYwoSMAAAD/QDgCAIAH2HGwUP96f4XKbXZD/cGhHTS8e1OTugIAAPAPhCMAAJjsYEGZxk5drrySCkN9zCktdMNprUzqCgAAwH8QjgAAYKLi8kpdP/13ZeSWGOpnd2ykR4d3ksXCI3sBAABcjXAEAACT2OwO3f7RGq3NzDPUuyVE69VRPRVo5dc0AACAO/CuCwAAEzgcDk3+eqMWbN5vqCfUD9O71yarXnCgSZ0BAAD4H8IRAABMMOXXXXp/abqhFh0WpGnjktUwMsSkrgAAAPwT4QgAAG42b12Wnvxms6EWbA3QO2N6q02jSJO6AgAA8F+EIwAAuNHvabm685M1TvUXLu+ufq1i3d8QAAAACEcAAHCXHQcL9a/3V6i80m6oPzC0gy7s3tSkrgAAAEA4AgCAG2QXlmns1OU6XFxhqF99SnPdeFork7oCAACARDgCAIDLlZTbdN30FcrILTHUz+rQSJOGd5bFYjGpMwAAAEiEIwAAuJTN7tDts1ZrbcZhQ71rs2i9NrqnAq38KgYAADAb78gAAHARh8Ohx77eqB827TfUm8WE6d2xfVQvONCkzgAAAHA0whEAAFzk3cW7NH1puqEWFRqo6f+XrEaRoSZ1BQAAgL8jHAEAwAXmrcvSE/M2G2rB1gD975o+atMo0qSuAAAAUB3CEQAA6tiKtFzd+ckap/rzl3VTv1ax7m8IAAAAx0U4AgBAHdp5sFDXv79C5ZV2Q/3+8zrooh7NTOoKAAAAx0M4AgBAHckuLNPYqb/rcHGFoT66X3PddHork7oCAADAPyEcAQCgDpSU23T99BXanVtsqJ/RvqEeu7CzLBaLSZ0BAADgnxCOAABwkmx2h+6YtVprMg4b6l2aRen10b0UaOXXLQAAgCfj3RoAACfB4XDo8bmbNH/TfkO9WUyY3hubrPCQQJM6AwAAwIkiHAEA4CS8u3iXpi1JM9SiQgM1bVyyGkWGmtMUAAAAaoRwBACAWvpmfZae/GazoRZsDdA71/RR2/hIk7oCAABATRGOAABQCyvTczX+4zVyOIz15y/rplNaxZrTFAAAAGqFcAQAgBralV2k66evUHml3VC/99z2uqhHM5O6AgAAQG0RjgAAUAM5hWUaO3W5DhVXGOqj+jbXzYNbm9QVAAAAToZLw5EDBw5o7ty5mjhxooYOHaq4uDhZLBZZLBaNHTvWZdddsGCBxo4dqzZt2ig8PFzR0dFq166dRo4cqbfeekuFhYUuuzYAwHeVlNt03fQVSs8pNtTPaN9Qj1/UWRaLxaTOAAAAcDJc+nzB+Ph4V57eyaFDhzRu3Dh9+eWXTmv5+fnavn27PvvsM/Xv3189evRwa28AAO9mszs0/uPVWpNx2FDv0ixKr4/upUArN2MCAAB4K5eGI0dLTExUx44dNX/+fJecPy8vT0OGDNHKlSslScOGDdOVV16pNm3ayGazKT09Xb///rtmz57tkusDAHzbE/M26fuN+w21ZjFheu/aZIWHuO3XKQAAAFzApe/mJk6cqOTkZCUnJys+Pl5paWlq2bKlS6512223aeXKlQoMDNQHH3ygK664wrA+cOBAjR49Wi+99JJsNptLegAA+KZ3F+/S1JQ0Qy0yNFDTxiWrUVSoOU0BAACgzrg0HJk8ebIrT19l8eLFmjFjhiTpkUcecQpGjmaxWBQYyL/wAQBOzLfrs/TEvE2GWpDVorfH9Fbb+EiTugIAAEBd8okN0q+//rokKSIiQnfffbfJ3QAAfMXK9EMa//EaORzG+vMju2tA6zhzmgIAAECd8/pbKMrLy6sGsA4dOlQRERGSpMrKSu3Zs0cWi0WNGzdWcHCwmW0CALzMruwiXT/9d5VV2g31e89tr4t7NjOpKwAAALiC1985snbtWpWWlkqS+vfvr3379mncuHGKiYlRUlKSWrRooejoaJ1//vlasmSJyd0CALxBTmGZxk1drkPFFYb6qL6Junlwa5O6AgAAgKt4/Z0jmzb9tQ+8tLRUXbt2VXZ2tuGY0tJSffvtt/r+++/14osvavz48TW+TmZm5nHXs7KyanxOAIDnKa2w6fr3Vygtp9hQP71dQz1+URdZLBaTOgMAAICreH04kpubW/V68uTJKisr0wUXXKBJkyapS5cuysvL02effaYHHnhA+fn5uuuuu9S+fXsNHTq0RtdJTEys69YBAB7GZnfojlmrtXr3YUO9c9MovXFVLwVavf6GSwAAAFTD69/lFRUVVb0uKyvT8OHD9eWXX6p3794KCQlRo0aN9O9//1vz5s1TQECAHA6H7rvvPjn+Pl0PAOD3npy3Wd9v3G+oNYsJ03tjkxUR4vX/ngAAAIBj8Pp3eqGhoYa/P//88woIcM58Tj31VF1yySWaPXu2NmzYoA0bNqhr164nfJ2MjIzjrmdlZalv374nfD4AgGd5d/EuvZeyy1CLDA3U1HHJio8KPcZXAQAAwBd4fTgSGRlZ9bply5Zq3779MY8999xzNXv2bEnS77//XqNwJCEhofZNAgA82ncbsvTEvE2GWpDVorev7q128ZHH+CoAAAD4Cq/fVnP0LJB/CjCOPvbAgQMu6wkA4D1W7T6kO2at0d93Wz43spsGtIkzpykAAAC4ldeHI507d656bbPZjnvs0euBgV5/0wwA4CSlZRfp+ukrVFZpN9TvOaedRvTkjkEAAAB/4fXhSIsWLdS8eXNJ0o4dO4577NHrzZo1c2lfAADPlltUrrFTlyu3qNxQvzI5Ubec0cakrgAAAGAGrw9HJOnSSy+VJO3fv19Lliw55nFz5sypej1o0CCX9wUA8EylFTZdP/13peUUG+qnt2uoxy/uIovFYlJnAAAAMIPHhyPTpk2TxWKRxWLRpEmTqj1m/PjxVU+tuf322w2P9/3TBx98oJ9//lmSNGzYMAasAoCfstkdGj9rjVbtPmyod2oSpTeu6qUgq8f/agQAAEAdc+ngjcWLFys1NbXq79nZ2VWvU1NTNW3aNMPxY8eOrdV1mjdvrscee0z33XefVq5cqb59++q+++5Tly5dlJeXpzlz5ui///2vJCkqKkovv/xyra4DAPB+T32zWd9t3GeoNY0O1dRxyYoIYR4VAACAP3Lpu8ApU6Zo+vTp1a6lpKQoJSXFUKttOCJJ9957r3Jzc/Xss89q06ZN1Z6rUaNG+uKLL9S2bdtaXwcA4L2mpuzSu4t3GWqRIYGaOq6v4qNCTeoKAAAAZvOpe4effvpppaSkaMyYMUpKSlJISIiio6OVnJysxx9/XNu2bVP//v3NbhMAYILvN+7TY3M3GWpBVoveHtNb7RtHmtQVAAAAPIHF4XA4zG7CF2RmZioxMVGSlJGRwUwTAPAgq3Yf0qh3fnN6ZO9Ll3fXJb34eQ0AAOBNXPH526fuHAEA4O/Sc4p0/fQVTsHI3UPaEYwAAABAEuEIAMCH5RaVa+zU35VbVG6oX9EnUbee2cakrgAAAOBpCEcAAD6ptMKmf72/QruyjY93P61dQz0xoossFotJnQEAAMDTEI4AAHyO3e7QnR+v0cr0Q4Z6xyZRemN0TwVZ+fUHAACAv/DuEADgc576ZrO+3bDPUGsSHaqpY5MVGRpkUlcAAADwVIQjAACfMi1ll6Ys3mWoRYYEauq4ZDWODjWpKwAAAHgywhEAgM+Yv3GfJs/dZKgFBlj03zG91aFxlEldAQAAwNMRjgAAfMLq3Yd0+6zVcjiM9Wcv7aaBbeLMaQoAAABegXAEAOD10nOKdP30FSqtsBvqd57dTpf2TjCpKwAAAHgLwhEAgFfLLSrX2Km/K6eo3FC/rHeCbj+rjUldAQAAwJsQjgAAvFZphU3/en+FdmUXGeqD2sbpqUu6ymKxmNQZAAAAvAnhCADAK9ntDt39yVqtTD9kqHdoHKk3r+qlICu/4gAAAHBieOcIAPBKz3y3RfPWZxlqTaJDNW1cX0WGBpnUFQAAALwR4QgAwOtMX5Kmd37ZaahFhgRq6rhkNY4ONakrAAAAeCvCEQCAV1m6I0eTv95oqAUGWPTW1b3VoXGUSV0BAADAmxGOAAC8xsGCMt0+a7XsDmP9mUu76dS2ceY0BQAAAK9HOAIA8Ao2u0PjP16tgwVlhvrtZ7bRyN4JJnUFAAAAX0A4AgDwCq/9tF0pqTmG2mntGmr82e1M6ggAAAC+gnAEAODxUlKz9cqP2w21xlGhevny7goIsJjUFQAAAHwF4QgAwKMdyC/VHbNWy3HUnBFrgEWvje6p2IgQ8xoDAACAzyAcAQB4rEqbXbfPWq3swnJD/Z5z2is5qYFJXQEAAMDXEI4AADzWKz9u1287cw21M9o31I2ntTKpIwAAAPgiwhEAgEf6ZdtBvb4w1VBrGh2qly7vwZwRAAAA1CnCEQCAx9mXV6rxH68xzBkJDLDotdG9VD882LzGAAAA4JMIRwAAHqXSZtftH61WbpFxzsj953VQ7xb1TeoKAAAAvoxwBADgUV76YZuWpxnnjJzdsZGuH9TSpI4AAADg6whHAAAeY+HWA3rz5x2GWrOYML1wWXdZLMwZAQAAgGsQjgAAPMLewyW66+M1hlqQ1aLXR/dUTD3mjAAAAMB1CEcAAKarsNl120erdai4wlB/YGhH9WzOnBEAAAC4FuEIAMB0L3y/VSvTDxlq53aO1/8NTDKnIQAAAPgVwhEAgKl+3Lxfb/+y01BLbBCm50YyZwQAAADuQTgCADBN5qFi3fXJWkMt2BqgN0b3UnRYkEldAQAAwN8QjgAATFFeadetM1crr8Q4Z+ThYR3VLSHGnKYAAADglwhHAACmeO67LVqTcdhQO79rY13Tv4U5DQEAAMBvEY4AANxu/sZ9mrJ4l6HWIraenrm0G3NGAAAA4HaEIwAAt8rILdY9n1Y/ZyQqlDkjAAAAcD/CEQCA2xyZM7JK+aWVhvqE4Z3UpVm0SV0BAADA3xGOAADc5qlvNmttZp6hdkG3Jrq6X3OTOgIAAAAIRwAAbvLt+ixNW5JmqLWMC9fTl3RlzggAAABMRTgCAHC59Jwi3Td7naEWEnhkzkgkc0YAAABgMsIRAIBLlVbYdMvMVSooM84ZmXRhZ3VqGmVSVwAAAMBfCEcAAC711DebtWFPvqF2cY+mujI50aSOAAAAACPCEQCAy8xdt1fvL0031Fo1DNeTI5gzAgAAAM9BOAIAcIld2UV64LP1hlpoUIDevKqXwkMCTeoKAAAAcEY4AgCoc6UVNt3y4SoV/m3OyGMXdlGHxswZAQAAgGchHAEA1LnH5m7SpizjnJFLejXTZX0STOoIAAAAODbCEQBAnfpyzR7NXLbbUGvbKEJPXNyFOSMAAADwSIQjAIA6s+NgoR6aY5wzEhZk1ZtX9VK9YOaMAAAAwDMRjgAA6kRJ+ZE5I0XlNkP9iYu7qG18pEldAQAAAP+McAQAUCcmfbVRW/YVGGqX90nQpb2ZMwIAAADPRjgCADhpc1Zl6uMVGYZa+/hITb6wi0kdAQAAACeOcAQAcFJSDxTo4c83GGr1gq1646peCgu2mtQVAAAAcOIIRwAAtVZcXqmbP1ylkgrjnJGnRnRVm0YRJnUFAAAA1AzhCACg1iZ+uVHb9hcaaqP6Jurins1M6ggAAACoOcIRAECtfLoiQ7NXZhpqHZtE6dHhnU3qCAAAAKgdwhEAQI1t3VegCV8a54yEB1v1xuieCg1izggAAAC8C+EIAKBGisoqdfOHK1VaYTfUn7m0m1o1ZM4IAAAAvA/hCADghDkcDj3yxQbtOFhkqF99SnMN797UpK4AAACAk0M4AgA4YZ+syNDnq/cYap2bRumRYZ1M6ggAAAA4eYQjAIATsjkrXxO/3GioRYYE6s2rejFnBAAAAF6NcAQA8I8Kyyp1y4erVFZpnDPy3MhuahEbblJXAAAAQN0gHAEAHJfD4dBDc9ZrZ7ZxzsjYAUka2rWJSV0BAAAAdYdwBABwXDOX79ZXa/caat0SovXg+R1M6ggAAACoW4QjAIBj2rAnT5O/3mSoRYYG6o3RvRQSyJwRAAAA+AbCEQBAtQpKK3TrzFUq/9uckedHdldig3omdQUAAADUPcIRAIATh8OhBz5br7ScYkP9/wa21HldGpvUFQAAAOAahCMAACczfkvXvPVZhlr3xBg9MJQ5IwAAAPA9hCMAAIP1mXl6Yu5mQy06LEhvjO6p4EB+bQAAAMD38C4XAFAlv7RCt8xcpXKbcc7Ii5d1V0J95owAAADANxGOAAAkHZkzct+n67Q71zhn5IbTWunsTvEmdQUAAAC4HuEIAECSNG1Jmr7buM9Q69U8Rvee296kjgAAAAD3IBwBAGhNxmE99Y1xzkhMvSC9PrqXgqz8qgAAAIBv4x0vAPi5vOIK3fLhKlXYHIb6y5f3UNOYMJO6AgAAANyHcAQA/JjD4dA9s9dqz+ESQ/2m01vrjA6NTOoKAAAAcC/CEQDwY+8u3qUfNu031JKT6uuec9qZ1BEAAADgfoQjAOCnVu0+pGe+3WKoNQgP1mujeimQOSMAAADwI7z7BQA/dLi4XLd+uEqV9r/mjFgs0stX9FDj6FATOwMAAADcj3AEAPyM3e7Q3Z+s1d68UkP9lsFtdHq7hiZ1BQAAAJiHcAQA/Mz/ft2pH7ccMNT6tWyg8We3NakjAAAAwFyEIwDgR1ak5eq577caanERwXptVE/mjAAAAMBv8U4YAPxEblG5bp25Wra/zRn5zxU91SiKOSMAAADwX4QjAOAH7HaH7vx4jfblG+eM3HZmW53aNs6krgAAAADPQDgCAH7grUU7tGjbQUNtQOtY3XEWc0YAAAAAwhEA8HHLduboxfl/nzMSov9c2UPWAItJXQEAAACeg3AEAHxYdmGZbp+1WkeNGVGARXp1VA81imTOCAAAACARjgCAz/pzzsj+/DJDffzZ7TSgNXNGAAAAgD8RjgCAj3pjYap+3Z5tqA1qG6dbzmhjUkcAAACAZyIcAQAftGRHtl5esM1Qi48K0ctXMGcEAAAA+DvCEQDwMQcLynTHrDXOc0au7Km4iBDzGgMAAAA8FOEIAPgQm92hO2at1sEC45yRu89pr36tYk3qCgAAAPBshCMA4ENe/XG7luzIMdROb9dQ/z69tUkdAQAAAJ6PcAQAfMTi7dl69afthlrjqFC9fEUPBTBnBAAAADgmwhEA8AEH8ks1/uPVchw1Z8QaYNHro3uqQXiweY0BAAAAXoBwBAC8XKXNrts+Wq3swnJD/d5z26tPUgOTugIAAAC8B+EIAHi5V37crmW7cg21Mzs00g2DWpnUEQAAAOBdCEcAwIv9su2gXl+Yaqg1jQ7Vi5d1Z84IAAAAcIIIRwDAS+3LK9X4j9cY5owEBlj0+lW9VJ85IwAAAMAJIxwBAC9UabPr9o9WK7fIOGfkgaEd1Kt5fZO6AgAAALwT4QgAeKEXf9im5WnGOSNnd4zXdae2NKkjAAAAwHsRjgCAl1m45YDe+nmHodYsJkwvXtZdFgtzRgAAAICaIhwBAC+y93CJ7vxkjaEWZLXojat6KbpekDlNAQAAAF6OcAQAvESFza7bPlqtw8UVhvqDQzuqR2KMOU0BAAAAPoBwBAC8xAvfb9XK9EOG2nmdG2vcwCRzGgIAAAB8hEvDkQMHDmju3LmaOHGihg4dqri4OFksFlksFo0dO9aVl5YkZWVlKSYmpuqagwcPdvk1AcAVft56QG//stNQS2wQpmdHdmPOCAAAAHCSAl158vj4eFee/h/ddtttysvLM7UHADhZ+aUVeuCz9YZasDVAb47uregw5owAAAAAJ8tt22oSExN1zjnnuOty+vrrr/XZZ5+pUaNGbrsmALjCk3M3a19+qaH28LCO6poQbVJHAAAAgG9xaTgyceJEff3119q3b592796tt99+25WXq1JYWKhbbrlFkvTCCy+45ZoA4Aq/bDuoj1dkGGqD2sbpmv4tTOoIAAAA8D0u3VYzefJkV57+mB566CFlZGTojDPO0JgxY3TNNdeY0gcAnIzCsko9OMe4nSY82KpnLmXOCAAAAFCXfO5pNcuXL9cbb7yh4OBgvfXWW2a3AwC19vQ3m7XncImh9uD5HdUsJsykjgAAAADf5FPhSGVlpW644QbZ7Xbdf//9at++vdktAUCtLEnN1ofLdhtq/VvFanTf5iZ1BAAAAPgunwpHXnjhBa1du1atW7fWQw89ZHY7AFArRWWVun/OOkMtLMiqZy/tpoAAttMAAAAAdc2lM0fcaefOnXrsscckSW+++aZCQ0Pr9PyZmZnHXc/KyqrT6wHwX89/v1UZucbtNPef117NY+uZ1BEAAADg23wmHLnxxhtVUlKiK664wiWPDE5MTKzzcwLA3y3flatpS9IMtb5JDXRN/yRT+gEAAAD8gU9sq3n//fe1YMECRUVF6eWXXza7HQColZJym+6bvdZQCwkM0LMj2U4DAAAAuJLX3zmSnZ2tu+++W5L05JNPqkmTJi65TkZGxnHXs7Ky1LdvX5dcG4B/eHH+VqXlFBtq957bXi3jwk3qCAAAAPAPXh+O3HXXXcrOzlafPn108803u+w6CQkJLjs3AKxMP6R3U3YZar2ax2jcwJYmdQQAAAD4D68OR/bu3asZM2ZIks4880x98sknxz3+wIEDmjVrliSpZcuW6tevn8t7BIB/UlpxZDuNw/FXLTgwQM+N7C4r22kAAAAAl/PqcKS8vLzq9XPPPfePx2/evFmjRo2SJF177bWEIwA8wn8WbNeOg0WG2p1nt1ObRhEmdQQAAAD4F58YyAoA3mptxmG988sOQ617QrT+NYjtNAAAAIC7ePWdI0lJSXIcfR/6MVgsR25LP/300/Xzzz+7uCsAODFllTbdO3ut7Ef9GAuyWvTcyO4KtJJdAwAAAO7i8e++p02bJovFIovFokmTJpndDgDUmdd/StW2/YWG2u1ntlX7xpEmdQQAAAD4J5feObJ48WKlpqZW/T07O7vqdWpqqqZNm2Y4fuzYsa5sBwA8xoY9eXrzZ+N2ms5No3TT4NYmdQQAAAD4L5eGI1OmTNH06dOrXUtJSVFKSoqhRjgCwB+UV9p17+x1sh21nyYwwKLnR3ZXENtpAAAAALfjXTgAuNlbP+/Q5qx8Q+3mM9qoU9MokzoCAAAA/JvFcSITTfGPMjMzlZiYKEnKyMhQQkKCyR0B8ESbs/J14euLVWH760dvh8aR+urWUxUcSF4NAAAA/BNXfP7mnTgAuEmFza57Z681BCPWP7bTEIwAAAAA5uHdOAC4yTu/7NSGPcbtNDee1kpdE6JN6ggAAACARDgCAG6xbX+BXlmw3VBr0yhCt5/V1qSOAAAAAPyJcAQAXKzSduTpNOU2e1UtwCI9P7KbQoOsJnYGAAAAQCIcAQCXe3fxLq3NOGyo/WtQK/VsXt+chgAAAAAYEI4AgAvtOFioF3/YZqi1igvXnUPamdQRAAAAgL8jHAEAF7HZHbpv9jqVV/61ncZikZ6/jO00AAAAgCchHAEAF5m2JE0r0w8ZauMGtFTvFg1M6ggAAABAdQhHAMAF0rKL9Pz3Wwy1FrH1dO+57U3qCAAAAMCxEI4AQB2z2x2677N1Kq2wG+rPXtpNYcFspwEAAAA8DeEIANSxD5ala/muXEPtmv4tdEqrWJM6AgAAAHA8hCMAUIcycov1zLfG7TQJ9cN0/3kdTOoIAAAAwD8hHAGAOuJwOPTAnHUqLrcZ6s9e2k3hIYEmdQUAAADgnxCOAEAd+Wh5hlJScwy1UX2ba2CbOJM6AgAAAHAiCEcAoA7sOVyip77ZbKg1jQ7VQ+eznQYAAADwdIQjAHCSHA6HHpyzXoVllYb605d2U2RokEldAQAAADhRhCMAcJI+XZmpX7YdNNQu652g09s1NKkjAAAAADVBOAIAJ2FfXqken7vJUIuPCtEjF3QyqSMAAAAANUU4AgC15HA49PDn61VQatxO89SIrooOYzsNAAAA4C0IRwCglr5Ys0c/bjlgqI3o2UxndYw3qSMAAAAAtUE4AgC1cKCgVJO+Mm6niYsI0aPD2U4DAAAAeBvCEQCoIYfDoQlfbFBeSYWh/sTFXRRTL9ikrgAAAADUFuEIANTQ3HVZ+n7jfkPtgm5NdF6XxiZ1BAAAAOBkEI4AQA1kF5Zp4pcbDLXY8GBNvrCzSR0BAAAAOFmEIwBQA49+uVGHio3baSZf1FmxESEmdQQAAADgZBGOAMAJ+nZ9luatzzLUzuvcWMO6NjGpIwAAAAB1gXAEAE5AblG5JvxtO01MvSA9fnEXWSwWk7oCAAAAUBcIRwDgBEz+eqOyC8uNtQs7q2Ek22kAAAAAb0c4AgD/4IdN+/Xlmr2G2tkd43Vh96YmdQQAAACgLhGOAMBx5BVX6OHP1xtqUaGBemoE22kAAAAAX0E4AgDH8djcTTpQUGaoTRzeWY2iQk3qCAAAAEBdIxwBgGNYuPWAPluVaagNbt9Ql/ZqZlJHAAAAAFyBcAQAqpFfWqEHPzNup4kMCdTTl3RlOw0AAADgYwhHAKAaT83brH35pYbaw8M6qkl0mEkdAQAAAHAVwhEA+Jtftx/UrN8zDLVBbeN0RXKiSR0BAAAAcCXCEQA4SmFZpR7423aa8GAr22kAAAAAH0Y4AgBHeebbzdpzuMRQe+D8jkqoX8+kjgAAAAC4GuEIAPxhyY5sffDbbkPtlFYNdFXf5iZ1BAAAAMAdCEcAQFJxufN2mrAgq567tLsCAthOAwAAAPgywhEAkPTcd1u1O7fYULvvvPZqHst2GgAAAMDXEY4A8Hu/p+Vq+tI0Qy05qb6u7Z9kSj8AAAAA3ItwBIBfKym36b7Z6+Rw/FULCQzQcyPZTgMAAAD4C8IRAH7tpR+2ald2kaF2zznt1TIu3KSOAAAAALgb4QgAv7Vq9yG9u3iXodazeYz+79SWJnUEAAAAwAyEIwD8UmmFTfd+ulb2o7bTBAcG6PmR3WRlOw0AAADgVwhHAPilV37crh0Hjdtpxp/dVm0aRZrUEQAAAACzEI4A8DtrMw7r7UU7DLVuCdG6YVArkzoCAAAAYCbCEQB+pazSpntnG7fTBFkten5kdwVa+ZEIAAAA+CM+CQDwK6//lKpt+wsNtdvObKv2jdlOAwAAAPgrwhEAfmPDnjy9+bNxO02nJlH69+DWJnUEAAAAwBMQjgDwC+WVdt07e51sR+2nCQyw6PnLuimI7TQAAACAX+MTAQC/8NbPO7Q5K99Qu/mMNurcNNqkjgAAAAB4CsIRAD5vy758vb5wu6HWoXGkbj2jjUkdAQAAAPAkhCMAfFqlza57P12nCttf22msAUeeThMcyI9AAAAAAIQjAHzc27/s1Po9eYbajae1UtcEttMAAAAAOIJwBIDP2r6/QK8sMG6nadMoQref1dakjgAAAAB4IsIRAD7JZnfo3tnrVG6zV9UCLNLzI7spNMhqYmcAAAAAPA3hCACf9O7inVqTcdhQu35QK/VsXt+chgAAAAB4LMIRAD5n58FCvTh/m6HWKi5cdw1pZ1JHAAAAADwZ4QgAn2KzO3Tf7HUqq/xrO43FIj3HdhoAAAAAx0A4AsCnTF+SphXphwy1sQOS1CepgUkdAQAAAPB0hCMAfEZ6TpGe+36Loda8QT3de257kzoCAAAA4A0IRwD4BPsf22lKK+yG+rOXdlO94ECTugIAAADgDQhHAPiED5ela9muXENtzCkt1L91rEkdAQAAAPAWhCMAvF5GbrGe/ta4naZZTJgeGNrBpI4AAAAAeBPCEQBezeFw6ME561VcbjPUn720m8JD2E4DAAAA4J8RjgDwarN+z9Di1GxDbVTfRJ3aNs6kjgAAAAB4G8IRAF5rz+ESPTlvs6HWJDpUD57f0aSOAAAAAHgjwhEAXunP7TSFZZWG+tOXdFVUaJBJXQEAAADwRoQjALzSpysz9cu2g4bayN4JGty+kUkdAQAAAPBWhCMAvM6+vFI9PneTodYoMkQThnUyqSMAAAAA3oxwBIBXcTgcevjz9SooNW6neWpEV0XXYzsNAAAAgJojHAHgVb5Ys0c/bjlgqF3co6nO7hRvUkcAAAAAvB3hCACvcaCgVJO+Mm6niYsI0aPDO5vUEQAAAABfQDgCwCs4HA5N+GKD8koqDPUnLu6s+uHBJnUFAAAAwBcQjgDwCnPXZen7jfsNtQu6NdF5XZqY1BEAAAAAX0E4AsDj5RSW6dGvNhpqseHBmnwh22kAAAAAnDzCEQAeb+JXG5VbVG6oTb6os2IjQkzqCAAAAIAvIRwB4NG+25CleeuyDLXzOjfWsK5spwEAAABQNwhHAHisQ0XleuSLDYZaTL0gPX5xF1ksFpO6AgAAAOBrCEcAeKzJX29UdqFxO82k4Z3VMJLtNAAAAADqDuEIAI+0YNN+fbFmr6F2dsdGuqhHU5M6AgAAAOCrCEcAeJy84go99Pl6Qy0qNFBPjujKdhoAAAAAdY5wBIDHeXzeJh0oKDPUJlzQSfFRoSZ1BAAAAMCXEY4A8CgLtx7Q7JWZhtrg9g01sneCSR0BAAAA8HWEIwA8Rn5phR6aY9xOExESqKfYTgMAAADAhQhHAHiMp7/ZrKy8UkPt4WEd1TQmzKSOAAAAAPgDwhEAHmHx9mx9tDzDUDu1TZyuTE40qSMAAAAA/oJwBIDpCssqdf9n6wy1esFWPX0J22kAAAAAuB7hCADTPfvtFu05XGKoPTi0gxIb1DOpIwAAAAD+hHAEgKmW7sjRjN/SDbVTWjXQVf1amNQRAAAAAH9DOALANMXlzttpwoKsevbSbgoIYDsNAAAAAPcgHAFgmue+26rducWG2r3ntleL2HCTOgIAAADgjwhHAJji97RcTV+aZqj1aVFfYwckmdIPAAAAAP9FOALA7UrKbbpv9jo5HH/VQgID9NxIttMAAAAAcD/CEQBu99IPW7Uru8hQu/ucdmrVMMKkjgAAAAD4M8IRAG61avchvbt4l6HWIzFG153ayqSOAAAAAPg7whEAblNaYdO9n66V/ajtNMHWAD0/spusbKcBAAAAYBLCEQBu88qP27XjoHE7zR1nt1Xb+EiTOgIAAAAAwhEAbrIu87De+WWnoda1WbRuPI3tNAAAAADMRTgCwOXKKm2699N1sh21nybIatELl3VXoJUfQwAAAADMxacSAC73xk+p2rq/wFC77cy2at+Y7TQAAAAAzEc4AsClNu7N05s/7zDUOjWJ0r8HtzapIwAAAAAwIhwB4DIVNrvu/XSdKo/aThMYYNHzl3VTENtpAAAAAHgIl346OXDggObOnauJEydq6NChiouLk8VikcVi0dixY+vsOvn5+Zo1a5b+9a9/qVevXoqJiVFwcLAaNmyowYMH64UXXtDhw4fr7HoATsxbP+/Qpqx8Q+3mwa3VuWm0SR0BAAAAgLNAV548Pj7elaeXJH377bcaMWKEysrKnNays7O1aNEiLVq0SC+88II++ugjnXHGGS7vCYC0ZV++Xvtpu6HWPj5St57Z1qSOAAAAAKB6bruvPTExUeecc06dnzcnJ0dlZWUKCAjQueeeq5dfflk//fSTVq1apa+++kpXXHGFJGn//v264IILtGbNmjrvAYBR5R/baSpsf22nsf6xnSY4kO00AAAAADyLS+8cmThxopKTk5WcnKz4+HilpaWpZcuWdXqNoKAg3XjjjXrooYfUvHlzw1rPnj01fPhwDRw4ULfffruKi4t1991368cff6zTHgAYvfPrTq3fk2eo3XBaK3VLiDGnIQAAAAA4DpeGI5MnT3bl6SVJV1xxRdXdIcdy22236f3339eKFSv0888/KycnR7GxsS7vDfBHqQcK9J8fjNtp2jSK0B1nsZ0GAAAAgGfym/vbBw8eLEmy2+3atWuXuc0APspmd+je2etUbrNX1QIs0nMjuyk0yGpiZwAAAABwbH4Tjhw9sDUgwG/+swG3em/xLq3efdhQu+7UlurVvL45DQEAAADACXDpthpPsmjRIklSYGCg2rRpU+Ovz8zMPO56VlZWrfoCfMXOg4V6Yf5WQ61lXLjuPqe9SR0BAAAAwInxi3Bk3rx5WrdunSTp3HPPVVRUVI3PkZiYWNdtAT7DZnfovtnrVFb513YaC9tpAAAAAHgJn99fkpubq1tuuUWSZLVa9fjjj5vcEeB7pi9J04r0Q4batf2TlJzUwKSOAAAAAODE+fSdIzabTVdddZXS09MlSY888oh69uxZq3NlZGQcdz0rK0t9+/at1bkBb5aeU6Tnvt9iqDVvUE/3ncd2GgAAAADewafDkZtvvlnfffedJGnYsGGaMGFCrc+VkJBQV20BPsP+x3aa0gq7of7spd1UL9inf7wAAAAA8CE+u63mwQcf1DvvvCNJOvXUU/Xpp5/KamX2AVCXPlyWrmW7cg21q09prv6tY03qCAAAAABqzifDkWeffVbPPPOMJKlXr16aO3euwsLCTO4K8C0ZucV6+lvjdppmMWF6YGhHkzoCAAAAgNrxuXDkzTff1AMPPCBJ6tixo77//ntFR0eb3BXgWxwOhx6cs17F5TZD/ZlLuyoihO00AAAAALyLT4UjM2bM0K233ipJatWqlRYsWKC4uDiTuwJ8z6zfM7Q4NdtQuzI5UYPaNjSpIwAAAACoPZ8JR+bMmaNx48bJ4XAoISFBP/74o5o2bWp2W4DP2Xu4RE/O22yoNYkO1UPD2E4DAAAAwDt5fDgybdo0WSwWWSwWTZo0qdpj5s+fr1GjRslms6lRo0ZasGCBkpKS3Non4A/+3E5TWFZpqD91SVdFhQaZ1BUAAAAAnByXDgdYvHixUlNTq/6enf3XbfipqamaNm2a4fixY8fW+Bq//fabRowYofLycgUFBenll19WRUWFNmzYcMyvSUhIUExMTI2vBfi72SsztWjbQUPt0l4JOqN9I5M6AgAAAICT59JwZMqUKZo+fXq1aykpKUpJSTHUahOOfPfddyouLpYkVVRU6KqrrvrHr5k6dWqtrgX4s315pXp87iZDrVFkiCZe0MmkjgAAAACgbnj8thoA5tu0N1+Xvb1E+aV/204zoqui67GdBgAAAIB3szgcDofZTfiCzMxMJSYmSpIyMjKUkJBgckdA3fh67V7dN3udSiqMj+29uEdT/efKniZ1BQAAAMBfueLzt0u31QDwXja7Q899v0VvL9rptNYsJkyPDu9sQlcAAAAAUPcIRwA4OVxcrts+Wq1ft2c7rfVsHqP/Xt1b9cODTegMAAAAAOoe4QgAg81Z+bpxxkrtzi12WrsyOVGTL+qskECrCZ0BAAAAgGsQjgCoMnfdXt37qfN8kSCrRZMu7Kyr+rUwqTMAAAAAcB3CEQCy2R16/vut+u+iHU5rcREh+u/VvdQnqYEJnQEAAACA6xGOAH7ucHG5bp+1Rr9sO+i01iPxyHyRxtGhJnQGAAAAAO5BOAL4sS378nXD+9XPF7miT6Ieu5j5IgAAAAB8H+EI4Ke+WZ+lez5dq+Jy43yRwACLHr2ws67u11wWi8Wk7gAAAADAfQhHAD9jszv04vytevPn6ueLvHV1LyUzXwQAAACAHyEcAfxIXnGFbp+1WouqmS/SPTFG/726l5pEh5nQGQAAAACYh3AE8BNb9xXohhkrlJ7jPF/k8j4JeuyiLgoNYr4IAAAAAP9DOAL4gW/XZ+nuY80XGd5JV5/SgvkiAAAAAPwW4Qjgw2x2h176YaveWFjdfJFgvXlVb/VtyXwRAAAAAP6NcATwUXklFbpj1mr9vLWa+SIJ0Xrr6t5qGsN8EQAAAAAgHAF80Lb9Bbrh/RVKq2a+yMjeCXriYuaLAAAAAMCfCEcAH/Pdhizd/claFVUzX2Ti8E4aw3wRAAAAADAgHAF8hM3u0Ms/bNPrC1Od1mLDg/XmVb3Ur1WsCZ0BAAAAgGcjHAF8QF5JhcbPWq2F1cwX6ZYQrf8yXwQAAAAAjolwBPBy2/cX6IYZK7Uru8hp7dJeCXpyBPNFAAAAAOB4CEcAL/bdhn26+5M1TvNFrAEWTRjWUdcOSGK+CAAAAAD8A8IRwAvZ7Q79Z8E2vfpT9fNF3riql05hvggAAAAAnBDCEcDL5JdW6M5Za/TjlgNOa12bReu/Y3qrGfNFAAAAAOCEEY4AXiT1QIFueH+ldlYzX+SSXs301IiuzBcBAAAAgBoiHAG8xPcb9+nuT9aqsKzSULcGWPTIsI4ay3wRAAAAAKgVwhHAw9ntDv3nx+169cftTmsNwoP1xuhe6t+a+SIAAAAAUFuEI4AHyy+t0F0fr9GCzc7zRbo0i9J/r+6thPr1TOgMAAAAAHwH4QjgoVIPFOqGGSu086DzfJERPZvp6UuYLwIAAAAAdYFwBPBAP2zarzs/XlPtfJGHz++ocQOZLwIAAAAAdYVwBPAgdrtDr/y4Xa8cY77I66N7akDrOBM6AwAAAADfRTgCeIiC0grd+fFaLdi832mtc9MovT2G+SIAAAAA4AqEI4AHON58kYt7NNXTl3RTWDDzRQAAAADAFQhHAJMt2LRf448xX+TBoR103aktmS8CAAAAAC5EOAKYxG536LWfUvXygm1Oa/XrBemN0b00oA3zRQAAAADA1QhHABMUlFbork/W6odNzvNFOjU5Ml8ksQHzRQAAAADAHQhHADfbcbBQN7y/QjuqmS9yUY+meob5IgAAAADgVoQjgBv9uHm/xs9ao4K/zRcJsEgPnd+R+SIAAAAAYALCEcAN7HaHXl94ZL6Iw2Fci6kXpNdH9dKpbZkvAgAAAABmIBwBXKywrFJ3fbxG86uZL9KxSZTeYb4IAAAAAJiKcARwoZ0HC3XDjJVKPVDotHZh96Z69lLmiwAAAACA2QhHABf5act+3TFrjQpKneeLPDi0o64fxHwRAAAAAPAEhCNAHbPbHXpjYapeOsZ8kddG9dSgtg3NaQ4AAAAA4IRwBKhDhWWVuueTtfpu4z6ntQ6NI/W/a/owXwQAAAAAPAzhCFBHdmUX6Yb3V2h7NfNFLujWRM+N7KZ6wfxPDgAAAAA8DZ/UgDqwcOsB3f7R6mrni9x/XgfdcFor5osAAAAAgIciHAFOgsPh0Js/79AL87c6zReJDgvS66OZLwIAAAAAno5wBKilorJK3fPpWn27ofr5Iu+M6aPmscwXAQAAAABPRzgC1EJadpFumLFC2/Y7zxcZ1q2Jnme+CAAAAAB4DT69ATX08x/zRfKrmS9y33kddCPzRQAAAADAqxCOACfoePNFokID9droXjq9HfNFAAAAAMDbEI4AJ6CorFL3zl6rb9Y7zxdpHx+pd67prRax4SZ0BgAAAAA4WYQjwD9IzynSDe+v1Nb9BU5rw7o20XMjuyk8hP8pAQAAAIC34hMdcBzHmi9isUj3ndtBN53OfBEAAAAA8HaEI0A1HA6H3lq0Q89/X/18kVdH9dTg9o3MaQ4AAAAAUKcIR4C/KSqr1H2z12ne+iyntXbxEXpnTB8lxTFfBAAAAAB8BeEIcJTdOcW6YcYKbdnnPF/k/K6N9fzI7swXAQAAAAAfw6c84A+/bDuo2z5arbySCkPdYpHuOae9bh7cmvkiAAAAAOCDCEfg9xwOh97+Zaee+26L7NXMF3llVE+dwXwRAAAAAPBZhCPwa8XlR+aLzF3HfBEAAAAA8FeEI/Bbx5svcl7nxnrh8u6KYL4IAAAAAPg8PvnBL/26/aBuncl8EQAAAAAA4Qj8jMPh0Du/7NSz1cwXiQwN1KtX9tQZHZgvAgAAAAD+hHAEfqO4vFL3f7ZeX6/d67TWtlGE3rmmj1oyXwQAAAAA/A7hCPxCRm6xbpixUpuz8p3Wzu0crxcv78F8EQAAAADwU3wahM9bvD1bt360SoeLneeL3D2knW4e3EYBAcwXAQAAAAB/RTgCn+VwODTl1116+tvNzvNFQgL1yqgeOrNDvDnNAQAAAAA8BuEIfFJJuU33f7ZOX1UzX6RNowi9M6a3WjWMMKEzAAAAAICnIRyBz8nILdaNM1ZqUzXzRc7pFK8XL++uyNAgEzoDAAAAAHgiwhH4lJTUbN06c5UOVTNf5M6z2+nWM5gvAgAAAAAwIhyBT3A4HHp38S499U3180X+c2UPndWR+SIAAAAAAGeEI/B6JeU2PThnnb5Y4zxfpHXDcL1zTR+1Zr4IAAAAAOAYCEfg1TIPFeuG96ufLzKkU7xeYr4IAAAAAOAfEI7Aay1JzdYt1cwXkY7MF7ntTOaLAAAAAAD+GeEIvM6f80We/naLbH8bMBIREqiXr+ihIZ2YLwIAAAAAODGEI/AqpRU2PfBZ9fNFWjUM1ztj+qhNI+aLAAAAAABOHOEIvEbmoWLdOGOlNu51ni9ydsd4vXRFd0UxXwQAAAAAUEOEI/AKS3Zk69aZq5VbVO60Nv7strr9zLbMFwEAAAAA1ArhCDyaw+HQ1JQ0PfnN5mrni7x0eXed07mxSd0BAAAAAHwB4Qg8VmmFTQ/NWa85q/c4rbWKC9c71zBfBAAAAABw8ghH4JH2HC7RTTNWav2ePKe1szo00stX9mC+CAAAAACgThCOwOMs3ZGjW2euUk4180VuP6utxp/FfBEAAAAAQN0hHIHHcDgcmrYkTU/Mc54vEh5s1UtX9NC5zBcBAAAAANQxwhF4hNIKmx76fL3mrDrWfJHeatMo0oTOAAAAAAC+jnAEptt7uEQ3HmO+yJkdGuk/zBcBAAAAALgQ4QhM9dvOHN3y4THmi5zZRuPPbsd8EQAAAACASxGOwBQOh0PvL03X43M3qbKa+SIvXt5D53VhvggAAAAAwPUIR+B2pRU2PfLFBs1emem01jIuXO+M6a228cwXAQAAAAC4B+EI3Grv4RLd9MFKrct0ni9yRvuG+s+VPRUdxnwRAAAAAID7EI7AbZbtzNEtM1cpu9B5vshtZ7bRncwXAQAAAACYgHAELudwODTjt3Q99rXzfJF6wVa9dHl3ndeliUndAQAAAAD8HeEIXKq0wqYJX2zQp9XMF0mKrad3rumjdswXAQAAAACYiHAELpOVV6KbPliltRmHndYGt2+oV67oqeh6zBcBAAAAAJiLcAQu8Xtarv79wcpq54vcckZr3TWkvazMFwEAAAAAeADCEdQph8OhD35L1+RjzBd58bLuGtqV+SIAAAAAAM9BOII6U1ph08QvN+iTFc7zRVrE1tM7Y/qofWPmiwAAAAAAPAvhCOrEvrxS3fjBymrni5zerqFevZL5IgAAAAAAz0Q4gpN2ZL7IKmUXljmt3Ty4te4+h/kiAAAAAADPRTiCWnM4HPpw2W5N+mqj03yRsCCrXrisu4Z1Y74IAAAAAMCzEY6gVsoqbXr0y42a9XuG01rzBvX0zjW91aFxlAmdAQAAAABQM4QjqLH9+aW66YOVWr37sNPaae0a6tUreyimXrD7GwMAAAAAoBYIR1AjK9NzddMHq3SwwHm+yL8Ht9Y9zBcBAAAAAHgZwhGcsA+XpWvSVxtVYXOeL/L8Zd10QbemJnUGAAAAAEDtEY7gH5VV2jTpq436aLnzfJHEBmF6Z0wfdWzCfBEAAAAAgHciHMFx7c8v1b8/WKlV1cwXGdQ2Tq+N6sl8EQAAAACAVwtw5ckPHDiguXPnauLEiRo6dKji4uJksVhksVg0duxYl1xz1qxZOvfcc9WkSROFhoYqKSlJY8aM0W+//eaS6/mylemHdMFri6sNRm48vZWmjetLMAIAAAAA8HouvXMkPj7elac3KC0t1WWXXaa5c+ca6unp6UpPT9fMmTM1adIkTZgwwW09ebOZy3br0a82VDtf5LmR3TS8O/NFAAAAAAC+waV3jhwtMTFR55xzjsvOf91111UFI2eccYa++OILLV++XO+++65at24tu92uiRMnasqUKS7rwReUV9r10Ofr9dDn652CkcQGYfrs3wMIRgAAAAAAPsWld45MnDhRycnJSk5OVnx8vNLS0tSyZcs6v86iRYs0c+ZMSdLw4cP1+eefy2q1SpKSk5N14YUXqnfv3tq9e7fuu+8+jRw5UjExMXXeh7c7kF+qf3+4SivTDzmtDWobp1ev7Kn64WyjAQAAAAD4FpfeOTJ58mRdcMEFLt9e89xzz0mSrFar3nzzzapg5E9xcXF69tlnJUmHDh3Su+++69J+vNGf80WqC0ZuPK2Vpo5NJhgBAAAAAPgkt22rcZXCwkL9+OOPkqQhQ4YoISGh2uMuueQSRUUdedzsnDlz3NafN5i1fLeufGepDhSUGeqhQQF6dVRPPXh+RwVavf7/VQAAAAAAqJbXf+Jdvny5ysqOfKg//fTTj3lccHCwTjnllKqvqaiocEt/nqy80q6HP1+vB+Y4zxdJqH9kvsiFzBcBAAAAAPg4l84ccYfNmzdXve7QocNxj+3QoYPmz5+vyspKbd++XZ06dTrh62RmZh53PSsr64TP5QkOFJTq5g9WaUU122gGtonV66N6sY0GAAAAAOAXvD4cycjIqHp9rC01f0pMTDR8XU3CkaO/1tvlFpVr+GuLtT+/zGnthtNa6b5z27ONBgAAAADgN7z+E3BBQUHV64iIiOMeGx4eXvW6sLDQZT15ugbhwTq3c2NDLTQoQK9c2UMPMV8EAAAAAOBnvP7OkdLS0qrXwcHH3wYSEhJS9bqkpKRG1zn6DpXqZGVlqW/fvjU6p5kmXNBJW7IKtDwtV81iwvTONb3VuWm02W0BAAAAAOB2Xh+OhIaGVr0uLy8/7rF/Dm6VpLCwsBpd55+27HibIGuA3riql576ZrMmXNBJDZgvAgAAAADwU14fjkRGRla9/qetMkVFRVWv/2kLjj9oGBmil6/oYXYbAAAAAACYyuuHSxx9R8c/PVHm6K0xvjRgFQAAAAAA1J7XhyNHP3Fmy5Ytxz32z/XAwEC1adPGpX0BAAAAAADv4PXhSHJyctUg1kWLFh3zuPLycv32229OXwMAAAAAAPyb14cjkZGROuussyRJCxYsOObWmjlz5ig/P1+SNGLECLf1BwAAAAAAPJvHhyPTpk2TxWKRxWLRpEmTqj3mnnvukSRVVlbqlltukc1mM6xnZ2fr/vvvlyTFxMTo+uuvd2nPAAAAAADAe7j0aTWLFy9Wampq1d+zs7OrXqempmratGmG48eOHVur65x55pm68sorNWvWLH311VcaMmSIxo8fr6ZNm2r9+vV68skntXv3bknSM888o/r169fqOgAAAAAAwPe4NByZMmWKpk+fXu1aSkqKUlJSDLXahiOS9N577yk/P1/ffPONFi5cqIULFxrWAwICNGHCBN144421vgYAAAAAAPA9Hr+t5kSFhYVp3rx5+vDDDzVkyBA1atRIwcHBSkxM1OjRo7V48eJjbssBAAAAAAD+y+JwOBxmN+ELMjMzlZiYKEnKyMhQQkKCyR0BAAAAAOB7XPH522fuHAEAAAAAAKgNwhEAAAAAAODXCEcAAAAAAIBfIxwBAAAAAAB+jXAEAAAAAAD4NcIRAAAAAADg1whHAAAAAACAXyMcAQAAAAAAfo1wBAAAAAAA+DXCEQAAAAAA4NcIRwAAAAAAgF8jHAEAAAAAAH6NcAQAAAAAAPg1whEAAAAAAODXCEcAAAAAAIBfIxwBAAAAAAB+jXAEAAAAAAD4NcIRAAAAAADg1whHAAAAAACAXws0uwFfUVlZWfU6KyvLxE4AAAAAAPBdR3/mPvqz+MkgHKkjBw8erHrdt29fEzsBAAAAAMA/HDx4UElJSSd9HrbVAAAAAAAAv2ZxOBwOs5vwBaWlpVq/fr0kqWHDhgoM9PybcrKysqruclm+fLmaNGlickdwB77v/onvu3/i++6/+N77J77v/onvu3/y9+97ZWVl1e6Nrl27KjQ09KTP6fmf4L1EaGiokpOTzW6j1po0aaKEhASz24Cb8X33T3zf/RPfd//F994/8X33T3zf/ZO/ft/rYivN0dhWAwAAAAAA/BrhCAAAAAAA8GuEIwAAAAAAwK8RjgAAAAAAAL9GOAIAAAAAAPwa4QgAAAAAAPBrhCMAAAAAAMCvWRwOh8PsJgAAAAAAAMzCnSMAAAAAAMCvEY4AAAAAAAC/RjgCAAAAAAD8GuEIAAAAAADwa4QjAAAAAADArxGOAAAAAAAAv0Y4AgAAAAAA/BrhCAAAAAAA8GuEIwAAAAAAwK8RjgAAAAAAAL9GOOKndu/erXvuuUcdO/5/e/cfE3X9xwH8eYCgcgbiifnj7EZ0Slq5SaYCASU5BgqIoEkGZmWYZs20zKWymilm2JrB0hRBk4CwDZDljxA1cWH+SBOb/CgFh3iGCoLAeZ/vH+w+w69AlHefT3ef52Nje9993mzP7cN9+Nzr8/7hA1dXV3h4eGDChAn49NNP0dzcLHc8sqD6+noUFBRg1apVCA0NhUajgUqlgkqlQkJCgtzxyEpOnjyJtWvXIjQ0FFqtFi4uLlCr1dDr9UhISMCRI0fkjkhWcOvWLWRlZWHp0qUIDAyEt7c33Nzc4OzsDE9PTwQFBSE5ORnXr1+XOypJZPny5eI1X6VS4dChQ3JHIgvqfG57+gkKCpI7KlmJwWBAcnIy/Pz88PDDD8PFxQXDhg3DM888g2XLlqG0tFTuiGQhQUFBvf7M85r/76gEQRDkDkHSKiwsRFxcHG7evNnl8VGjRmHv3r3w8vKSOBlZg0ql6vZYfHw80tPTpQtDkggMDMThw4f/tt/cuXOxdetWODs7S5CKpHDgwAGEhIT8bT+NRoOdO3di6tSpEqQiuZw5cwa+vr4wGo3ie8XFxfyibEd6+h/fWWBgIL8k2aGcnBwkJib2WPCOiIjA999/L10ospqgoCCUlJT0ur+DgwMuXbqE4cOHWzGVfXGSOwBJ68yZM4iNjUVzczPUajVWrFiB4OBgtLS0ICsrC1u2bMHvv/+OsLAwlJWVQa1Wyx2ZLEir1cLHxwf79u2TOwpZUW1tLQBg2LBhiImJQUBAAEaOHIm7d++itLQUGzduRG1tLTIzM2E0GvHNN9/InJgsSavVIjg4GOPHj4dWq8XQoUNhMplQU1OD3Nxc5OXlwWAwYPr06SgrK8OTTz4pd2SyApPJhNdeew1GoxGenp6or6+XOxJZUWJiIhYuXNjtcVdXVwnTkBQyMjIwb948mEwmeHp6IjExEf7+/vDw8EBdXR0qKyuRn5+PPn36yB2VLGT79u24fft2j33Onz+PWbNmAQCef/55Fkb+KYEUJSgoSAAgODk5CceOHbvveHJysgBAACAkJSXJkJAsbdWqVUJ+fr5QV1cnCIIgVFdXi+c4Pj5e3nBkFWFhYcK3334rGI3GLo9fu3ZN0Ov14t/B4cOHJU5I1tLdOe9sz5494rmfMWOGBKlIDikpKQIAYfTo0cKKFSvEc15cXCx3NLIg83ldvXq13FFIQufPnxdcXFwEAEJAQIBw48aNbvu2trZKmIzktnz5cvG6kJmZKXccm8M1RxSkrKxMHFI5f/58TJo06b4+S5cuhY+PDwBg06ZNaG9vlzIiWUFSUhLCw8MxZMgQuaOQRAoKChAbGwtHR8cuj2s0GmzcuFF8nZubK1U0srLuznlnkZGRGD16NAD0avoV2Z7Lly/jww8/BACkpqZy6hyRnVm8eDFaW1uh0WiQl5cHNze3bvvy868cJpMJu3btAgCo1WrMmDFD5kS2h8URBek833DevHld9nFwcMDLL78MAGhoaOD8VCI71XnNgcrKSvmCkCzMQ+zv3LkjcxKyhoULF6KpqQnx8fFcX4TIzly4cAEHDx4EACxatAgajUbmRPRfcfDgQXFq9cyZM9G/f3+ZE9keFkcUxLw7haurK8aPH99tv8DAQLF99OhRq+ciIum1tbWJbQcH/itQkvLycpw+fRoAxBEkZD+ys7NRUFAADw8PbNiwQe44RGRhOTk5YjsmJkZsNzQ04OLFi9yNTMEyMjLEtvlhN/0zvCNWkPLycgCAt7c3nJy6X4u3882y+XeIyL50Xu2cX5DtX3NzMy5evIjPPvsMwcHBuHv3LgBgyZIlMicjS7px44Z4TtevX4/BgwfLnIikkpOTg1GjRqFfv34YMGAAHnvsMcTHx6O4uFjuaGRhx48fBwC4ubnBx8cHu3btwlNPPQUPDw/o9XpoNBp4eXkhKSkJTU1NMqclqTQ1NWHPnj0AgJEjR3LU4L/E3WoU4s6dOzAYDACAESNG9Nh34MCBcHV1xe3bt3H58mUp4hGRhEwmE9atWye+jo2NlTENWUt6enq3UygB4N1330VcXJyEicjali9fjrq6OkyePBnz58+XOw5J6Pz58/e8rqioQEVFBTIyMhAZGYn09PQe16Ug22E+1zqdDosXL8bmzZvv61NdXY01a9YgNzcXP/zwA4YNGyZ1TJLYd999J+5kM3fu3F5v80334sgRhWhsbBTbvdme1zwfnRVnIvuTkpKCn3/+GQAQFRUFX19fmRORlMaNG4fjx49jw4YNvHmyI0ePHsXWrVvh5OSEtLQ0nluF6N+/P2bPno0tW7bgyJEjOHXqFPbt24eVK1di0KBBADrWnIuIiOAi+3bir7/+AtCx9sjmzZvh7u6OtLQ01NfX486dOygrK0NoaCgA4Ny5c4iJiYHJZJIzMkmAU2osgyNHFKLzonu9WbXaxcUFANDS0mK1TEQkvZKSErz//vsAAE9PT6SmpsqciKwlMjJSLHy1tLSgsrIS2dnZ2LNnD+Li4rBp0yaEh4fLnJIsoa2tDa+//joEQcA777yDJ554Qu5IJJHa2lq4u7vf935ISAgWL16M0NBQnDp1CiUlJUhNTcVbb70lfUiyKPPogNbWVjg6OqKoqAgTJ04Uj/v6+qKgoADh4eEoKirCsWPHkJeXh5kzZ8oVmayspqZG3ERj4sSJ0Ov18gayYRw5ohB9+/YV250XYuxOa2srAKBfv35Wy0RE0vrtt98QFRUFo9EIFxcXZGdnc4tnO+bu7o6xY8di7NixePrppzF79mzk5eUhIyMDVVVViIiIQHp6utwxyQLWrl2L8vJyjBw5EqtXr5Y7Dkmoq8KI2ZAhQ5Cbmys+FPviiy8kSkXW1PmePiYm5p7CiJmDg8M9CzLv3r1bkmwkj507d4qjg+Lj42VOY9tYHFGIAQMGiO3eTJUxV6V7MwWHiP77qqur8cILL6ChoQGOjo7YvXv3PTtTkXLMnTtXHGa9aNEiNDQ0yB2JHsCFCxfwySefAOj48mueFksEAF5eXggJCQHQsQ7JlStXZE5ED6rzPb15+kxXxowZg+HDhwMAysrKrJ6L5JOZmQmgY+T/rFmzZE5j2zitRiH69u0LjUYDg8GAmpqaHvs2NDSIxRGtVitFPCKyoitXrmDKlCm4cuUKVCoVtm3bhqioKLljkYwiIiKQnZ2N27dvo6ioCHPmzJE7Ev1LKSkpaGtrg5eXF5qbm5GVlXVfn3PnzontH3/8EXV1dQCAadOmsZiiAI8//jgKCwsBdEzD4eKctk2r1Yqf4b/bZEGr1aK2thb19fVSRCMZnDhxQlykNzw8HAMHDpQ5kW1jcURBfHx8cOTIEVRUVMBoNHa7ne+FCxfu+R0isl0GgwEhISGoqqoC0PFkmQt1UectXv/8808Zk9CDMk+Draqqwosvvvi3/T/66COxXV1dzeKIAgiCIHcEsqAxY8aII0HM27J3x3y8u3t+sn2dF2LllJoHx2k1CuLv7w+gY8rML7/80m2/kpISse3n52f1XERkHTdv3sTUqVPFJwrr1q3Dm2++KXMq+i+ora0V25w+SWTfOm/zy1Ejtu/ZZ58V25WVlT32NT8YMU+vIfvS3t4ujhYcPHhwj9OsqHdYHFGQyMhIsb19+/Yu+5hMJrEC6e7ujuDgYCmiEZGFNTc3IywsDCdPngQArFy5Eu+9957Mqei/IicnR2xzZxPblp6eDkEQevzpvEhrcXGx+L5Op5MvOEmiqqoK+/fvB9Cx/gi/JNu+6dOno0+fPgCAvLy8bvuVlJTg+vXrAICAgABJspG0ioqKcO3aNQDAnDlzOELIAlgcUZAJEyaIF8evv/4apaWl9/XZuHEjysvLAQBLliwRL75EZDva2toQFRWFn376CUDHZ/njjz+WORVJIT09/Z6t27uSkpKCvXv3AgB0Op04qpCIbEt+fj6MRmO3x69evYqZM2eivb0dADhy0E4MGjQIr776KgBg//79Xa4z1NjYiLffflt8vWDBAqnikYQ6T6nhlGnLUAmciKgop06dgp+fH1paWqBWq/HBBx8gODgYLS0tyMrKwldffQUA0Ov1OHHixD0rYpNtOnr0KCoqKsTXBoMBy5YtA9Axbcr8D9YsISFBynhkBdHR0eLTpOeeew6bNm2CSqXqtr+zszP0er1U8ciKdDodGhsbER0dDX9/fzz66KNQq9VobGzE2bNnsWvXLrFo5uzsjMLCQkyZMkXm1GRta9asQVJSEoCOkSNBQUHyBiKL0Ol0aG9vR3R0NCZNmgSdTod+/frBYDDg0KFDSEtLE0cO+Pv748CBA3BxcZE5NVnCtWvX4Ovri0uXLsHJyQlvvPEGZsyYgYceeghnz57F+vXrxTUEExMT8eWXX8qcmCytoaEBQ4cORWtrK8aOHYuzZ8/KHckusDiiQPn5+XjppZdw69atLo/r9XoUFhbC29tb4mRkDQkJCdixY0ev+/OSYPt6KoR05ZFHHsEff/xhnTAkKZ1O16sFVkeMGIFt27aJW3ySfWNxxD719vMeHR2NrVu3wt3d3fqhSDLl5eWYPn36PQ/A/t8rr7yCtLQ0jgS3Q2lpaUhMTAQAJCcniw8+6cFwYpICTZs2Db/++is+//xzFBYWoqamBs7OzvD29kZMTAwWLVqE/v37yx2TiIj+oYMHD+LAgQMoLi5GeXk5rl69iuvXr6Nv374YMmQIxo0bh/DwcMTGxvI6T2TjduzYgZKSEpSWlqKqqgoGgwG3bt2CWq2GVqvF5MmTER8fj0mTJskdlazAx8cHp0+fRmpqKnJzc3Hx4kU0NTXB09MTfn5+WLBgAdcOtGOZmZkAAEdHR8TFxcmcxn5w5AgRERERERERKRoXZCUiIiIiIiIiRWNxhIiIiIiIiIgUjcURIiIiIiIiIlI0FkeIiIiIiIiISNFYHCEiIiIiIiIiRWNxhIiIiIiIiIgUjcURIiIiIiIiIlI0FkeIiIiIiIiISNFYHCEiIiIiIiIiRWNxhIiIiIiIiIgUjcURIiIiIiIiIlI0FkeIiIiIiIiISNFYHCEiIiIiIiIiRWNxhIiIiIiIiIgUjcURIiIiIiIiIlI0FkeIiIiIiIiISNFYHCEiIiIiIiIiRWNxhIiIiIiIiIgUjcURIiIiIiIiIlI0FkeIiIiIiIiISNFYHCEiIiIiIiIiRWNxhIiIiIiIiIgUjcURIiIiIiIiIlI0FkeIiIiIiIiISNH+B+ajgDqSPpjeAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 413, "width": 547 } }, "output_type": "display_data" } ], "source": [ "plt.plot([table.loc[i]['x'] for i in walls], [table.loc[i]['y'] for i in walls])" ] }, { "cell_type": "code", "execution_count": 20, "id": "8adb8783-8ce2-4a60-a05f-8f88bad624c6", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABEQAAAM6CAYAAACICpYcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzddXhb5/k+8PuILcuWmdnhNMzUOIzFZO3SrimtkLQpr2tH38FvvGK2NMW0Tbvy2q2BNkwNQ8NoZkbJFp3z+8NQK5IcO7EF1v25rlyxz3skPXFsWefW+z6vIEmSBCIiIiIiIiIiPyLzdAFERERERERERO7GQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvKDxdgK9qamrCyZMnAQCRkZFQKPilJCIiIiIiIupuVqsV5eXlAIAhQ4ZAo9F0y/3yKv4qnTx5EmPHjvV0GURERERERER+4+DBgxgzZky33BeXzBARERERERGR3+EMkasUGRnZ9vHBgwcRGxvrwWqIiIiIiIiIeqfi4uK2FRrtr8WvFQORq9S+Z0hsbCwSEhI8WA0RERERERFR79ed/Tu5ZIaIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwxEiIiIiIiIiMjvMBAhIiIiIiIiIr/DQISIiIiIiIiI/A4DESIiIiIiIiLyOwpPF0BERERERERE7iFJEiSrFaLVCslmg1ythkyp9HRZHsFAhIiIiIiIiAiAJIrNQYHVCtFm++HjlvDA2efOzm8bs9kgWSzNf7eeY7H8cF+Xfe7s/M48nl19zu6z3TmSzWb3b85YvRpxU6Z46CvuWQxEiIiIiIiI6IokUYRosdhdkHd0Qe/s4rz1c7sL/tbPL7vAb38h31EgYXd+ZwKHDkIFSJKnv8xuJ1qtni7BY3w2EDl69Ci++eYb7N69G6dOnUJZWRmUSiXi4uIwceJE3H///ZjipykXERERERER0HyxazUYYDEYYDEaYWloaP68ocH+85Y/bWMGA6wt4+aGOlga6iCabFd+QPI5l88Y8Sc+GYhMnToVu3btcjhuNptx8eJFXLx4Ee+99x7uuusuvPXWW1CpVB6okoiIiIiIqOtEi8UukLC0hBRWo7Ht47bwovVP6/hlY7amJk//c8jLcYaIjyksLAQAxMXF4Uc/+hGmTJmCpKQk2Gw27Nu3Dy+88AIKCwuxdu1aWK1W/Pvf//ZwxURERERE1JvZzGa7wMIhrHA2C8NotJuR0TpmM5k8/c+hKxBkMggKBWRyOQSlEjK5HDKFAoJc3ny8dazl49Zz2z5uObf95zK53OGY03NaP75sXJDLUQ8BrxZU4JLZBptMBlEuh00mt/tblMsxOSIEdyZEYWiIDurQUE9/OT1GkCTfWyS1cOFCLF26FIsWLYJcLncYr6iowKRJk3DhwgUAwK5du7p9+UxBQQESExMBAPn5+UhISOjW+yciIiIiop5lM5ubQ4h2gcTly0Yun4nhbEmJxWCAaDZ7+p/jNYT2F+5yOWRKZXNQ0HLx3j4gcHVx7/B5u8DB2Tkd3WdnwoQOH6+lfrtzZDJPf5mdskkSJh84i+xGx+9HtUzA7TFheCgxEulajQequ3o9df3tkzNE1q1b1+F4REQEXnjhBdxwww0AgM8//5z9RIiIiIiIfJwkSRDNZtdLRtr1yXAIMi4POBoa/HKpgCIgAEqdDorAQChb/si1apiFUjTaLkFSmSFoJMjUgKABBI0EQQPIA1SITbkZiUlLoAoIsw8ILgsMBEHw9D/Tb8kFAQ8nRuHnFwrajoUo5Lg3PgL3JUQgUuWf2+u64pOBSGdkZGS0fZyZmem5QoiIiIiIyIHVaERTVRWaKit/+FNVhaqCAsgaG2Gpq3Pso2EwQPLHEEOrhVKngzIw0C7IUOh0ULoYuzz0UAQGQqHVQtZuhr3NZkJh4YfIyX0NcksVdE4eWxBUiI9fgpTkZVCrI933jyaXchtN2FJZh/sTnP9/3BYThr9llyBA3hyOLIkNQ6CTlRXUiwMRc7spazIvnc5ERERERNRbSKIIU00NmqqqYKqsRGNlJUztA4/Wj1v+tjU2errkniMIdiGGQ5DRElgoW0KKtvN0OsfbabXdvjxDFC0oLv4c2Tn/hMlU4uIsGWJjFyE1ZQUCAuK79fHp6nxfZ8Sq/DKsK6uBCGB8iA6DdQEO5wXIZfjPiD5ID1BDIeNsnY702kBk586dbR8PGDCgy7cvKCjocLy4uLjL90lERERE5EtsJpN9oFFVhaaKirZQo33gYaquhiSKni756gmC01DCYdZFJ2ZkKAICvLbHBABkZ7+KnNxVLsejohYgLfUJBAamubEqckaSJGyrqseqvDJ8V9NgN7Yqrwz/GpTs9Hb9A32rR4in9MpARBRF/OUvf2n7/LbbbuvyfbQ2bCEiIiIi6i0kSYKlrq7j2RstgYepqgqWhoYr36kHCTKZ4xKSwMC2ZSRXWkLSfpaGQqv1m94XCQk/QV7+2xBF+91sIsKnIy3tSQQFDfJQZdTKLIr4qqwGr+WV4azB+dbJX5VV47m0WCRqVG6urvfolYHISy+9hIMHDwIAbrnlFowePdrDFRERERER9Qyb2QxTdbVDuGGqqmoOPi475m2NREWZDDa1GjaNBtaWvyWtFikDBqDvddc1BxftZ2W065sh12j8JsToTmp1NBIS7kJe3lsAgJCQceiT/gz0+pEerozqrTZ8UFSJNwvKUWSyuDwvUC7DT2LDoeGSmGvS6wKRnTt34rnnngMAREVF4bXXXruq+8nPz+9wvLi4GGPHjr2q+yYiIiIickWSJFgNBocww1ng0VRZCXNdnadLdqAKDoYmPBzqsDBowsOhaflbGRKC3IoKnMzKgkkuh02jgahQAO1CjcGDB2P27NnQ6/Ue/Bf4vtrao2gylSA6ar7T8eSkh1BffwYpyQ8jNHQigyUPKzFZ8FZBOd4vqkCd1fXSsyiVAg8kROKuuHCEKHvd5bzb9aqv4OnTp3HLLbfAarVCrVbj008/RXR09FXdV3fta0xEREREJFqtzbM42i1NMV2+XKXdx2K7DQK8gaBQtIUabX87CTw04eFQh4ZCrnI+hb+0tBSfrF4NKSTEYSwqKgrz5s1DampqD/9rerf6+rPIynoRFZXboFCEIDxsChSKIIfzVKowjByx1gMVUnulJgv+kl2Mz0uqYZEkl+f11aqxLDEKi2JCofbi/jS+ptcEItnZ2Zg9ezaqq6shl8vx0UcfYerUqZ4ui4iIiIh6KavR6DzQaJ3B0e6YqaYG6OBixxOUOl1zoBEWBk1EhMvAIyA8HMrg4G6ZQRAdHY3Ro0fj0KFDbcc0Gg2mTZuG0aNHQ86tQa+awZCFrOyXUVa2vu2Y1VqDvLy3kZb2hOcKow4pZQK+Kq1xGYaM0wfikaQozAwPhoyzeLpdrwhEioqKMHPmTBQVFUEQBLzzzju45ZZbPF0WEREREfkoc10dDEVFbX8aCgthLCqCsazMa7eNFWQyqEND28KMthkc7QOPlrBDHRYGhcYzu1BMmzYNp06dQmNjI0aOHIkZM2YgMDDQI7X0Bo2NhcjOWYni4i8AOC61yMt/BwkJd0GlCnd/cXRFYUoF7ogNw9uFFW3HBADzI/VYnhiFUXr+bPQknw9EKioqMGvWLGRlZQEAVq5ciaVLl3q4KiIiIiLyVpIkwVRTA0NhoV3o0fZ5cTEs9fWeLhMAoAgIgLr9rA0nszfUrZ/r9V6x1askSTh37hz69u0LhcLxckOr1eKmm25CUFAQ4uPjPVBh72AylSMndxUKCz+GJDlfYqVUhiEleRnkcp2bq6P2Gm0iTjU0YoyLcOPBxEisKayAUibg9pgwPJQYiXQtt811B58ORGprazFnzhycOXMGAPCXv/wFjzzyiIerIiIiIiJPkkQRTZWVdjM7GtqHHsXFnpvdIQhQh4TYhRsOgUe72RwKrdYzdV6lkpISbNy4Ebm5uZg1axYmTZrk9LwBAwa4ubLew2KpQW7em8jPfw+i6Pz7WKEIQlLSA0hMuAcKBWcYeEqVxYo1BRV4p7ACTaKIIxMGOW2EmhygxqpByZgUqkOkSumBSv2XzwYiRqMRCxYswNGjRwEAv/zlL/Hzn//cw1URERERUU8TbTY0lpbCUFxsP7Oj9U9xsVubkspUKscwo+VzdXh48yyO1vAjJAQyJ7MmfF1jYyO2b9+OQ4cOQWrphbBz504MGTIEwcHBHq6ud7BaG5Cf/y7y8t+C1ep8BpNMFoDExHuQnPRTKJUh7i2Q2uQ2mvB6fjk+Kq5Eo/hDb5D3iyrxWLLzTT9ujg51V3nUjk8+G5vNZtxyyy347rvvAACPP/44/t//+38eroqIiIiIuoNoscBYUtI8w+Py5SxFRTCWlkKyWt1QiQCVJhiagHCoteHQhkUj8sbhCIiKtFu6oggM9NstS0VRxLFjx7B161YYjUa7MbPZjC1btuDWW2/1UHW9R1NTMQ4euhEWS5XTcUFQIT7+x0hJXg61OtLN1VGr7+uMWJVfhnVlNU66uQBvFpTjwYRIaOSeX9pGzXwyEFmyZAk2bdoEAJg+fTruv/9+nDp1yuX5KpUK/fr1c1d5RERERNQBm8nUPLvDWQ+P4mIYS0vdsiOLIJdDGx2NwLg4aOPioBKCgUI51IpQaLThUGtCIJM3T1+X6ZQIvbkPAq6L6PG6fEV+fj42bNiA4uJip+N6vZ5LY7qJWh2DwMA+qKk5eNmIDLGxi5CasgIBAezH4gmSJGFbVT1W5ZXhu5qGDs+9TheAKosVcXLn21KT+wmS5GX7f3VCVxP45ORk5OTkdGsNBQUFSExMBND8yyAhIaFb75+IiIjIV1kMBtfLWQoL0VRZ6ZY6ZAoFtLGxCIyPR2BcXNsfXcvnAVFRkCkUsNaYUP2fizBdqHZ6P9rhkdDfkA55INf2A0B9fT22bNmC48ePOx1XKBSYNGkSJk2aBJWKF37dpabmMI4cvb3t86ioBUhLfQKBgWkerMp/mUURX5XVYFVeGc4ZmlyepxCAm6NCsSwpCoN1AW6ssHfpqetvn5whQkRERESeY66ra5vNcXnjUmNREUw1NW6pQ65WN4cdTkKPwPh4BEREdLjriiRJMBwsQc36LEgmm8O4LEiJ0Jv7ImAwtysFAJvNhgMHDmDHjh0wu+jRMmDAAMyZMwehoeyH0FWSJKG6Zj9CQ8Y7fQM4JGQ0wsOnQoAcaWlPIihokAeqpHqrDR8UVeKNgnIUmywuzwuUy/CTuHA8mBCJeA2DQW/lk4GID05qISIiIvIJkiTBVF1tP6vjspkeloaOp4V3F0VgoNOZHa1/1GFhV927w1rThOovLsJ0scbpuHZkFEIWpkGm5awQAMjMzMTGjRtRUVHhdDwiIgLz5s1Denq6myvzfZIkobp6LzKzXkBd3XEMG/oWIiKmOT13yHWvQS5Xu7lCai+r0YTfZRa5HI9SKfBAQiSWxoVD72RHGfIu/B8iIiIi8iOtW9I2tAQcntySVhUc7HRmR2BcHHRxcVAGB/dIs9KGA8Wo3ZDtfFZIsAqht/RBwEDOCmmVn5+PtWvXOh1TqVTIyMjAuHHjIJfL3VyZ76utPYrMzBdQXbO/7Vhm1ovNM0EEx9lNDEM8b1iQFpNDdNhzWb+Qvlo1liVGYVFMKNQdzEwj78JAhIiIiKiXkSQJTRUVqM3MRF1WFirOnEFTaWnbLA/R4nqad3fShIdDGxvrMLOjNfRQBga6pY7LmXPrnIYh2lHRzbNCAvgSub2EhASkpaUhKyvL7viwYcMwc+ZMBAUFeagy31VffxZZWS+ionKbw1hDwxmUlW1EdPQCD1RGQPNzaJXFhnCV8+eC5UlRbYHIOH0glidFYVZ4MGR+utuUL+OzPREREZGPEq1WNBQUoC4rC3VZWajNykJddjbqsrNhqa/v2QcXBARERjqEHG1/YmOhCPDOBoIhC9PQdLEGYn1zHwx5sAohi/oioH+YhyvzToIgYN68eXjttdcgiiJiY2Mxf/78tgaH1HkGQxaysl9GWdl6l+cEBCRDLte6sSpqZZMkbCyvxb/yylBvs2HX2AFOQ45pYUF4MCESN0aFYLTeM8EudQ8GIkRERERezmIwoD4nB7XZ2ajLzGwOPbKyUJ+bC9Fq7ZHHbL8lrUPoERsLbWws5D66g4hMq0ToLX1Q+f4ZBI6JgX5BKmQaviyuqamBXq93ukwpMjISGRkZCAwMxIgRIyDjkoAuaWwsRHbOShQXfwFAdHqOWh2L1NQViI25FTIZe9e4U6NNxKclVVidX4bsxh8aBm+urMOcCL3D+YIg4Pd9uc1xb+CT2+56A267S0RERN1JkiQ0VVY2z/bIzm6e7dHyx1hS0u2P52pL2tbmpa1b0voqSZRgrWiEMsr1O+3mYgNUsXx3t6mpCTt37sSBAwdw2223YcCAAW57bFEU0dDQgLq6OpjNZthsjkuZfJkomtHYmIempiK4CkIEmQragCSo1XFO+4ZQz7FIEgqazChossAsOv7/hCgVGBXM2TrdQS6XQ6vVIiQkBBqNpsu357a7RERERL2AaLPBUFDwQ+jRMtujLisL5rq6bn0sSRBgVSthVSshBmoxaN5C9Js2A4FxcQiIjOxwS1pfZq1oRNUXF2ApNiLmqVGQBzufyeLvYYgoijhx4gQ2b94Mg8EAAPj222+Rnp4OpbLnZyjU19ejsLCw1+4gabXWw2qtB6CEWp3s5AwZFAod5PJACIIMNpsIV6EJdS+rJKHeaoPR1vz1TlDKADg+HyoEASaLBXL2BrlmVqsVJpMJ1dXV0Ov1iI2N7ZGm2V3FQISIiIioB1gbG5uXubQLPWpbl7mYzVe+gy5Qh4UhIDYWFTUVMNosbSGITakABAFRKelY+MSzCI3t3VO8JVFCw94i1H2bA8nSfKFT/eVFhC8d5BUvvL1JUVERNmzYgIKCArvj1dXV2Lt3L6ZOndqjj+8sDBEEoVftVCOTBULhdJaVAJlMCZlMBYDfl+5kkySYJQlWUYJGKYPGRe4nEwSoZAKUfN7oNtZ2yztra2uhUqkQERHhwYqaMRAhIiIiugZN1dXNMzwyM5t7fLQEIIaiIqA73/kWBOgSEhCcmorgtDQEp6ZCn5aG4LQ02ATgzRX3wxrqOLV7+JyFmPqT+6Dw0X4fnWUpN6L684sw59rPsmk6W4XG4+XQDo/yUGXexWAwYOvWrTh69KjTcXcEEqIo2oUhOp0OYWFh0Gq1vSq4kiQRDQ3nIUmtF4ICVKowqFSR7BHiRpIkod4mosxsgcnaHJS6+i4PUsgQqVJCJ5f1qu9Fb2Cz2VBTU4OysjIAQHl5OYKDg6Hy8O8mBiJEREREVyCJIgxFRXZ9PVpnfZhqarr1sWQqFYJTUhCcnm4XegQlJ0PRwbrrsTctxt5PP2z7XK0NxOyHH0O/cZO6tT5vI4kSGvYUonZTLmB1XG4gD1VDFtS7w6DOsNlsOHz4MLZv346mpian5/Tr1w9z5sxBeHh4j9bS0NBgF4YkJCT47MWnJIkAJAiC4yW2IMigVkehqakISmUo1Oqollkh5E61VhtyGzuYlScAoQo5IlVKBMh75zJCbyCXyxEeHg6bzYbKykoAzc8FYWGe3d2LgQgRERFRC5vJhLqcHLu+HrVZWajPyYHNZOrWx1Lp9W1hR+sffWoqtHFxkF3Fu/TjbrkNBWdOIu/UCcSk98XCJ34OfVRMt9bsbSxlRlR/fgHmPOdbDAdOiIV+bipk6t6zDONq5OTkYMOGDW3vzF4uLCwMc+fORb9+/dxST127XjlhYWE+GYZIkgSrtRYmUynk8kAEBDhv8KhUhkIu10EuV7u5QmoVrJBDKRNgEe1n7MkEIEypQKRKAVUv7afkjYKDg9sCEYPBwECEiIiIyN1MNTV2fT1aP24oKOjeZS4AAuPiHJa4BKelQdPNLwJlMjnmr/gZvv92HcYv+jHkit47JV8SJTTsLkTt5hzA6vj/JQ/TIHRRX2jSQ9xemzepra3F5s2bcerUKafjSqUS119/PSZMmOCi10XPMLf00BEEAVqtb+3g0RyE1MFkKoUoNoekomiGShXpNPQQBBnDEDeRJMlpuCYTBEQoFSg2WQAAClnz5+FKBRQy3wvjfJ1arYYgCJAkqe25wJMYiBAREVGvJIkijCUlPyxzadffo6nl3anuIlMqEZSS0hx4tPb4SEtDcEoKFAEB3fY4jQ31KDp/BumjxjkdDwwJxaTb7+q2x/NGllIDqj6/CEu+81khuolxCJ6bApnKv2eF5Ofn4/3334fFYnE6ft1112HWrFnQ6/VurgxtW+vK5XKfmR0iSRJstgaYTKWw2Rodxs3mMgQEJHqgMmpq6Q8iAUgOcB4+hasUqLXaEKZUIFQph8xHvu96o9bmyVarFaKTrY7djYEIERER+TSb2Yz6vDzUZWbab2WbnQ1bo+OFy7VQBgfbhR6tHwcmJFzVMpeuKDx/Futf+RsMNdVY8vu/IaaPe5Y3eAvJJqF+dwHqNucCNsdZIYpwDUIX94M61f0X+N4oNjYWQUFBqKqqsjseHR2NefPmISUlxTOF+SCr1dAShBhcniOKZkiSCEHg0gt3kCQJBpuIMrMV9VZb2/FolQiNkz4gckFA30DXPZjIfzEQISIiIp9haWhA9blzqDpzBhUnT6Py9BkYC3Ih2WxXvnEXaGNifujr0S4A0YSHu/0dbUkUcejr/2DPx+9Dank3bd0rf8VP/vIKNIE6t9biSdYKI+o25QKX9QGAAOgmxSN4drLfzwppT6FQYN68efjww+ZGuxqNBtOnT8eoUaN61da2Pclma4TJVAqr1flsJACQyTRQq6OhUAT5zGwXXyZJEmqtNpSbrTDaHGcXVFisSJCzcS11HgMRIiIi8kpN1dWoPnsW1WfOoOrsWVSdOYOGvLxuu3+ZQoGg5OS2/h7B6enQp6YiKCUFysDAbnuca2GsrcHGf72InOP2W6TWlpVi1wfvYPZDj3moMvdTRgciaFoi6rf+8D2giAhA6I/6QZ0c7MHKPMtms7kMOPr27Yv+/ftDp9Nh+vTpCPSS72tvZ7OZYDKXwmqpdXmOTKZqCUL0DELcQJQkVFmsKDdbYb48FG2nxmJFrFoJOf9PqJMYiBAREZFHSZKExrIyVJ050xyAtIQfxpKSbrl/pU7ntKmpLj4eMqX3Nh7NP3MS61/9OwzVVQ5jiYOGYOKP7vRAVZ4VPC0RTacrYCk1QjclHvpZyRCU/jnbQZIknDp1Clu2bMEdd9yB6Ohop+fdfvvtkHEHjU4RRQtMplJYLNUuzxFkSqhVUVAqQ7g8xg2sooQKixUVZitsHTS8lgvNfUIilAqGIdQlDESIiIjIbSRJgqGgAFUtsz6qz5xB9blz3dLkNCA62j70SE2FPj0dmogIn3oHVxRtOPCfT7Hv848gSZdNCRcETFj0Y4xf9GPIZL0zCJBapsELTvoACAoZQm/rD8ki+vWskJKSEmzcuBG5ubkAgI0bN+Luu+92vsMGw5BOkyTRZRgiCHKo1FFQKcMYhLiBSRRRbraiymLtcOMvpUxApEqBMAYhdJUYiBAREVGPEG021OfktAUfVS3hh6Xe9Xr8zpAEOWzaWNh0CbDpEhGY2hezn56N8KTIbqrccxqqq7Dxn/9A3qkTDmOBIaGYv+IZJF03zAOVuYe5qAHVn11AwHURCJ6R5PQcVZz/9E25nNFoxPbt23H48GFI7a4Sc3JycPr0aVx33XUerM73yeVqKJWhdqGIIMigUkVCpQqHIPTOENLbVFusyGvseDvWALkMkSoFQhS+s1MReScGIkRERHTNbGYzajMz25a7VJ89i+rz5695lxe5RgN9n36oE6NQa4mETZcImzYGkDUvdUkdFoGZ9w6CSuP7L2lyThzDxn++AGNtjcNY8tARmPfIUwgMCXV/YW4gWUXUbc9H/fZ8QJRgKTMiYHA4lDHseQEAoiji6NGj2Lp1Kxpd/ExdunSJgUgnSZLk8iJarY6CxVIDCAJUynCoVBGQyXz/+aXVa6+9huXLlzsd02q1SExMREZGBh5//HEMHDjQzdU108llEAQ4nRmiU8gQpVK2nOOZICQvLw+vvvoq1q9fj7y8PKjVavTp0we33XYbli9fDq1W2+X7zMjIwM6dO7t0m+3btyMjI8PheGe/LlOnTsWOHTu69Ji9Ue/56SYiIiK3sDY2oubChbbgo+rsWdReuADRar2m+1XqdAgdOBChAwcibNAghA4ciKCkZPznhe9Rnus4q2Tk3GSMvzENgsy33x0UbTbs/ezfOPDVpw5XAIJMhkm3/QRjb1oMoZcufTAXNs8KsZS029LUJqHqswuIWj7M6dIZf5Kfn48NGzaguLjY6XhISAjmzJmDAQMGuLky3yNJIszmKlit1dBq050ufZHJVAgISIRcroVM5r09hq7W999/73LMaDTi/PnzOH/+PN5991289957uP32291XXAulTIZQhRxVlpbdwwQgVCFHpEqJAA8/H6xfvx533nknamt/aLhrNBpx6NAhHDp0CG+99RY2bNiAtLS0Hq1DJpOhb9++PfoY/oKBCBEREblkrq9H9blzbTu9VJ89i7qsrLbtX6+WOjS0LfhoDT90CQlOL/rHLEjF+tdOAC1ZgVwhw7S7BqD/uJhrqsEbSJKE//7j/yHr6CGHMV1YOBY8/iwSBgz2QGU9T7KKqNuWh/od+YCTbyfJKsLWYIFCr3Z/cV6gvr4eW7ZswfHjx52OKxQKTJ48GZMmTYLSi5sDe4PW3iAmczkk0QIAMFuqoFZFOD1fqdS7szy3ag1E9Ho99uzZ03bcbDYjMzMTL7/8Mvbu3QuTyYR7770XkydPRnx8fKfuOyIiApVd6Af15abNuHnWTKdjkSolaqw2hCkViFQpoPKCQPj48eO47bbbYDQaodPp8Pzzz2PatGlobGzExx9/jDfffBPnz5/HggULcOjQIeh0nV/et2bNGhgMhg7POXPmTFtANWPGjCv+vyxbtszlbCAA3HWqBQMRIiIiAgA0VVXZLXmpOnMGDfn513y/2pgYhA4YgNBBgxDWEoIEREd3elpvytAITLylD/b+5xICglWY//AQxKT1jgsWQRAwcHKGQyCSNnIM5ix7Atrg3vHvvJy5oB5Vn12AtdToOCgDgjISETw9CYLC8xdB7ma1WnHw4EHs2LEDZrPzPgoDBw7EnDlzEBIS4t7ifIwkSbBaa2EylUIU7b+WZlM5VMpQv+oLIooiTp06BQAYMmSIwxKrkSNHYtGiRZg0aRL279+PxsZGfPTRR3jmmWc6df9LlixBfQc9okRJQpMowSSKkADIwsJhkySnzVA1chkG6QK8qlHqE088AaPRCIVCgU2bNmHChAltY9OnT0ffvn3x7LPP4ty5c3jxxRfxm9/8ptP3nZqaesVz1q5d2/bx0qVLr3h+VFQUl9F1AgMRIiIiPyNJEhpLS9uanLYGIN2xza0uMbFtxkfowIEIGzgQmvDwa77f4bMSYbOK6D8+BkFhmmu+P28yYNJU5J8+iRNbv4FMLseUJXdj1IKbe+USGckqom5LHup3OZ8VoowJROiP+kEV75+NU0tKSvD555+joqLC6XhERATmz5/f49PxfV1zEFLXEoSYXJxjhdVaD6UyxL3FedD58+dhNDaHkEOHDnV6jkwmw7Jly7B//34AwOnTpzt9/ytXrnR6vMkmosxsQY3V5tAXpMpiRaTK+QwnbwpDDh061NZv4/7777cLQ1o9/fTTWLNmDc6ePYuXX34Zzz//fLfN3hJFER9++CEAQKfT4dZbb+2W+yUGIkRERL2aJEloyM+3n/lx9ixMVVXXdL+CTIbg1FSEDhqE0AEDmkOQAQOgCr76rVCtFhsUSufv1gqCgNHzU676vr1dxj0PoKGmCuNvuR2xfft7upweYc5vmRVS5mxWiICgaYkInpbol7NCWul0OqfvsKvVamRkZGDs2LGQy/1nRkNXSZIEm60BJlMpbDbXDZ3likCoVTFQKLre/NKXte8fMmTIEJfnJScnt31svcreUJIkwWATUWa2ot5qc3leudmKCKXC63eK+eqrr9o+vvfee52eI5PJsHTpUjz//POorq7Gjh07MGvWrG55/K1bt6KwsBAAsHjx4qtq3ErOMRAhIiLqJUSbDfXZ2ahqv9NLN2xzK1MooO/b127mR2i/flB04wuymlIj1q86gZFzkjFwYmy33a83KcvJQlSK83f2lSo1bnm289OrfYlkEVG7JRcNuwra+sC0p4xtmRXix9vpttLpdMjIyMC3337bdmz48OGYOXNml/oR+COr1dAShLjuwyCXB0CtjoFC4Z9fy/aBiKsZIgBQWlra9nFnlnK0J0kSaq02lJutMNo67jWlV8gRqfL+MAQAdu/eDaC578aoUaNcnjd16tS2j/fs2dNtgcj777/f9nFnlstQ5zEQISIi8kFt29yeOYOqloanNefPw9bUdE33K9doENK/f1uvj9BBg6BPT4dcpeqmyh3ln6vCt2+cgsloxY4Pz0EfFYC4PiE99njuZrVYsOvDd3Bs49dY+MRz6D9hsqdLcqua9Vkw7HeyQ4pcQPD0JARlJPj9TjLtjR07FkePHoVSqcT8+fORkJDg6ZK8ms3WCJOpFFar6+BXJtNArY6GQhHkExffPaV9INJRb4n2syFuuummTt23KEmoslhRbrbCLDpJPlsIAhCmVCBCqYDGh37uz549CwDo06cPFArXl9Dtd3tqvc21amhowJdffgkASEpKcrrVrjOfffYZPvroI+Tl5UGhUCAmJgYTJ07EPffcg2nTpnVLbb0BAxEiIiIvJ0kS6nNzUX7kCCqOH0fVmTOovXix27e5DRs4EEEpKZB18GKvu53cUYDdn16E1PICWrRJ2Lj6JH703GgERwS4rY6eUl1ShHUv/xVl2ZkAgE2vv4rotD4Iifb9HXI6K3haIozfl0Fq+mHavDJeh9DF/aCK9b9dDsrKyrBt2zbccMMNTnd5kMvluOuuu6DT6SDrhX1krkZlg6s+IBKMjTkQbc7HZTIVQoOiERgQ5jQIqTKYIV3e1KKTAlRyaFXOnytrjGbYOggFLheuc89OSq07FqWkpCDYxfLGr776Cp988gmA5qUZHc2GaFVjsaKgyQJbB19LuQCEq5qDEGU3fF93R7C1Zs0a3HPPPVc8r6mpqa2vz5UCytDQUAQGBsJgMCC/G5qSA8AXX3zRtgPNXXfd1el/+5kzZ+w+v3TpEi5duoT3338fN998M959913o9b2zcXdXMBAhIiLyMjazGVWnT6P82DFUHDuG8u+/v+aeH+rQ0LYlL1fa5tYdRJuIPZ9exMmdhQ5julA1BJnvv4t7bu8ubH5jJcyNP/QyMDcase7lv2LJH/4OuRuDJ0+S69UIWZCG6i8uNs8KmZmEoOv9b1ZIU1MTduzYgQMHDkCSJAQGBuKGG25weq6ri1V/Ner/bbnq2/7+Ji2WTnDe2HnmiztRZXC+k8+VPD6jL56c1c/p2I9W78PFsoZO31fOXxZcVQ1dUVJS0rYU5vL+ISaTCRcuXMCaNWvw6quvQhRFTJ48Ge+8806n7lshCC7DEKVMQKRKgTClwquapHZF+74+nVm61hqINDR0/nugI11dLqPVanHjjTdixowZGDBgAHQ6HcrLy7Fz506sXr0alZWV+Oqrr3DTTTdh8+bNfr9tt3/8JiYiIvJippqaH8KPY8dQeeoURBfbbXaGNibGbpeXrm5z29OaDBZ8++YpFJyrdhhLGxGJmfcMglLtu40jLWYTdrz7Jk5s/cZhTKFUYejMOZD5WWNM7ehoWMqMCBwVDWWMf80KEUURx48fx5YtW9re5QWAI0eOYNSoUYiLi/NgdeQvjh071vbx119/7fL3wahRo3DffffhwQcf7HBpSHuBchkC5DI0tusZEiCXIVKlQIhC3iO/e06ePHnN99HZ5WhN7ZaiqjqxfFStbp7x09jourFvZxUUFLTtbjN+/Hj06+c8hGuvsLDQ6Zbcs2bNwooVKzBv3jwcO3YMO3fuxGuvvYbHHnvsmuv0ZQxEiIiI3EiSJNTn5aH86NG2AKQuK+uq76+ntrntKa3NU2tKHXcaGT0/BWMXpvr07JDKwnyse/mvqMjLcRgLi0vAwiefQ2RSitvr6mmm7FrUbc5F+NJBkGkcX14KgoCQBf63VWxhYSE2bNjQtjvE5Xbv3o3bb7/dzVX5FlG8tqWB1Kx9/5CONDQ0YN68eXZhiCRJqLeJEAAEKRzDXEEQEKVSILfRDJ1ChiiVEjq5rEdD+I56oHQ3jeaHrd7NnXizwmRqXsIVEHDtyz4/+OADiGJz0HT33Xd36jbOwpBW0dHR+PzzzzFw4ECYzWasXLmSgYinCyAiIurNbGYzqs6caQs/yo8du+rlLwpJgg5ASHwCUn/9K4SPGAFVUFD3FtyD8s9W4ds3m5untidXyDB96QD0G+vbfTXO7NqGLW+tgsXk2Nh28NQZmHHfMijbvbDuDUSzDXXf5KBhXxEgATXrshC2+MrvYPZ2DQ0N2Lp1q9278u3J5XJMnDgRU6ZMcXNlvkOSbDCbK2A2V3i6lF6hfSCyY8cOhLcE50ajERcuXMCLL76IY8eO4fz587j77ruxa9cuiJKEGqsN5WYLmmwSAuQyl0GHXiFHv0ANAnrhUrigdr9nO7MMpnUmWHfsDLV27VoAzbNOuis8TUtLw6xZs7B+/XpcunQJRUVFfj1TjYEIERFRN+rO5S8aCQiUJOggIVACVACCpk5F/CsvQ+ZjF9aXN09tpQ1WYd6yIYhJ9d3GbpamJmx9ZzVO73Tsc6BQqzHz/uUYPHWGByrrWaasGlR9fhG2qh8CIOPhUmiHRkLTL9SDlXmOzWbDoUOHsH379rZ3iS/Xr18/zJ07F2FhYW6uzjdIkgizuQpmcxkkqbkR747H4wEAAdokKORdW3IVqHZ9ubPlqanX1FTVlc8entClpqru0BqIRERE2G0NCzTvbLR48WKMHj0ap0+fxu7du7F53wHEDxkKS7t/R6NNRINNdDlLJEDuvtl9p06duub7SEhI6HA2RSuNRoOIiAhUVFSgoKCgw3Orq6vbApHExMRrqu/w4cNtjVEXLlyI0NDue14dNGgQ1q9fD6B5JhsDESIiIuqy1uUvFUePts3+uNrlL3KNBuFDhiByxAioy8ph+eILh1/SwQsXIu7Pf4LgQw3QbDYRez65iFO7HJcMRCTqsGD5UOhCfSvcaa8iLwdfv/xXVBU67iYQkZiMhU88h/CEa3tR7G1Ekw2132TDsM/JVroADIdL/DIQyc7OxsaNG1FWVuZ0PCwsDPPmzUPfvn3dXJlvkCQRFks1TOZySKLFbiwssPkCXC6vRmBg9wVJYYE9s514iLbntim/GkajEZcuXQIAjBgxwuk5Go0Gz/3iF7jrzjsBAO99sBY/+/PfHM4rN1ucBiLudnlj2KvR2V1mAGDgwIHYvXs3Ll26BKvV6rK/yrlz5+xucy3aN1Pt7HKZzrraILA3YiBCRETUSZcvf6n4/ns0VVZe1X1pIiIQOWIEIkeMQMSIEQgbOBCCQoHyl15GpZMwJPSOJYj+1a88tivM1ZCk5i10c086fo3SR0Riho83Tz23dxe+XfUyrBbHGUBDZ8xFxj0PQKlyz3aa7tJ0qQbVX1yArdrJ7AeFDPo5ydBNind/YR5UW1uLTZs24fTp007HlUolpk6divHjx3e6SaU/kSQJVmstTKZSiKLr2XRKpR4qVbQbK+s9jh8/3taHYvjw4Q7jTTYRZWYL+s2cA61OB2NDA7Z9/T+HQEQtE6BXKCBJktc06XaXyZMnY/fu3TAYDDhy5AjGjRvn9LydO3e2fTxp0qSrfjyLxYKPP/4YABAZGYl58+Zd9X05035LXn+eHQIwECEiInLJVFODiu+/b5v9UXXqFGwupsFfib5Pn+YAZORIRI4YgcCEBLsXlJIoouT3v0fNRx873Db84YcQ+fjjPvcCVBAE9BkV5RCI9IbmqQCgj4yGKNrsjik1AZj94KMYMGmqi1v5JtFkRe3GHBj2O58VokoORujivlBGat1cmecZjUa7i4v2hgwZglmzZnEbXRckyQqD4SJE0fXzqkIRBLU6GnL5tTeo9Fft+4e0zhCRJAkGm4gysxX11ubnMbUmAOMypmH7uq9RnJ+PC6dOot91QxDYsmNMcA/tGHM13D3D4eabb8af//xnAM0zS5wFIqIots3qCAkJwbRp06768TZu3Ijy8nIAwB133NGtYWpWVhY2b94MoLmfSHy8f4XYl2MgQkREhJ5b/hIxYgQihw2DSu+6R4ZksaDouedR17Ket72oZ59F+H33XlUd3mDA+FhUFRlwbFNec/PUuweg3xjfbp7aKrZvf0xZcjd2fvAOACAqJR0Ln3gWobG968Vl08VqVH9xEbYax4tWQSlD8JwU6CbG+XzAdbViY2MxatQoHD58uO1YdHQ05s+fj+TkZA9W5p0kSYLFUg2zuRFqdRBE0fkSQLkiEGpVDBQK/wvZulv7QGT48OGot9pQYrLA2G6b3FZTZs/F9nVfAwAObPoG88eORqAXLJHxtLFjx2LKlCnYvXs33n77bdx9992YMGGC3TkvvPACzp49CwB4/PHHoXSyvLU1UEpOTkZOTo7Lx2u/XGbp0qWdrvPrr7922CWovdLSUixevBgWS/OytEceeaTT991bMRAhIiK/ZDObUX32bFv4UXHsWLctfwkdMAByVefWkIuNjSh84kk0tJtmCwCQyRD7+98hZPHiq6rJm4y/OR0moxWDJsUhOrV3vVM+asHNyD9zEsGR0Zj6k/ug6OT/uy8Qm6yo3ZANw8ESp+OqlGCELe4HRQTfuZ8+fXrbkpnp06dj1KhRkPnQ8jZ3Kir6GHV1DVCrU52Oy+VaqNXRUCiufYcOatYaiGi1WvTr1w/VNtFpGAIAU+bMgSAIkCQJ3337DQJ/+39urNS7vfLKK5g0aRIaGxsxe/Zs/OIXv8C0adPQ2NiIjz/+GG+88QaA5sbJTz/99FU/TnV1NdatWwegeXvhkSNHdvq2K1asgMViwaJFizBhwgSkpKQgICAAFRUV2LFjB1avXo3Kltc6kydPZiACBiJEROQnemL5S0RLCKJLTLzqacSS2QxL8WXLEJRKxP/97wieO+eq7tMTOlpTLpMJmPaTAW6uqPuYjEaoNBqn/VsEmQw3Pv1LyHtZbwjRZEXpy0ddzgrRz0tF4PhYv5kVYjKZcOjQIUyYMAFyueO75VqtFrfffjuioqKg1XJGQ0eiouajoOA/Dsdlcg3UqmgoFEFesyyjNxBFsW1HliFDhkAulyNMJkOJyQpbu2UncgEIVykwqE8qRowYgaNHj+LgwYMoKytDVFSUp8r3KiNGjMAnn3yCn/zkJ6irq8MvfvELh3P69euH9evX223V21WffPJJ2y5VXZkd0qqoqAgrV67EypUrXZ6zaNEivPXWW1Cre1efq6vRu357ExERofnivCEvry38KD969OqXv6jVCB86tNPLX7p8/3o9kt5+Czl3/gSWvDwIAQFIePVV6KZM7rbH6GlNBgu+ffMUhk5LQOqwSE+X062KL53Hupf/hqEz5mDcLbc5Pae3hSEAIFMroBkQ5tAzRJ2mR+iivlCE+8esEEmScPLkSWzevBn19fWQyWSYOHGi03NTUlLcW5yPUir1CAhIgs3WfDEuk6laZoToGYR0I1NLE9XsCxdgNBoB/NBQVSYIiFApUGqyQCkTEKlSIEypgLzl679gwQIcPXoUoihi/fr1uPde31222d1uuOEGnDhxAq+88grWr1+PgoICqFQq9OnTBz/60Y/w6KOPXnMounbtWgCAXC7HnS27/nTWe++9h507d2Lfvn3IyspCRUUF6urqoNPpkJiYiIkTJzpd7uPPBIl77lyVgoKCtr2l8/PzkZCQ4OGKiIj8V7cufwkP/yH8GDmyS8tfroW5oBAFy5Yh5ne/g3ak820RvVF1iQHr/3UCteWNUKrlWPTsKITH+/5Ud0mScHTDf7Hrw3ch2qwQBBlu+78/IWHgdZ4uzW1Ekw2lLx2BrcYEQdUyK2Sc/8wKKS4uxsaNG5GXl9d2TKVSYcWKFdf07q8/aGwsRH39SURFzXU6fuHCORiNpQgIiES/fgMZhHQjo82GcrMVNRYbQpVyJAU4nwFgFSXU22wI8aJGqeQ/Ll682LZ9cWe3Iu+p6+/e95YGERH1eqaaGlQcP942+8Nblr9cC1VCPFL/+5VPbaubd6YS3755GuZGKwDAYrJh/b9OYPFzo6EN9t1eGo31dfjmtZeRdeRg2zFJErH+1b/jrr++Cm1w980Q8mYytRyhi/uifkcBQm/tC0WYxtMluYXRaMS2bdtw5MgRh50szGYztm7diptvvtkzxXk5k6kcObn/QmHhxxAEOfT6UVCrHWeNCYIcanUUZDIFL8a7gSRJqLeJKDdb0GD9oTdItdWGGFGEysnvFYVMQKiMl4JE/CkgIiKv11hRgdL9+1F66BAqjh1DbWbmVd2PXK1G+JAhbeFHxLBhUIeEdG+xHTBlZUOVEA/BxYwTXwlDJEnCie0F+O6zi7h8nqnNJsJYZ/LZQKTw3Bmsf/XvqK8sdxjTR0VDtFo9UFXPaTxXBanRCu0I5z0CNH1CoU4P8YuLVlEUceTIEWzbtg2NjY1Oz+nTpw8mT/ad5WzuYrHUIDf3DeQXvAdRbAIASJIFObmr0L8fm3L2FFGSUGO1odxsQZPNyaR/CSg3WxGv8c3nYyJ3YCBCRERex9rYiLLDh1Gyfz9K9u5FzYULV3U/nlr+4ozxyBHkP/QwdNdPQdzf/w7BSWNGX2Czidj18QWc2V3kMBaZFIT5y4ZCF+p7TdokUcTB/32B7z5ZC0m8bPcFQcC4m3+EiT+6EzIf/X+7nGi0oGZdFoxHyyCo5FClBEMR6nwGiD+EIXl5ediwYQNKSpzvqBMaGoo5c+agf//+fvH16CyrtQH5+WuQm/cWbLYGh/HCwo+QlPhTBAT0rq2oPc0mSag0W1FhscIiuu5+IBOa/xCRawxEiIjI40SbDdVnzqBk3z4U792Liu+/h2ixdPl+9OnpiBw50uPLXy7XsGsXCh57HFJTE+o2bIRMF4SY3/3WK2rriqYGC7554yQKL9Q4jKWPjMKMewZCqfK9wMBYW4ON/3oROcePOowFBOsx/9GnkTKs89seervGM5Wo/vISxHozAEAy21D9xUVE3H+dz31PXqv6+nps3rwZJ06ccDquUCgwZcoUTJw4EUql0s3VeS+brQmFhR8iJ3c1LJYqp+cIggoJ8XdALvePBrzuYBFFlJutqLRY0UEOAoVMQIRSgXClAgomIkQdYiBCREQeUZ+Xh5J9+1Cybx9KDxyAua6uS7f39PKXzqrbsAGFz/4caLfUoubTT6EZPBihtzvftcQbVRUbsH7VCdSVOy4lGLMgBWMWpPpks8380yewfuU/YKh2vKhLHDwU81c8A11omAcq6342gwW1X2fC+L3jciDTpRo0na1CwKBwD1TmflarFQcOHMDOnTthNpudnjNo0CDMnj0bIV74vOIpomhBUfFnyMn5F0wm57NpBEGO2JhFSE1dAY0mzs0V9k5NLf1Bqq02h2WK7allAiJVSoQq5ZD5WbhJdLUYiBARkVuYampQeuAAivfuRcn+/TAUFHTp9nJtALITJUSMGombb1jh0eUvnVX9yaco+e1vcfkrWN20adDfdKNniroKuacrsenNUzA32eyOy5UyzLh7IPqOjvZQZVdPFG3Y/8Un2P/Fx5Ak+yUygiDDhMVLMO7W2yCT+d6MF2caT1c0zwppcJx5JajlCFmYBs3A3hH8dEZmZiY2b97sdCwyMhLz5s1DWlqam6vyXpJkQ0np18jOegWNTXkuz4uOvgFpqY9Dq011Y3W9X4XFiiqLzeV4oFyGSJUCwdwxhqjLGIgQEVGPsJlMKD92rG0WSNWZMw7BQEcEuRwRQ4ciesIExE6YgPAhQ1AvGhGsCvaJF3wVb76J8hdedDgefOMNiPvjHyH4wPR7SZJwYlsBvvvcsXmqVq/C/GVDEZ0S7JniroGhphobVv4deaccl0kEhoZhwYpnkDh4qAcq6342gwU1/8tE43HHWSEAoOkfipBb+0Kh972+L9eiX79+SE1NRXZ2dtsxtVqNadOmYcyYMZD3kl4x3cFqNeDwkcUwGFz3coqImIm0tCcRpBvgxsr8R6RKgUqzY0NnvUKOSJUCgQp+vxJdLQYiRETULSRRRM358yhuCUDKjxzp8la4wWlpiJkwATHjxyN67FgodTq7cT28f7tTSZJQ/uKLqHzzLYex0DvvRPQvf+ETu8lIkoRdH13AqV2FDmO+3DwVAGxWC8qysxyOJw8dgfmPPg2tPsT9RfUA48kK1PzXxawQjRwhC9OhHRXlEwFjdxMEAfPmzcNrr70GSZIwYsQIzJgxA7rLnnMIUCgCERCQ5DQQCQ2diPS0p6DXj/BAZb2LKEmQAMid/DyqZTLolXLUWmwQBCBUqUCkUgGN3Pt/lxB5OwYiRER01QxFRW0zQEoOHICpynlzPVc04eFtAUjMhAnIVVbjYMlBjB48vYcq7lmSzYaS3/8BNZ984jAWsXwZIlas8JmLT0EQoI9ybIbYZ1QUpt/tm81TWwVHRGHO8ifx37//AUDzdseTbr8LY29c5BNh1ZXYGszNs0JOVDgd1wwIQ+gtfSDv5bNCJElCbm4uUlJSnI5HRUVh7ty5iI+PR0JCgnuL8zHpaU+homIrgOapYsHBI5Ce9hTCwiZ6trBewCpKqLBYUWG2IlKlQLTa+ezBKJUC6pZmqcpe8DxF5C0YiBARUaeZ6+pQeugQSlr6gNTn5HTp9nKNBlGjRzeHIBMmIKRfv7aAILMmEw998xCqTdWoMdXgsRGP+Ux4AACS2Yyi555D3YaNDmNRz/0c4ffc4/6irtGwGYmoKjLg7N5iAMCYhakYsyDFp/5fXOkzehxGzr8JFw58h4WPPYv4AYM8XVK3aLpYjaqPz0E0OE6vFzQKhNyYBu2I3j8rpKysDBs3bkR2djaWLFmC/v37Oz1v3Lhxbq7MezU0nEdgYB8IgmPYqdP1R3T0DTAYLiAt7SlEhE/v9d9DPc3UsmNMlcXatiSxwtIcijhriKqVy6HlUi6ibsdAhIiIXLKZzag8caJ5O9x9+1B18iQkUbzyDVsIMhnCBg9uC0Aihg932gg1vy4fD2x6ANWmagDAWyffQqO1ET8f83OfeNEtNjai4PHHYdi1235AJkPsH/6AkEW3eqawayQIAqbe0R+GWhMGToxDn1FRni6pyyRRdDnr4/o778H4W29HQJDv9UFxRa5XQzQ5Nl/UDAxD6C19IQ/27kbE16qxsRE7duzAwYMHIbVcZX7zzTdIT0+HQsGXvc4YDFnIyn4JZWUbMGjQC4iNudnpeQP6/x5yeSAEgbMTroXRZkO52YoaJ01SraKEaosN4Sp+rxK5C3/aiIiojSRJqM3MbJ4Bsm8fyg4dgrXRcZvVjugSExEzcSJiJ0xA9NixUOk77vtR3FCMn276Kcob7Zs+Xqy+CItogUru3Rdwtro65C9bjsYjR+yOC0ol4l74B4Jnz/ZQZd1DrpBh4aPDfCKYas9mtWD3R++jqb4ec5c/4fQcuUKJgCDvb27bFcooLfSzklG7MQcAINMqEHJjOgKGRfrc/2FXiKKI77//Hlu3boXBYLAbq66uxr59+zBlyhQPVeedGhsLkZ3zKoqL/wOgOejOznoF0VELIJM5/lwoFEFurrD3kCQJ9S1b5zZYO35TobELbzoQ0bVjIEJE5OeMZWXNPUD270fpvn1oLHe+G4Ur6pAQRI8f39YHRNeFtfgVjRV4YPMDKDIU2R0fFjkMK6ev9PowBACsFRUwX7pkd0zQapGw8lXoJk3yUFWdZ7OK2PPpRfQdE4W4vqFOz/G1C+nashKse+VvKLnU3AQycfAQDJ46w8NVuY9ucgKMpyohD1Yh9OY+kAd5/8/RtSgoKMDGjRtRWOjYABgAgoODERER4eaqvJfJVI6c3H+hsPBjSJJ9w93GpjwUFX+GhPg7PFRd7yJKEmqsNpSbLWiydbDLmgCEKuSIVCkRwEapRG7FQISIyM9YDAaUHT7c1gek9rKL+SuRqVSIHDkSsS3LYEIHDryqRpQ1TTV4YNMDyK3LtTs+MGwgVs1cBa1S2+X79AR1WhoS33wDeffcC9FohCw4GElvvI6A4cM9XdoVNTVYsPH1kyi6WINLR8vwo+dGIzjCsZGqL7l4YC++Xf0KTMYfZglseXsVYtL7ITwh0YOVdR9JktB0uhKa/mEQlI4/e4JcQOT910FQy30uzOqKhoYGbN26FceOHXM6LpfLMWnSJEyePBkqJ0v1/I3FUoPc3DeQX/AeRLHJ6TkKRe9ZPuZJNklCpdmKCosVFtF1ECITgDClApEqBVRslErkEQxEiIh6OdFqReWpU227wVQcPw7J6thwsSOhAwc2zwCZOBGRI0dCodFcU0315no8tOUhXKqxD2PS9el4fdbrCFb51ovygKFDkbDqXyj+5a+QsGoVNP37ebqkK6oqMmD9quOoq2i+MGpqsGD9qhNY9LNRUAX43ssDq8WCnWvfxvffrnMYk2w2lOdm9YpAxFZnRvWXF9F0tgpBUxOgn5fq9DyZxvf+DzvLZrPh0KFD2L59O0wutvbu378/5syZg7CwMDdX532s1gbk569Bbt5bsNkanJ4jl2uRmHAPkpIegFLpW8+/3iiv0Yw6q2OPkFaKlt1iwpUKKGS9N7Qk8gW997clEZGfkiQJ9bm5bX1ASg8ehKXB+YtgV7SxsYidOBExEyYgetw4aLrxosJoMeKRrY/gTOUZu+OJQYl4c/abCNU4X7bh7QLHj0f6xg0QfOCd6NxTldj01imYm+xfsNeVN6KioN7l0hlvVV1ShHUv/xVl2ZkOYyExsVj4xHOITk33QGXdR5IkGI+WoebrLEhNzYFm/a4CBFwXAVWi//R2yMrKwsaNG1HuYmlfeHg45s6di759+7q5Mu9jszWhsPBD5OSuhsXifEt0QVAhIeFOpCQ/DJWKy4q6S7hK4TQQUcsERKqUCFXKne4kQ0Tux0CEiKgXaKqsRMn+/c1/9u6FsaSkS7dXBgUhety4tlkgQUlJPTLV3mQz4fHtj+NYmf0U95jAGLw1+y1EaiO7/TG7k7mgEKqEeJfj3h6GSJKEE9sK8N3nF9u2eWwVGKLG/GVDEJXsW+8On/tuJza/+U+YnTT/HTBpKmY98AhUAb6x/MoVW60J1V9eQtO5yy5qJaDqswuIfnwEBD/oO3DmzBl8+umnTsdUKhWmTp2KcePGcTcZAKWl63Dx0p9hMjn/XSAIcsTGLkZqyqPQaOLcXF3v0LqLkbPflUFyGTRyoa1vSKBchkiVAsGK3r2MjcgX8TcGEZEPsjY2ovzo0bZlMNXnznXp9jKFAhHDhzdvhztxIsIGDYKshy8iLKIFT+94GvuL99sdD9eE463ZbyFO590vyht27kTBY48jcsWjCP/pTz1dTpfZrCJ2fXQeZ74rdhiLSg7C/GVDERii9kBlV8diNmHHu2/ixNZvHMYUShWm3fsQhkyf7dMXH5IkwXikFDXrsiA1Ob7bLNMpoZ+d7BdhCAD069cPoaGhqK6utjs+dOhQzJw5E8HBvhXm9SSbrclFGCIgOnoh0lIfh1brfLkVdUySJNRam7fOjVIpoFc6/u4UhOaZIHUWGyJVCgQq5B6olIg6g4EIEZEPEG02VJ892xaAlB87BtFs7tJ96Pv2bQ5AJkxA1KhRUAYG9lC1jmyiDc/vfh47C3baHQ9Rh+DN2W8iOTjZbbVcjdp161H03HOA1Yqyf7wAWXAwQm+7zdNldVpjgxnfvH4KRRdrHMb6jo7C9KUDoVD5zgv2yoJ8rHvlr6jIy3EYC4tPxMInfo7IpBS319WdrDUmVP/nIkwXqp2OBwyPRMgN6ZAH9q5tgzuiUCgwd+5cfPTRRwCAmJgYzJ8/H0lJSR6uzPvExNyM3LzXYTRmtR2LiJiJtLQnEaQb4MHKfJcoSaiyWFFutsLc0ii13Gx1GogAzc1Sw1yMEZH34E8pEZGXaiwvR+HOnSj+7juUHjgAc21tl24fEBnZNgMkZvx4BER6bjnKyYqT2JK7xe6YTqnD6lmr0TfUu9f6V3/8MUp+93u0X2NS8n+/hSolBYFjx3qwss65vHlqe2NvSMXo+Sk+NYvi9M6t2PL2KlidNNMcPHUmZtz3MJTX2PTXkyRJgvFwy6wQk5NZIUFKhN7cFwGDwz1QnXsYjUZotc6XOfXv3x9Dhw5FYmIiRo0aBZkf78whSRJEsQlyuePOUDKZAmmpT+DU6ccQGjoR6WlPQa8f4YEqfZ9VlFBhsaLCbIXtsrWGBpsIg9XGGSBEPoyBCBGRl5AkCbWZmSjctg0F27ej8sSJLt1eodUiaswYxEyYgNgJExCcnu41F7rDo4bjhYwX8LOdP4NFtCBAEYBVM1dhcPhgT5fmkiRJqHzjTZS/9JLDmP7GG6EdOdIDVXWNq+apCqUMM+8dhPSRUR6q7OpYzWYc+PIThzBEqdZgxv3LMHjqDA9V1j2sNU2o/uIiTE5m8gCAdkQUQm5Ig0zbO2eFmEwm7Ny5EwcPHsSDDz6IqCjn35+33nqrmyvzPjU1h5GZ9SJUyjAMGfJPp+dERc3DKPUnCAkZ7ebqegeTKKLcbEWVxerQc6m9Kh8LRF577TUsX77c6ZhWq0ViYiIyMjLw+OOPY+DAgW6uzjc9++yz+Pvf/972+fbt25GRkdGl+8jIyMDOnTuvfGI7rh6ns6/9pk6dih07dnTpMXsjBiJERB4kWq0oP3IEBdu3o3DHDjTk53f6toJcjvAhQ9qWwUQMHQqZ0nsvlGYkzcDK6Svx7K5n8ULGCxgR5b3vVkqShLJ//ANVb7/jMBZ6112Ifv45CF7+zvTxrfkum6cuWD4UkUm+tzOJQqXCwieew79/9TRsFgsAICIpBQuf+DnC4313S11JkmA4WILaDdkuZoWoEHpLHwQM6p2zQiRJwokTJ7B582Y0tOyItXHjRixdutRrQl1vUV9/GplZL6Kyckfbsbr6UwgOus7hXEGQMQy5CkZbc3+QGovrbXMBIKClUWqID4UhAPD999+7HDMajTh//jzOnz+Pd999F++99x5uv/129xXng44fP46XnLxx0tNkMhl30+omDESIiNzM0tCAoj17ULh9O4p27YK5rq7Ttw1OTf2hD8iYMVAF+dZF7aT4Sfh20bfQqXSeLsUlyWZDyW9/i5rPPncYi3jkEUQ8+ohPXKQZ680OYUhUSjDmLxuCQL3vNE+9XFRKGjKWPoCtb6/C0JlzkXH3A1CqfPffAzS/m2e6VOM0DNGOikbIgtReOyukuLgYGzZsQP5lYXB2djbOnj2LQYMGeagy72IwZCIr+2WUlW1wGMvKehHDhzmGt9R5kiSh3iai3GxBg1Xs8NwghQyRKiV0cplP/C64XGsgotfrsWfPnrbjZrMZmZmZePnll7F3716YTCbce++9mDx5MuLjXe+u1l5ERAQqKys7XcvVzKTwJqIo4oEHHoDVakVUVBTKysqu+r7WrFkDg8HQ4TlnzpxpC6hmzJhxxf+XZcuWuZwNBACBbuwl580YiBARuYGhqAiFO3agYPt2lB08CNFq7dTtFAoRcTFNiL3xLsTcugyBsbE9XGnP8+owxGxG4bM/R/03jjuXRP/ieYQtXeqBqq7O+BvTUF1sQPbxCgBA3zHRmH7XAJ9qnurKsFnzEJGYhISBju+K+6qQm9JhyqyBaGx+bpAHqxBya18EDAjzcGU9w2g0Ytu2bTh8+LDTcZlMhpqaGvcW5YUaGwuQnf0qiku+BOD8Qr2h4QIslmoolaHuLa4XyW40o97awYwQAQhVyBGpUiLAh3d1EkURp06dAgAMGTIE111n/xw6cuRILFq0CJMmTcL+/fvR2NiIjz76CM8880yn7n/JkiWor6/vdD0xMTGdL94Lvfrqqzh06BAGDBiAW265BX/+85+v+r5SU6+869PatWvbPl7aidcjUVFRDv/H5IiBCBFRD5AkCdVnzzYvhdm+HdVnz3b6ttoAKxLimxAf14ioSBPks38LTH6y54rtZp9d+AzR2mhcn3C9p0vpEtFoRMFjj8PQ7h0zAIBMhtg//hEht9zskbquliATMPPeQfjyhaNIHxGFUfOSfebdzNLsTBzb+DVmP7QCMrljgCMIQq8KQwBArlMh5KY+qProHLSjoxGyIA2ygN73Mk0URRw5cgTbtm1DY2Oj03P69OmDuXPnIiIiws3VeQ+TqQw5OatQWPQxJMni9BylMhypKcsRH78EMplvz5LyNJ1c5jQQkQnNu8VEqhRQefkyyc44f/48jEYjgObtqp2RyWRYtmwZ9u/fDwA4ffp0p+9/5cqV116kj8jPz8evf/1rAM19WXq6F4coivjwww8BADqdjr2UulHv+01LROQhNrMZpQcPorClH4ixpKTTtw0bOADxwblICM5BiN6CtuvWET8BJj3RI/X2hP9l/g+/3/d7KGQK/O36v2FW8ixPl9Qptro65D/0MBqPHbM7LiiViH/pRQTNnOmhyq6NSqPA4mdHQ670jRfykiTh+03rsfP9t2CzWhEUHo5Jt9/l6bK6jSRKsFU1QRHhuCsIAAQMjUBU+HCoEnxrKVxn5ebmYuPGjShx8dwYGhqKuXPnol+/fj4T3nU3i6UaublvIL/gfYii485QAKBQBCM56UEkJt4Nudz5bjzUNeEqBUrNFrTspguFTECEUoFwpQIKWe/5XmzfP2TIkCEuz0tOTm772NrJGa3+Zvny5WhoaMDdd9+NjIyMHg9Etm7disLCQgDA4sWLXe7ERV3HQISI6BqYampQtHs3CrZtQ/GePbC2vPNyJTKlEtHjxiFh2jTEX389tLt+Bpy7aH9S8mRgwUuAj1wYbMrZhF9/1/xuiVW04pmdz+D/Tfp/uCH9Bg9X1jFrRQXyfvoATOfO2R0XtFok/uufCJwwwUOVXZkkSTixrQDx/UMQ4eIi2lfCkCZDAzatfhUXD+5tO7b/y0+RMHAIkocO91xh3cRa2Yiqzy/AWtaI6KdGQR7o2BNEEIReGYbU1dVh8+bNOHnypNNxpVKJKVOmYMKECVB6cWPonmS1NiAvfw3y8t6Czdbg9By5XIvEhHuQlPQAlMpgN1fo25pa+oNEqpTQOFnyIhcEhCsVqLPaEKlSIlQph8xHfvd2RftAxNUMEQAoLS1t+7gzSzn8zaeffop169YhLCzMbneZnvT++++3fdyZ5TLUeQxEiIi6qD4vDwXbtqFwxw6UHz0KydZxJ/pWKr0ecVOnIiEjA7GTJ0PZ2sxq06+Bc+vsTw5LB25fCyhU3Vx9z9hVsAs/3/VziNIPa9xFSURBfYEHq+qcpjNnYLpwwe6YTK9H0huvI2DYMA9VdWU2q4gd/z6Pc3uLoQtT40fPjYE22De+Xy5XfOk81r38N9SVl9oPSBKOffu1TwcikiihYW8R6r7NgWRp/vmo+V8mwpcM8HBl7nHhwgV8/vnnMJvNTscHDx6M2bNnQ6/Xu7ky72K1NSA3dxVE0fHrJAgqJCTciZTkh6FS+e8yoq6SJAkGW/PWuXUty2EEQUCC3PnzZLRaiVi1slfPTmofiHTUW+Krr75q+/imm27qwYp8T01NDR5//HEAwF//+ldERkb2+GM2NDTgyy+/BAAkJSV1uhHtZ599ho8++gh5eXlQKBSIiYnBxIkTcc8992DatGk9WLFvYSBCRHQFkiii8uTJ5hBk+3bUZmZ2+ra6xEQkTJ+O+GnTEDliBGSKy552i74H9r5qf0wTAtzxKaD1jWaKB4oP4MntT8Iq2U+rvXfwvXh42MMeqqrzdNdfj9g//hHFzz8PAFBERiLx7beg6dfPw5W51lhvxsbXT6L4Ui0AoKHKhI2rT+CmJ0dAofSdpqmSJOHI+q+w+9/vQnQSLI5aeAumLPHdd8IsFY2o/vwCzDn2O0k1Hi9H45AIBFzX+y9uY100go6KisK8efP47nMLjToGCfF3IS//7bZjgiBHbMwipKaugEYT58HqvIChotOnSpKEOqsNlRYrjDYRojIQUDYvU6uyWBGtUkDZ2g/EUAmgeZ1Ml585lQGAysUuHcYqQOp4txo7ge55Ljh+/DgAICUlBcHBzmcZffXVV/jkk08ANC/NGDVqlFtq66ruCK7WrFmDe+65p0u3efbZZ1FSUoKJEyfi/vvvv+YaOuOLL75o24Hmrrvu6vS//cyZM3afX7p0CZcuXcL777+Pm2++Ge+++67fh9EAAxEiIqesjY0o2bcPhTt2oHDHDjR1dhs5QUDEsGGIz8hAwvTpCE5L6/gXV9xw4JbXgf+tAGxmQKZonhkS0adb/h097fuy77Fi2wqYL3tX8/b+t+PJUU/6zDttIbfcDLG+DlVrP0DSO29DlZjo6ZJcqixswPpVJ1Bfad9foCSrDvlnq5E61Dcushvr6/DNqpeQdfSQw5hGF4S5y59E+qixHqjs2kmihIbvilD7bQ7gZAtPeYgaQi9smOpMUFAQMjIysGnTJgCARqPBtGnTMHr0aMidNMz1Z8nJD6Ow6GPYbAZER9+AtNTHodUyMAIA/D2906cKAPQtfwCgYPqfUDn8XgCAJAEVFiti1S2zRP41BjB2fptYO1OfA6Y973xszTyg/JzzMWd+W3t1NXRBSUlJ21KYy/uHmEwmXLhwAWvWrMGrr74KURQxefJkvPMOt3Nub8+ePXjrrbegUCiwevVqt73G6epyGa1WixtvvBEzZszAgAEDoNPpUF5ejp07d2L16tWorKzEV199hZtuugmbN2/226WKrfzjtzERUSc0VlSgaOdOFGzfjpJ9+2Brct7Q7nJyjQYxEyYgYfp0xF1/PQK6ujPCsB8DIUnAJz8BZv4OSPWN3VnOVJ7Bsi3L0Gi13ynixvQb8Ytxv/CZMKRV2NKlCFm0CLJAF+/4eYGcExXY9PZpWEz2sykUKhlm3jvIZ8KQwnNnsO7Vv6Gh0vFd3/gBgzB/xc8QHNHz05B7gqXciOrPLsCc53zrycDxsdDPS4FM3btegkmS5PJnfty4cTh27BgSExMxY8YMBHrxz1hPkSQJ5eWbkJ+/BsOGvQmFwrFXjEoVhgED/ojAwL4I0vnHkip3kgvNzVMjlL3rZ6+zjrVrGv7111+7/HkdNWoU7rvvPjz44INQXD6r1Yu46knUFQkJCZ0+12w248EHH4QkSXjyySc7bErbnQoKCtoato4fPx79OjF7tbCwECEhIQ7HZ82ahRUrVmDevHk4duwYdu7ciddeew2PPfZYN1ftW7z3u5yIqIdJkoS6zMzmrXF37EDF8ePNbx91giY8HPEZGYifNg0x48dDEeB814hOS54IPHrYZ5bJXKq+hIc2P4QGi33zv9nJs/G7ib+DTPDORp7WykoowsNdjntrGCJJEr7fnI+9X15qnd3dRheqxvxlQxGZ5P3NOCVRxMH/fo7vPv0AknjZzAlBwLibf4SJP7rT6Va73k4SJTTsKUTtplzns0LCNAhd1Bea9BD3F9eDJEnC6dOnsWfPHixdutTpzgdyuRwPPvigX74LKUkSqqr2IDPrBdTXN1/A5eW9g7S0x52eHxPt3U2ofZFcAOI0SoQpFZD7WFDfndr3D+lIQ0MD5s2b59VhCNBxD5Se8Kc//Qlnz55FUlIS/u///s9tj/vBBx9AbPl9effdd3fqNs7CkFbR0dH4/PPPMXDgQJjNZqxcuZKBiKcLICJyJ9FqRfmxYyjcvh0F27ejIS+v07fVp6cjfto0JEyfjvAhQyDIuvmi30fCkLy6PDyw+QHUmGrsjl+fcD3+MuUvUMi881dL7ddfo/g3/4eEV1+BbsoUT5fTaTaLiB0fNTdPvVx0ajDmPTwEgXq1ByrrGmNtDTb88wXknjjmMKbVh2DeI08hZdhID1R27SxlxuZeIS5mhegmxiF4bgpkKt8LejpSWlqKjRs3IicnBwCwbds2LFy40Om5/hiG1NQcRmbWC6ipOWh3PC//bSQk3AWVyjee831djEoJQeV/33+Xax+I7NixA+Etbw4YjUZcuHABL774Io4dO4bz58/j7rvvxq5duzxUqfc5d+4c/vznPwMAVq5c6dZZbmvXrgUAqNVq3H777d1yn2lpaZg1axbWr1+PS5cuoaioCHFx/tunyDtftRIRdSOLwYDiPXtQsGMHinbuhLm2c2t1BbkckSNHNm+Nm5GBoOTkaytEkoCaPCD0Gu/Hg4oaivDTTT9FRaP9UodxMePwYsaLUMq980Vn1b//jdI//D9AklCw4jEkvfM2tCO9/+L78uap7fUbG41pdw3wmSaq2959w2kYkjh4KOaveAa6UN+7OJRsEup3F6BuSy5gdZxdJg/XIGxRP6jTelfTusbGRmzfvh2HDh2C1G5W3ZEjRzBq1CiXjVT9RV39KWRlvYjKyp1Ox202A4qLP0Ny8kNursyH/cy+mXlBkwk1Fuc7vAUqZIhUKhEol0EQBAiuGp8CwCOH4DDtrrOUHcwMvXdj15qqukFrIBIREYGpU6fajY0dOxaLFy/G6NGjcfr0aezevbvt59lbnTp16prvIyEhocPZFK1eeuklmM1mpKWlwWg04uOPP+6wnm3btqGkpAQAcMMNN1x1gHL48OG2xqgLFy5EaGjoVd2PM4MGDcL69esBNC+xYSBCRNTLGEtKULhjBwq2bUPpwYMQLZZO3U6h1SJuyhTET5uGuClToO7EL8pO2/MSsOsfwKK3gAHzu+9+3aTcWI4HNj2AYoP9TIXhkcPx6vRXoZZ73ywFSZJQ+frrKH/5lR+ONTUh/6GHkfrll1AlxHuwuo5VFjZg/b9OoL7KsZfNuJvSMGpusk/1aclY+lPknz4BY20NAEAQZJiweAnG3XobZDLfCHUuZykxoO7bHMfrKaFlVsic3jUrRBRFHDt2DFu3boXRaHQYlyQJJ0+e9NtAxGDIRFb2yygr2+DynICAFKSnPYmoKN/7HeBRl+3CEq4RUWlo99woAKEKOSJVSgTIuzB7M9D1Espr4mUzPo1GIy5dugQAGDFihNNzNBoNfvWrX2HJkiUAmpdqeHMg0h09PDq7y4zJZAIAZGVltX19OvKHP/yh7ePs7OyrDkTaN1Pt7HKZzpI6uUTcHzAQIaJeQZIk1Jw7h4KWpTDVl2011hFtTExbP5DosWMhV6m6v8Az/wW2/q7544/vAGb/AZjwKOBDF7Qbsjcgr95+idHAsIFYNXMVtErHvgGeJkkSyv72d1StWeMwFnLrLVDGee9FW/aJCmx20Tx11r2DkTbC9xqO6kLDMO/Rp/HFn36DwJBQLFjxDBIHD/V0WddEFa+Dbko8GnYVth1TRAQgdHFfqFN616yQgoICbNiwAUVFRU7H9Xo95syZg4EDB7q5Ms9rbCxAdvarKC75EoDzWQFqdSzSUh9HTMwtkHnpskJvYpMkVFmsLvt+BMhlCFLIYbDZEKZUIFKlgKq7l7H2IsePH2/rQzF8+HCX5910003Q6XRoaGjAf/7zH7z00ktuqpAuZ7FY2maiREZGYt68ed16/+235PXn2SEAAxEi8mE2sxllhw+jYNs2FG7fDmPL9MTOCB04sLkfyLRpCB04sGffaS88Cvyn/dRoCdj06+bdZGKH9dzjdrOlg5ai3lyP10+8DgDoE9IHr896HUEq72vmKdlsKP7Nb1D7xX8cxiIeW4GIZcu8enZFzskKhzBEF6rG/OVDEZnofV/vzkoZOgLzlj+JlGEjodWHeLqcbqGflYymM1WwVjZCNzkewbOSe9WskIaGBmzZssVlQ0a5XI7Jkydj0qRJUPVEmOzFTKYy5OSsQmHRx5Ak57MQlcpwpKYsR3z8Eshk3jeLzttYRBHlZisqLVaILW9gR7ro/xGvUUIOFRQy730u9xbtf35dzRABgICAAMycORNfffUV8vLycOLECQwd6p3BtTtnOLz77rt49913Ozznt7/9LX73u+Y3vrZv346MjIxresyNGzeivLwcAHDHHXd0a5PbrKwsbN68GUBzP5H4eO+dLesODESIyKeYa2tRuHs3CrdvR9Hu3bAaDJ26nUyhQNTYsW39QALdlYbXFgAf/Ri4bGtazPq9T4UhACAIAh4d8SgCFAH48tKXeGPWGwjVdN961u4ims0oeuZnqN+0yWEs+pe/RNhdP/FAVV1z/e39UFNiRNHFGgC+0zxVtNlweN2XGDZrHtRa51OEB10/3c1VXTvJJgKCAMHJhZeglCPs9v6QRAnq5GAPVNczbDYbDh48iB07drRNF7/cgAEDMGfOnG5d1+5Lzpz5Gaqq9zgdUyiCkZz0IBIT74Zc7n0z6LxNk01EudmCaqvNbrO3crMVEUqF0wBbzRkhndY+EOlohggALFiwAF999RWA5u15vTUQ8VWt38vJycltDamdab9cZunSpZ2+/6+//rrDXYJKS0uxePFiWFqWkj/yyCOdvu/eioEIEXm9hvz85q1xt29H2ZEjkGzOG6ldThkcjPjrr2/uBzJ5MpQ6XQ9XehlTQ3MY0lBqf3zkUmDiCvfW0o3uH3I/lgxY4pXLZESjEQWProBh7177AbkccX/6I/Q33eSZwrpIrpBh3kND8NlfDiEmTe8TzVPrKsqxYeXfUXjuDEqzM7Hw8We9ehZOZ5mLGlD9+QVoh0ch6PoEp+eofHjWjjMFBQX473//2/bu5OXCw8Mxb9489OnTx82VeZeUlEccAhG5XIvEhHuQlPQAlMreE5D1FJskIdtoQp3V+e91iyihxmpDqJKXLNeiNRDRarXo169fh+fOnz8fgiBAkiSsW7cOv/zlL91QIbVXXV2NdevWAWjeXnhkF5rAr1ixAhaLBYsWLcKECROQkpKCgIAAVFRUYMeOHVi9ejUqKysBAJMnT2YgAgYiROSFJFFE5alTbVvj1l682OnbBiYkIKFla9zIESMg89RWj6IN+OKnQMlJ++MpU4D5L/hU7xBnvDEMsdXWIv+hh9F42dR+QaVC/EsvImjGDM8UdpU0OiUWPTsaAUFKrw8Wso4ewsZ/vYimhuZtZy/s240Tg4di2KzuXfPsTpJVRP2OfNRtywdECbVludAMDIMy0vu+97ubTCZzGoaoVCpMnToV48aN69bp274qNHQswsKmoKpqNwRBhYSEO5GS/DBUqogr39iP2SQJ5WYrLFYLglQCTC7CEADQK+RQc0nMNRFFsW0HlCFDhkAu7zhcj4uLw4gRI3D06FEcPHgQZWVliIqKckep1OKTTz5pm5nXldkhrYqKirBy5UqsXLnS5TmLFi3CW2+9BbXau2eeugN/mxGRV7A2NaF0//7mmSA7dqCpouLKN2oRPnRo81KY6dOhT0/3jovHzb8BLmy0PxbeB7h9LaDw7nX2VtGKvx36G+4YcAdS9CmeLqdTrOXlyLv/pzBduGB3XKbVImHVKgSOH+ehyjqWc6ICobFa6F1cZGuDvft7xWa1YPdH7+PIui8dxnZ9+A76T5gCjbtnZnUDc2HzrBBLcbsleVYR1Z9fRORDQ50unelN4uLiMGrUKBw5cqTt2NChQzFr1iwEBfWu2TAdEUULioo/gzYgBWFhE52ek572FDSaOKSmPAqNxr8bE15Jo03EpyVVWJ1fhrvRiDS1As6+mwQBCFUqEKlUQNOVHWPIqQsXLrTtCnWl5TKtFixYgKNHj0IURaxfvx733ntvD1ZIl1u7di2A5h5Nd955Z5du+95772Hnzp3Yt28fsrKyUFFRgbq6Ouh0OiQmJmLixIm4++67MWHChJ4o3ScJEvfcuSoFBQVITEwEAOTn5yMhwfk0WiJyramyEoW7dqFw+3YU790LW2PjlW8EQK5WI3r8eCRMn474qVMREOllO24cXgOse8L+WEAo8NOtQHi6R0rqLFES8as9v8LXWV8jXBOON2e/ib6hfT1dVofMBYXIu+8+WPLsd8CR6/VIfOtNBHTD1nzdTZIkHNuUh31fZSI0WovFPx8NVYBvvUdRW1aK9a/8DcWXzjuMBUdGY+ETzyK2T38PVHb1JKuIum15qN9RgLaOju0oorWIvP86yIN7/ztqBoMBK1euREhICObPn4+kpCRPl+Q2kmRDScn/kJ39Khqb8hCkG4wxY76CIPDi/GpYRQmv5pXi7YIKVFqsAIDfBtiQplYgQqOGPL75e0suAOEqBSKUCijZH4SoV7t48SKsVisUCgX69u3c68yeuv72rVdfROTTJElCXXZ281KYbdtQcfw40MlMVh0WhviMDCRMm4aY8eOh0HrptPXM7cD6p+2PyZTA7R96fRgiSRL+uP+P+DrrawBAZVMl7v32Xrw+63UMDh/s4epcq//2W4cwRBEVhaR33obaC3sc2Cwidnx4Duf2N++KVF1ixKa3T2P+8qGQ+cjMg4sH9uLb1a/AZHRsatx37ETMfvgxaAJ9a2aIuaAeVZ9dgLXU6DgoA4KmJiJ4RhIERe+4UCsvL8eBAwcwb948p1PoAwMDcd999yEiIgIyP7k4lSQJ5eWbkJX9EgyGH5Zq1jecRln5t4iO8t0lYJ4kF4DNFXVtYcjllDIBkSqFyy12iYh6EgMRIupRotWKiuPH27bGrc/N7fRtg9PSmpfCTJuG8KFDIbvCulePKz8PfHo3IF22HvrGV4GUSZ6pqZMkScILh1/Apxc+tTveZG2Cwdy5nXw8Jey+e2EpLkb1Bx8AAJRJSUh6522ovHDmnrHOjG9eP4nizFq747mnKnHpcCn6jY3xUGWdYzWbsfODd/D9t+scxuQKBTKWPoBhs+d7x7K1TpKsIuq25qF+Zz4gOo4rY7QIXdwPqoTesVSkqakJu3btwv79+yGKIiIiIjB+/Hin5/pL3wBJklBVtQeZWS+gvv6k03Oysl5CVORsCIKX/x7yQoIgYHlSFB44nWN3XCUI0MhlGBio8annDCLqXRiIEFG3sxgMKNm7FwXbtqFo1y6Yamo6dTtBJkPEiBHNS2EyMhCcktKjdXYrQyXw79sAk/2FLiY/BQy/wzM1dcFrx1/De2feszumkCnwUsZLGBs71kNVdY4gCIj+xfMQ6+vQdPYcEt96E0ovvJCrKGjAhlUnUF/VZD8gAONvSkPfMdGeKayTqkuKsO6lv6IsJ9NhLCQmFgufeA7Rqd49C+py5vyWWSFlzmaFCAialojgaYm9YlaIKIo4ceIEtmzZgoaGhrbj27dvx3XXXQedD/Z66Q41NYeRmfUCamoOujxHHzwCaelPMwzpgCRJ2F9rwHh9oNNwY36kHikBKuQ0mpERGoQRKjOCBUAhCAxDiMijGIgQUbcwlpaicMcOFGzfjtL9+yG27G9+JYqAAMROnty8Ne7110MTGtrDlfaQEx8D1Tn2xwbeCEz/tUfK6Yo1p9bgteOv2R2TC3L8/fq/Y0rCFA9V1TWCTIbYP/4RotEIebD3bXWZfbwcm945A6vJfvaQQi3HrHsHIW24l/XBucy573Zi85v/hNlJn58Bk6Zi1gOPQBXgpcvYnJAsIuq25KJ+VwHgZNWeMjaweVZIfO8ICYqKirBhwwYUFBQ4jJlMJuzZswdz5871QGWeU19/GplZL6KycofLc3S6gUhPewrh4dN40e6CRZTwVVk1VuWV4ayhCZ8PT8fkUMfZVHJBwN/6JSJcpcBgXUBb/wAiIk9jIEJEV0WSJNScP9+8K8z27ag6fbrTtw2IikL8tGlImDYN0WPHQt4btvwav7y5H8qmXwGQgLgRwC2vA16+9v7jcx/jxSMv2h0TIOAPk/6AmckzPVSVa7YGA+S6QKdjgkLhdWFI++apl19468LUWLB8KCK8fCnGmd3bsfGfLzgcVyhVmHbvQxgyfbbPXSzW/C8ThkMljgMyAcHTExGU0TtmhRgMBmzbts1ut5j25HI5JkyYgClTfCP47A4GQyaysl9GWdkGl+dotalIS30CUVHz2UjVhXqrDR8UVeLNgnIUmX54A+RfeWVOAxEAuD7Mu5/riMg/MRAhok6zmc0oP3KkLQQxFBV1+rYh/fu39QMJGzzY5y6grkgQgImPAmFpwJb/A5Z8DKi8+x3zry59hT8e+KPD8V+N/xVuSL/BAxV1rOqDD1H5+utI/mAtVMnJni7nimwWEds/PIfz+x0vvGPS9Jj38BCv31YXAPqOnYCDCUmoLPihcW1YfCJueOLniEhK8Vxh1yBoWiKMx8sgmX9oGqKMa5kVEuf7s0JsNhuOHDmCbdu2oampyek5ffv2xdy5cxEeHu7m6jynonIHjh9/AE6bxQDQqOOQmvoYYmJugUzGl8jOlJgseKugHO8XVaDO6vh13F5VjzMNjRikC/BAdUREXcdneyLqkLm2FkV79qBw+3YU7dkDS319p24nKBSIHjMG8dOmIT4jA7r4+B6u1EsMmA/0nQ3Ivfvp9Zucb/B/e//P4fjPRv8Mt/W/zQMVuSZJEipXr0b5K68CAPLuvQ/JH/0bymjv7blhrDNj4+oTKMmqcxjrPz4G0+4cALnSN955Vqo1uOHJ5/DBL56E1WTC4KkzMeO+h6HUaDxd2lVThGmgn5eKmv9mAnIBwdOTEJSRAEHuG/8nHcnJycHGjRtRWlrqdDw0NBRz585F//6+tSVydwgNGQ+1KhIms/3XRqWKQErycsTH/xgyWS+YsdgDLhia8Fp+GT4vqYalg93h+mjVqHaxmwwRkTfy7lfsROQ2TdXVqMvKQm1mJuoyM1GblYWaS5loKnP+otoZZVAQ4qZMae4HMmUKVEF+Oj3Wy8OQHfk78Pyu5yFK9u/uPTL8ESwdvNQzRbkgSRLK/vJXVL33Q8NXS1ER8u67H6mffgJZoPPlM55UUVCP9atOoKHKZD8gABNuTseI2Uk+N0MqPCEJsx54FJIoYvDUGZ4up1sEjouFpcwI3bhYKGO87/uoq2pra7F582acOnXK6bhSqcSUKVMwYcIEKJVKN1fnHeRyDVJSH8X58829nRSKYCQnPYTExKWQy717Rp8nSJKEA7UGrMorw6ZKx3C3vbH6QCxPjMLsiGDIfOz5jYj8m3e/aieibiVJEhrLyppDj9bwIysLtVlZMFVVXdV9BsbHt/UDiRo1CjJ/eKFdkw+IlublMT5mX9E+PL3jaVgl+3fw7rvuPjw09CEPVeWcZLWi+Df/h9r//MdhTL9wAQStd17AfL853yEMUajlmH3fIKQO897mqeV5OVBpNNBHOd/6d9CUaW6u6NqYcmpRtzUP4T8ZBJnacXcQQSYg9KY+HqisZ+Tn57sMQwYPHozZs2dDr9e7uSr3s1obUFNzEBER052Ox8UuRmHhh4iImIGkxJ9CqfSuvkPewCZJ+KaiFqvyynCkzskOTC0EAPMi9FieFIXRet8PFYnIPzEQIeqFRJsNhsJC+9CjZdaH1WC45vsPu+46JEybhoTp06Hv29fn3u2+JqZ64N+3A/XFwI8/BJInerqiLvn3uX/DLJrtji0ZsARPjHzCq/4fRbMZRU8/g/rNmx3Gon/1K4T95E4PVNU5U+/oj8qiBlTkN29t2tw8dRgiEryzN4UkSTi57VtsX/MGIpJT8OPf/RVyhe8Gm6LZhrpvc9CwtwiQgNpvsntV8OHK4MGDcfjwYeTk5LQdi4qKwvz585HiS1uYXyWbrQkFhR8gN/d1WK11GD/uW2i1KQ7nyWQqjB3zNZuldsAkSvjZ+XxUWWxOx9UyAbfFhOHhxEika3136RwREcBAhMin2cxm1OfltS1xaf27PicHNpPpynfQSRaZAvLBwzH+1gWIy8iANiqq2+7bp4g24PP7gbKWHXXeuxG4cSUwfIln6+qCf0z9B57e8TR2FuwEANzc52Y8N/Y57wpDDAYUrHgMhr177QfkcsT9+U/Q33ijZwrrJKVajvnLhuKzvxxGSGQA5j7kvc1TTUYjNr/5T5zfuwsAUHLpAnb/+z1kLP2phyu7OqasWlR9cQG2yh8aiRr2FUM7JALqtBDPFeYGgiBg3rx5WL16NdRqNaZNm4bRo0dDLnecHdObiKIZRcWfIyf7n3a9QbKzX8XgwS86vQ3DkI5p5TLcFx+Jf+TYN4QOUchxb3wE7kuIQKTKd0NTIqL2GIgQ+QCr0Yi6nBy7JS51mZmoz8uDZHP+Ds7VkCmVCE5NRXBaGpSJyfi8SMCuhgAMGDYAax6YBJnMey6aPeLbXwIXv/3hc9EC7HkRuO5WQOEbjfjUcjVemvYSnt/9PAQI+O2E30LmRRcHtpoa5D/0MBqPH7c7LqhUiH/5ZQRN941lG0FhGtzy1AgEhwd4bfPU0qxLWPfKX1FTUmx3/Mj6r5A6YjSShwz3TGFXQTTbUPdNy6wQJxoOlPSKQMRsNuPMmTMYPny40/Ho6GgsWrQIqampCPTC/jrdSZJsKCn5H7KzX0VjU57DeEnp/5Cc/BB0Ov9rHttZ1RYrQpXOLwXujY/Av/JK0ShKSNAo8XBiFJbEhCFQ0bsDNiLyPwxEiLyIuba2Oexot8SlLisLhsLCbn0cRUAAgtPSoE9P/+Hv9HTo4uMhU/zwtDBGlPDOd9m4eUQ8w5BDbwEHXrM/FhAG3PGJz4QhrZQyJf465a8QIUIu854Xt5ayMuTf/1OYLl60Oy7TapHw2msIHDfWQ5U5V1FQj4AgFQL1zv//Q720UackSfj+23XYufZt2KyOu0GMmHcD4gcM9kBlV6cpswbVX1yErcrJ9rIKGfSzk6Gb7Nu7XEmShFOnTmHTpk2or69HYGAg+vbt6/Tc6667zs3VuZckSSgv34Ss7JdgMFx0eV5ExAzIZN45M8vTjtcbsSqvDN9W1OK7cQMRr3H8OoWrFPh5aiyi1UrcEBkChb+/BiCiXouBCJGbSZKEpooK+9Cj5e+miopufSyVXm8ferT8rY2J6dQSCZlMwE+n+F7j0G53aQuw4Vn7Y3IV8ON/+2RjVQCQy+SQw3vCEHNBAfLuux+WPPt3euUhIUh8800EDPGui7ysY+XYvOY0wuN1uPmpEVAovedr2ZEmQwM2rX4VFw/udRhTBwZizrIn0HfMBA9U1nWiyYbajdkw7C92Oq5KDkbo4r5QRnpn893OKikpwcaNG5Gbm9t2bOPGjUhNTYVC4T8v4yRJQlXVbmRmvYj6+pMuzwsLnYS0tKeg1w93X3E+QJIkbK+qx6q8MuypaWg7/mZBOX7bx3lg+HCSny6PJSK/4j+/SYncTBJFGIqLnTY2tdR1vH1dVwVERf0QeKSlITg9Hfq0NKjDwryqN4RPKjsHfHYvIF22NOnGlUCy9144lhnL8PKRl/GLcb+ATuWdzTxbmS5eRN5998NaXm53XBEdjaR33oY6Pd1DlTmSJAlHvsnFgf9mAQBKs+uw7f1zmHXfIK//WSu+dB7rXv4b6sodt9KO7dMfCx5/FvqoaA9U1nVNl2pQ/cUF2KodeyUJShmC56RANzEOgg+/q93Y2Ijt27fj0KFDkCTJbqyqqgr79+/H5MmTPVSde9XUHEZm1guoqTno8hx98AikpT+NsFDvfV72BIso4auyaqzKK8NZg+Msqg+KKvFkcjT0LpbOEBH1dnz2I7pGotWKhvx8h9CjLjsbtsbG7nsgQYAuIcEh9AhOS4MqKOia7vpUYS0GxwV7/QWd2xkqgH/fBpguC7CmPAMM+7FnauqEqqYqPLDpAWTVZiG7NhurZ62GXu29221WvvW2QxiiTE5C0tvvQJXgPUsdrBYbtq89hwsH7QOFi4dKkTgwDAMnxnqoso5JkoQj67/C7n+/C9FJz6HRN9yKyT9eCrkPzDYQTVbUbsiG4UCJ03FVSjBCF/eDMiLAzZV1H1EUcezYMWzduhVGo/MtT9PS0tC/f+/vjSFJNpw48TAqKre5PEenG4j0tKcQHj6Nv8PaabDa8EFRJd4oKEeRyeLyPBHAifpGTAm7ttcRRES+yvtf/RB5CWtTE+pzcuyWuNRlZqI+Nxeik3X4V0tQKBCUlGS3xEWfloag1FQoNN2/vd2R3Grc9vo+zBgQhb8vHga9lp3jAQCWJuDjO4CaXPvjg24Gpv3SIyV1Rp25Dg9tfghZtc0zGE5VnsK9396LN2a9gYiACA9X51zM734LS1ERjIcOAQDU/fsj6a03oYiM9HBlPzDUmrBx9UmUZjvO7howIQb9xnjnzIrG+jp8s+olZB095DCmCQrGvOVPIm3kGA9U1nVioxWlrxyFrcbFrJC5KdBN8O1ZIfn5+diwYQOKi50vA9Lr9ZgzZw4GDhzoFxf/giCHUhnqdEyrTUVa6hOIiprPXWPaKTFZ8FZBOd4vqkCdVXR5XqRKgQcSIrE0LhwhnB1CRH6Mz4BEl7E0NNiFHq0zPxoKCoDLpi1fC7lG07ajS2voEZyejqDERMiU7gklaoxmPPbRMdhECZvOlOL0q7vxzztGYESS8xegfkOSgP89CuQfsD8ePwq4ZTUg884X3waLAcu2LMO5qnN2xy021+8OegOZRoOE11Yhb+ndENRqJL6+GvLgYE+X1aY8vx4bVp1Aw+XLMwRg4i19MHxWoldenNZVlOOj3/wMDZWOvYniBwzCgseeRVC4d4ZkzsgCFFCnh8B4xH6GjipVj7DFfaEI991ZIfX19diyZQuOX7a7UiuFQoHJkydj0qRJULrp94O3SE19DCWl/4MkNT+PadRxSE19DDExt0Am48vYVhcMTXgtvwyfl1TD0sFrlT5aNZYlRmFRdCg0cu/8XUZE5E78TUJ+q6mqymE3l9rMTDSWOq6vvxbKoCCn/T0C4+IgePDCWpIkPPPZCRTW/LCsp7CmEdvPlzMQ2fk34ORn9sf0icCPPwKU3nnR1WRtwoptK3Ci/ITd8XhdPN6c/abXzg5pJdfpkPj2W5Cp1ZBpvacJZmvzVKvZ/p1WpVqO2fcPRspQ7/26BoWFIzIx2T4QEQSMu/k2TPzRHZDJfaMRbHshC1LRdKEaYr0ZgkoG/bxUBI6L9dlZITabDQcOHMCOHTtgNpudnjNw4EDMnj0boaG993nZZCqDUqmHTOa4Y1NAQALi436MsvKNSElejvj4Hzs9z5+Vmy2YdugcbB28ZzNWH4jliVGYHREMmRcGuEREnsJAhHo1SZLQWFrqsJtLXVYWTNXV3fpYmvBwh91c9Onp0EREeOW7x2/vycaWs/bhz7jUMDw+w/lWjn7j5OfAjj/ZH1PpgCUfA0HeuSzCbDPjyR1P4lCJ/bKIqIAovDn7TcQExnioMkei2QyZyvlWmAovuuC7vHlqe0HhGixYPhTh8d7drFaQyTD3kaew9tkVaKiuglYfgnmPPo2UoSM8XdpVk2mVCL2lDxr2FCJ0kW/PCgGAw4cPY9OmTU7HIiIiMG/ePKR7UVPh7maxVCMn93UUFKxFn/RnkZh4t9Pz0tKeRJ8+z0Iu956w1JtEqpSYHxGCr8tr7I4LAOZG6LE8KQpj9N65DTgRkacxEKFeQbTZYCgocFzqkp0Nq8HQrY+ljY116O8RnJYGdUhItz5OT/o+vwZ//cZ+WUV4oAqvLhkBuY++09ptLnxr/7kgAxa/A8R417avrayiFT/f9XPsKdxjdzxME4Y357yJxKBED1VmT5IkVKxahYadu5D0zjuQ67z3xbmr5qkAENtHj3kPDUFAkPNQx9tog/VY8Niz2P/lJ5i7/EnoQsM8XdIVNZ6rgmSxQTvEeQ+ZgEHh0AzsHTtojRw5Evv27UNNTU3bMZVKhYyMDIwbNw5yH5zF0xlWaz3y8tcgL+9t2GzNW8Dm5K5CXNyPnIYeSqX3NoV2J0mSXH7fL0+KagtE1DIBt8WE4aHESPTRdn/vMfJtr732GpYvX+50TKvVIjExERkZGXj88ccxcOBAN1fn/cxmM9auXYvPPvsMx48fR1VVFZRKJeLj4zFp0iQ8+OCDGD9+fJfvNyMjAzt37uzSbbZv346MjAyH4539/Th16lTs2LGjS4/ZGzEQIZ9iM5tRn5trv9QlMxN1OTkQXUw3vhqCXA5dYqLdEhd9ejqCUlKgDPTeC7nOqG204NF/H4Xlsrm1L94+HNHBfOGEW14H9PHAnpeaP5/zJ6DfHM/W5IIoifj1d7/GlrwtdseDVEF4Y9YbSNOneagye5IoovQvf0H1+2sBAAWPPorE11dDpva+ae8dNk+dGIuMJf0hV3rXuntRtKG+osLllrkJg67DooGDvT5AEI0W1KzLgvFoGQSNAurkYMiDnX+PePu/pbOUSiXmzp2Ljz/+GAAwbNgwzJw5E0HXuHOYt7LZmlBQ+AFyc1fDYrGfpWk2VyA//32kpDzsoeq8V5XFincLK7C+vAYbRvWD2sly2xHBWiyI1KOvVoP7EyIQqfKvXjPUed9//73LMaPRiPPnz+P8+fN499138d577+H22293X3FeLj8/HwsWLMDJkyftjpvNZly4cAEXLlzAmjVr8OSTT+KFF17o0d9VMpkMffv6+azubuKzgUhZWRkOHjyIgwcP4tChQzh06BAqKysBAHfffTfeffddzxZI18RqNKIuO9uhv0dDfj4kJ9tGXi2ZSoXglBS70CM4LQ1BycmQu5jW78skScKznx9HQbX9dsDLM9IxtZ/37OjhUTIZMPO3QHhfoOQkMM47X5xLkoQ/7P8D1mWtszuuVWixeuZq9A/zji05JasVxb/+DWq//LLtmHH/fhQ+/TQSVq70ugvbvV9ccgxDBGDirX0wfKb3NU9tqKrEhpX/QE1pCe766ysICHLejNbb6r5c45lKVH95CWJ9c7AtNVlR/Z9LCL97kNfXfiWSJKG8vBxRUVFOx/v3748JEyZg0KBBSEz0jhld3U0UzSgq+gw5Of+Cyey8T5cgyGGxdu9SVl+X22jC6/nl+Ki4Co1icx+jL0qrcUdsuNPz374u1Z3lkY9qDUT0ej327PlhdqnZbEZmZiZefvll7N27FyaTCffeey8mT56M+Pj4Tt13RERE2/VYZ7ia4eCNrFarXRgydOhQPPXUU+jfvz/q6+uxZ88evPDCCzAYDHjppZcQGxuLn/3sZ52+/zVr1sBwhVntZ86caQuoZsyYccX/l2XLlrmcDQQAgT7+Jm938dlAJDraO9fyU9eYamqaw452u7nUZWXBUFTUrY+j0Godlrjo09MRmJDgk40Fr9Z7e3Pw7Wn7F6NjUkLx1Kx+HqrIi42409MVuCRJEv526G/4/MLndsfVcjX+OeOfGBo51EOV2RNNJhQ+/TQatmy1HxAE6CZN8soL3Sm39UNJdh3qyptDQ6WmpXnqEO9rnprz/RFs+NeLaKyrBQB889rLuPlnv/bKr6srotGCmq+zYDxW5jDWdK4Kpos10PTznt4yXVVeXo6NGzciJycHy5YtQ6STraQFQcCcOd45C+1aSZINJSX/RVb2q2hqyndxloDo6BuQlvoYtFpe0APA8XojVuWV4euyGly+ce5reWX4cUwYG6PSVRFFEadOnQIADBkyBNddZ78ceOTIkVi0aBEmTZqE/fv3o7GxER999BGeeeaZTt3/kiVLUF9f3+l6YmK8p8fZlfz3v/9tC0MmTJiA3bt32y1rnDVrFm688UZMmDABFosFf/7zn/Hkk09Coejc5XZq6pWf/9auXdv28dKlS694flRUlMP/MTny2UCkvcTERAwcONBlYzLyLEmS0FRR0TzboyX0aP27qQspcmeoQ0LaZnu0b3CqjYnxqYuEnnCyoBZ/2mDfNyRUq8SrS0ZAwa33fMo/v/8nPjj7gd0xhUyBl6e9jDExYzxUlT1bgwEFKx6Fcd9++wGFAnF/+Qv0Cxd4prAr0OiUWPjIUHz+1yPQBCowf/lQhMd5V/NU0WbDd5+sxcH/2gdiWUcO4sj6rzB64S0eqqxrGk9XovqrixDrHbeFFtRyhCxMg7pviPsL6wZNTU3YuXMnDhw4ALHlnf1vvvkGP/nJT/zid1HzrJhvkZX9MgyGiy7Pi4iYifS0p6DTeceMNk+SJAk7qurxr7wy7KlpcHneRaMJR+qMbJJKV+X8+fMwGo0Ammc4OCOTybBs2TLs39/8+/v06dOdvv+VK1dee5Fe6rvvvmv7+Pnnn3fa42nUqFFYuHAhvvzyS1RXV+PcuXPdFkiIoogPP/wQAKDT6XDrrbd2y/2SDwciv/nNbzBmzBiMGTMG0dHRyMnJ6VSyRj1HEkUYiorslri0/m3pQlrcGQHR0Xb9PVrDD02Y9zcM9IS6Jgse+fdRmG327zW9eNtwxOp9e5eGa3LqP0DyRCDId96hqDfXY33WertjckGOf1z/D0yOn+yhquzZamqQ9+BDaDphvwWwoFYj/pWXEeTl02NDYwKx8NFhCIkK8LrmqXUV5Vj/6t9RdP6Mw1hQeCRi+w7wQFVdYzNYUPN1Jhq/L3c6ru4XitBb+0IR4n09Zq5EFEWcOHECmzdvdpj6nJmZiXPnzvX6JoU1NYdx4eIfUF9/yuU5YaGTkJb2FPT64e4rzEtZRAlflVXjtbwynDE0uTxPLgA3R4VieVIUBuv8+Pc2XZP2/UOGDBni8rzk5OS2j61Wa0+W5DPab42elua6R1v7ncFMJlO3Pf7WrVtRWFgIAFi8eDG0Wu661V18NhD53e9+5+kS/JZosaA+P99uC9vWHV1sTa5/mXeZIECXkNAcdrTO9khPR3BqKlS9tOFcT5AkCc9/cRJ5VUa74w9dn4ZpA5yvafcLFzcDX9wPBMUBd3zitbvIXC5IFYR3576LBzY9gJy6HAgQ8MfJf8SM5BmeLg0AYCktQ/5P74fp4iW747LAQCSufg3aMd4xg8VQa4JCKYNa67zxYGy69+1qkXnkAL5Z9TKaGhwD5rRRYzF32RMue4h4i8ZTFaj+6hLEBiezQjRyhCxMh3ZUlE/OoigqKsKGDRtQUFDgdDwoKAgyJ80wexuLpcplGKIPHoG09KcRFjrBzVV5nwarDR8UVeKNgnIUmRx/Hlpp5TLcFRuOBxIjkaDxroCWfE/7QMTVDBEAKC39YXk133Bu1q/fD8vLs7KyMHjwYKfnZWZmAmheDtmdTU/ff//9to87s1yGOs9nAxHqedamJtRnZzv096jPzYXYjWmxTKFAUHKy3RKX1h1dFBruenKt/n0wD+tPFtsdG5kUgmfm+PEU5dIzwGf3ApII1BUA78xp3lrXS3eTuVxMYAzWzF2Dhzc/jCUDlmBBmncsPzHn5yPv3v/P3nmHR1VtffidkknvvYfQe+8tSO8qKE2KVAH7/exer95rb6goiHRRUUFF6U06oYbeAum998n08/0RSTLMTOiZCTnv8/A8ZO99zllJJjNn/85avzUd7Q0bQpmnJ6HLluJo4eahtslJLmHL4rN4BTozfH4bpDZeMqbXaTnw02pObt5gMieVyekz6Uk6DBtl0yKCvlRD4V9xlJ/NNTvv0MwLz0caIXOve1khZWVl7N69m5iYGLPzMpmMHj160Lt3bxQPoFn3jfj4DMTNtQ3FJVUZYi4uzWkY+S+8vaNs+nVaW8Qr1Qw5eYVi3Y0OIVX4KuTMCvFlSpA3Hnbi7brIvaG6IFJTKceGDRsq/z969Oj7GFHdYcKECfz73/+muLiYjz76iGHDhpmUzZw6dYrNmyuyeMePH4+b2715SFFaWsof/5jTh4WF3bIR7bp161i7di3JycnI5XICAgLo0aMH06ZNo1+/fvcktgcB8R1WBE1JSaWxafWsj9LUVBCEm5/gFpE5OFRme1QXP1xDQ5Haie3h7hc9GvrQItCNixkVnTPcHe1YOLEDdja+CbxvlGbDT+NAU+0pu6YU0mLqjCAC4OPow9rha7GT2cbfjio2lpQZM9HlGJdByAMCCFuxHPsa0ktrk7hT2exaeRGdxkBpgZpDv12j9+O2aypclJ3Jpi8/JvNarMmcu58/I557hYBGths/gOpqAfk/X8FQZi4rRI7HyEicOtS9rBC9Xs+JEyfYs2cPKgvZkU2aNGHw4MF4e5vvClKXMRh0SKWmt5ESiYSGDf+PU6en4OTUgMgGz+PnNwyJpJ5+5pihgaOCQHsFxTrT100jJ3vmhvoxxt8Th/r6OW2GfFX+HR/rJHfCQW7+AVuBqgCBO7vXdZA54GRnvmyhSF2EXrj1roheDrVT8n3mzBkAIiIiLG7WN2zYwC+//AJUlGZ07NixVmK7Xe7FZ8bKlSuZNm3aLa319fVl1apVTJo0iUOHDtG5c2eef/55mjRpQmlpKYcOHeKzzz5Do9HQrl07Pv/887uO7zq//fZbZRnm5MmTb/l7v3jRuLz22rVrXLt2je+//56HH36YVatW4e5uexmxtY0oiNQjVHl5laJH2qULGNIyKIqLozzb1N3/brBzczNqYVvZ0SUwEEk9SBe2NRr4OPP7vB68t/kSa44k8eljbQn2qKf1x9py+HkiFCUbj7caA1GvWiemu8BWxJDyM2dInj0HQ1GR0bgiPJywFcuxu8V2ffcTQRA4uTWRo38lGI2f/TsVvzBXmnYLtFJklrl69DDbv/0StdK0DV+Trj0ZOOcZHJxty/DVHFJnOwzlplmFDs3/yQpxq3tZIYmJiWzZsoVsC5+fXl5eDBkyxCjF+kGhvDyFhISvUGtyaN9uldk1np49aNPmO7y9+poVTeo7EomEuaG+PH+5qvNOF3dn5oX6McjHTewgY4a+v/S942Nf7/o6E5pNMDs3esNoCtR31u55btu5zGtnvqXp1K1TiSuKu+VznZt67o5iuB0yMzMrS2Fu9A9Rq9XExsaycuVKvvrqKwwGA7169WLFihX3Pa66xCOPPMKJEyf4/PPPWbFiBVOnTjWa9/f355133mH27Nn3tKXt7ZbLODk5MWrUKPr370+zZs1wcXEhJyeHffv28e2335KXl8eGDRsYPXo0O3fuxK6eP5gWP6UsYKkG+DoZGRk1ztsiWx59FFWu+XTlO8HB29uoxKXS2NTHp8496XvQcbCT8b+HWzGxaxjNA23bY+C+IQjw53xIPW48HtIZRi8CG3zNHk47zIG0A7zU+SWkNvp0VRAEMv/3rokYYt+8OWHLliK3gSfjOo2ev9dc5urxLJO5oMYehLWyfozVEQSBv1cu4fT2TSZzMjs7oqbMou3AoXXmfVYR5IJrv1BKdlcIkVInOR6jGuLY1rfOfA/VOXbsGFu2bDE7Z2dnR58+fejevfstt1qsK6jV2SQkfkN6+i8IQkW2T37+Yby8epislUgk+PrYhq+RNdALAttyizhUUMr7TULMrnnU35NPEjJp4+rEvDA/sWuMyH3n1KlTlf/fuHGjxfffjh07Mn36dGbPnm3T72PXW+DeDSEh5v8+LaHVavnpp5/YuHEjgpks+qysLNauXUuTJk0YPvzelDOnpqayd+9eALp163ZLQntaWhoeHh4m4wMHDuSZZ55h6NChnDp1in379rF48WKeffbZexJrXcV2X+VWJjQ01Noh3HPcGza8I0HEOSjIRPRwj4xEIaZY1TnqrRgCsPcDOP+b8Zh7GIz/Cexsz6vmZNZJntvzHCq9imJNMe/0eAe5DT5plUgkhCz8isRJk9ClVwjFjh07Erp4EbJ7VDt7N5QVqdmy+BzZicUmcy16BtJnQlNkctsSmyQSCRKp6Y2qZ2AQI55/Fb8I2yg/uh3c+oWiupCHzMuhIivExrr33A7NmjVj165dRh0HoOKJ68CBA+9ZzbitoNUWkJi0hNTUNRgMxiUecfGf4+nZvU4KW/eDcr2BXzPz+TYlm4TyitfHWH9POpgROxRSKfu7NMNZbtq6U0TkflDdP6QmSktLGTp0qE2LIVCzB8r9oKysjGHDhrF//35kMhkvv/wyTz75JJGRkahUKo4ePcp///tfDh48yMiRI1mwYAHPPffcXV/3hx9+qGzffmNGiiXMiSHX8ff3Z/369TRv3hyNRsPChQtFQcTaAYjUHgXOHhbn9FIpub7+KAP9CW7alE5t2hDUuDFuDRogF9s6idR1zv4K+z4yHlO4VnSXcbG9Tjvncs4xf/d8VPqKzcdfcX+h0qn4sM+H2EltL63RLjCQsOXLSZr0BA4tWxLy1ZdIHa1flpWTXMLmRWcpKzRueyeRQM+xjWnzUIjNbuT6TJpO2uWLZCdUpFw369mXgbPmo3C0zfdjQRBQXczHoaknEjMCk0QuxXd2aySOcpv9md8qbm5u9OnTh127dgEVN5fDhg0zalP5IKDTlZCcspLk5OXo9aVm15SVxVJenoiTU/3uQpGv1bEqLZflqbnkaY3Lw75JyWa5u/mfjyiGiNQm1QWRvXv3VnobKZVKYmNj+fzzzzl16hRXrlxh6tSp7N+/30qR2ib/+c9/Kn8my5cvNxInFAoFAwcOpF+/fgwaNIg9e/bw4osv0q9fvxq7+dwKa9asAcDe3p5x48bd1bmuExkZycCBA9m8eTPXrl0jPT2doKCge3LuuogoiFggJSWlxvmMjAy6dOlSS9HcG7ybNCJ9704yA4LICAwlOyCILP9gMgODyfXxR1+tfswOPYN18IRKR29HAVkdv4GtL5SpdSw7kMCcvpE42Ik3WgAkH6kolamORAqPrQL/FlYJqSau5F/hqV1PUaY19o2QSWVIsa1MhurYN2hAxE8/YhcUhMQGOmnExfxjnqo17uKgcJAxaGYrwm2sTOZG5HZ2jHj+FX5+62V6jZ9Cq34DbVZI0BdrKNhwDdXFPNwGhOE2wLwwILXQ4thW0Wq1Fuuqu3XrxuXLl2nTpg0dO3Y06TRQl9HrVaSmrSEpaQlarXlvBalUQUjwZMLD56BQ2Pbf0v0kqVzNkpQc1mbkU24w3zFmS04RCUo1DZzqnleOLbFv3L47PtZJbllI/vPhP+/KVNUSq4euvi1T1drguiDi4+ND377GnixdunRh7NixdOrUiQsXLnDgwAFOnjxps4aqAOfPm2/vfTuEhITUmE1xHUEQWLlyJVBhlm0pU0Mul/O///2PXr16YTAYWLlyJQsWLLjj+E6cOFFpjDpixAg8PT3v+Fw30qJFi8qOOGlpaaIgImLK7daU1QV6z57B/KIyumSmk9XDlyT/BlyRNje7VouMTflaNuXHE2gnMC7InwmB3oQ7ih/otoogCLy54Tx/nEpjx8VMvp7YgQY+9bwmOT+hwkRVb5zaztCPofEA68RUAwlFCczeOZtijXF5R7/QfrzX6z1kUutuugRBAIMBiYXNnyIionYDMoMgCJzYksixjQkmc24+Dgyf1xavINv5u9Bq1NgpzL+vegYEMfPr5RbnrY0gCChPZVO4MR7hH9PU4r9TcGjpgyLQdn7Gt4tarWb//v2cPXuWefPm4Wgm20kulzNjxgybFanuBINBQ3r6OhITv0GtMfXbAZBI5AQGjqVBxNM4ONieEXFtcaZEyaLkbDZmF2K5cS60cnFkXpgfIQ7WF4nrOverC4unw73bYFbH3d62ysqVSiXXrl0DoH379mbXODg48OabbzJhQoUB7Q8//GDTgsiNxrB3wq12mcnKyiI/v6LTkaWf33Wq/8wuX758V/FVN1O91XKZW8WcB0p9xXYfN4rcc+T29jTsNJIC7xSCth9gzrpE3rr8C8NUm/ASLHuLZGglfJGUTdcjl/g14952pBG5d6w7kcofp9IAuJBezMiFB9l7pR7/vlRFsHY8KPOMx7vMgS6zrBNTDaSWpDJzx0yT1oI9gnrwad9PrV4qIxgMZL33Phlv/hvBwpNQa6PT6Nm5/IJZMSSosQdjX+1kU2LI+b27WPb0DPLTLZt426oYoi9Wk7f6IgW/xlaKIQAYBArWxyIY6t6NliAInD17lq+//ppDhw5RUlLCnj17LK5/UMQQQdCTkfE70UcGcSX2LQtiiIQA/9F067qd5s3eq5diiCAI/J1XzNhT1xh8IpY/axBDojxd+bVtQ3Z2asKj/p7YmfEEEhGpTc6cOVPpQ9GuXTuL60aPHo2LS0X3st9//702QqsTVPdT0elMu6ZVR6utajF/Nz4sWq2Wn3/+Gaho+Tt06NA7Ppc5qrfkrc/ZISBmiNQ7hrcJ5NG9k1jU6E32Z/xG5N5RjPSxY1DEXi43yuWUe2tO0gWdxHTzJRH0tFfkA7bnuVDfic0q4a2/jFMHJUCkj+235Lwv6HWwbhrk3KDMNxoIg9+3Skg1kVWWxcwdM8lWGgtYHfw68EW/L1DIrPt0UdDpyHjjDYr+/AsAmZsrfq++anMbwv2/xHL1hKkIaGvmqRpVObuXL+bi/r8B2LTgQya895nNih/VEQQBZcw/WSEq05tCqYsdrlGhZk1hbZnMzEy2bNlCcrJxS+7jx4/ToUMHAgICrBTZ/UenKyX26n/R6UrMzvv6DCQy8gVcXJrWcmS2w+WycuZeSOJSmcriGpkEHvbzZG6oL61cbdPrR6T+Ut0/pKYMB0dHRwYMGMCGDRtITk7m7Nmzd+2Bcb+ozQwHLy8v3NzcKC4uJjo6Gp1OZ1Hs2LevqryrQYM791faunUrOTk5AEycOPGemtzGx8ezc+dOoMJPJDg4+J6duy5iG3eHIrVGi0A3Ar09+Fw5j1EhKRwP/QVpXDqF5+X02NOSCYfLeDPtE57QryRCiDc6tpXuCo28zN8Q5Wi05Gi0ZudE7i9KjY55P8agusEr4eOxbQjzrqc3ZVolGG7YrPm1gLErQGZbOnBeeR6zds4irTTNaLy1T2u+6f8NjnLrmpMa1GpSn32uUgwByF/9PbmLF1sxKvN0GdEAJ/cq8UgigV6PNSbqiWY2I4bkJCXww2svVIohADnJiez7fpkVo7o1dEVq8lZdoGBdrFkxxLGtL/4vdMSptY8VorszlEolmzdvZsmSJSZiCFRkgaSlpZk58sHBzs6dsDDTrDkvz1506vQ7bdp8W6/FEIBgewWpKo3ZOSeZlNkhvhzp1oJvWoSLYoiITVJdEKkpQwQwahe7cePG+xRR3UIqlVb+XNLT03nvvffMrisoKOCVV16p/HrEiBEmayQSCRKJhIiblBlXL5eZMmXKLce6cePGGrNYsrKyGDt2bGUmy/z58y2urS/Y1s5A5L4jkUgY3iaQb/Yo2Vs2gsd9N/Fdt11M392Ey5GDcCrKoHX+SNziCmgS+Cu6UCVHHLpymD4M00ksPhH+Kj6eFRnlDPRxY3yAN/293cQU0VrirT8vcC3buAPAlO7hDG1d/1KaK3Fwgyd+h80vQsz34Oxb0VHGwbbaYRapi5izcw4JRcYlHk08m7B4wGJcFNbN8NGXlpE6fz7Ko0eNJ+Ry7G3AL+RGXDwdGPZUG/74PAaZTGJT5qmCIHB21zb2rP4Ovda8eCwYDEiktiHcVEcQBJQnsijcFI+gNjUJlLrY4flwIxxb1R0hxGAwEBMTw+7duykvLze7pmHDhgwZMgRfX99ajq72CQ2ZRkrKKrTafNzdO9Aw8l94enazdlg2g6tcxuQgHxalVGWg+SrkzArxZUqQNx524u20iG1zXRBxcnKiSZMmNa4dNmwYEokEQRDYtGkTb7zxRi1EaPu89dZb/PnnnyiVSt5++21OnjzJ1KlTK9vuHjlyhC+++KJSXO/fvz+DBg26o2sVFBSwadMmoKK9cIcOHW752GeeeQatVsuYMWPo3r07ERERODo6kpuby969e/n222/Jy6soJ+/Vq5coiCAKIvWS4a2D+GZPHIv1oxhQFsNYtyy+GH6V/9uQSULEVI7nXiakSEfHsse4lJpFZ9+TDPU6wiOP/2b2fCqthl8zstDjxrbcYrblFuNjJ+exAE/GB3rT1NmyC7fI3fHbyVTWnzT2H2gZ5Mbrw8yb5dYrZHYw8ivwaQqhXcEjzNoRGVGmLWPurrlcKbhiNB7hFsF3A7+zuiGbrqCAlNlzUJ07ZzQucXAg5KsvcenTx0qR1Yx/AzcGzWiJh5+TzfiFqJVKdn63kCvRB0zmFI6ODJrzLE2797ZCZDdHV6ii4LerqK8Wmp13au+H+4hIZM51p4NMcnIyW7duJSMjw+y8h4cHgwcPplmzZjZXFnanFJecJzHxG5o2+S/29qYCj1zuTJMmbyGXueDtHfXAfN+3Q2yZinMlSsYEmDfvnBXqw9LUHMIdFcwN9WOMvycOMtsTMEVEbsRgMFR2ZGnduvVNu2IFBQXRvn17YmJiOHbsGNnZ2fj5ieXyzZo1488//2TChAnk5uayceNGixk0Dz30EOvWrbvja/3yyy+o1Wrg9rJDrpOens7ChQtZuHChxTVjxoxh2bJl2Nvbfrnu/abOCiIHDx6sdEsGyM2tMgW9du0aq1atMlp/Kw7C9YXmga5E+jgTn1vGi9q5bCl5nVyPIv43Dl779Ws8vB8myb8F6Wl/0dStBa00D2No4IGDhVaaK0/9RRGNjMZytToWp+SwOCWHjm5OTAj0ZrSfB67yB6c1obW5ll3CmxuMfUNc7OV8M7GD2HL3OhIJ9Hja2lGYUK4rZ/7u+ZzLNRYbgl2CWTZoGd6O1s1q0GZlkTxjBpprcUbjUhcXQr9djFOnTlaKrAKtRo8EkCvMv84j29nOE/2s+Gts+uIjCrNMN9/+kY0Y8dwreATYXjaXIAiUHc+kaHOC+awQVzs8H2mMYwvbyMC5FUpKSti5cydnz541Oy+Xy+nVqxc9e/a02G63rlFWdo34+C/IztkKgL19IE2bvGV2bYD/yNoMzSYQBIFjRWV8k5zNjrxiHKQS+ni54qsw/f0H2ivY0rExLV0ckdZDwUik7hIbG4tSqQRuXi5zneHDhxMTE4PBYGDz5s08+eST9zHCusOAAQO4fPkyy5cvZ+vWrVy4cIHCwkLkcjkBAQF07tyZiRMnMmrUqLsSltesWQOATCZj0qRJt3Xs6tWr2bdvH9HR0cTHx5Obm0txcTEuLi6EhobSo0cPpk6dSvfu3e84vgcNiVBHe+5MmzaN1atX3/L6e/1tpqamEhoaCkBKSkqda9P72Y4rLPy7QlCaIdvCm3Y/8JGXJ5tkLrzxix5HoQOXmjyOWnuCyGAnRn3wmtnzGAwG/rXtTX53GIVaUnMmiKNUwgg/D8YHeNHdw0W8obgLyjV6Hv7mEFeyjE3wFk5oz8i29dspui5wIfcCT25/knJdVaq+n5Mfq4esJsTVuu8lmuRkkp+cjvYG3wSZlxdhy5bi0KKFlSKroLRAzdZvz+Lu58TA6S1s9km2IAic2raJ/T8sR2+mlrf90JH0mTQduY1uvAVBIG/1RVSX803mnDr44TEiEqmTbcZujnPnzrFx40Y0GvM+EM2bN2fw4MF4eHjUbmD3ifLyFBISviIjcwNU64UikSjo0X03Dg71+3NCLwhsyy1iUXI2J4uVRnMvRvjzcgPbEykfNK5evVppTNm4cWNrhyMiIlLL3Ml7wP3af4u5fvWUYdX8JVboh3DM0IyX8wvojpL/TJKR43iKzqcW4Bfkxcj3X7V4nsO//EE/3Xa+YQazhEU0Fiz32y43CKzLLGDM6Ti6H7nEgsRM0iyYlInUzDsbL5iIIRO7htVPMURbDtvfgPJCa0dyy7T0acmSgUtwsavwCPFy8GLZoGVWF0NUV66QOGmSiRgiDwwk/McfrC6GZCcVs/7D42QnlXD1eBYntyZaNR5LqEpL+euz99mzaomJGGLv7Myo/3uDh6bNsVkxBCr8pjwfaYTEoSoLR+qmwHtaS7web1qnxBAAT09Ps2KIj48PU6ZMYdy4cQ+EGKJWZ3P5yn+IPjKQjMzf4YbGsIKgISnZ9g187xflegPfp+XS++hlZpxPNBFDAFam5lKmN82KEhERERF5MKmzGSLWpq5niAiCQP/P9xGfUwZAiCSb3Y6vIzEomRfgxxm5gg+zWtD/Dcv1b+WFpWz++CfO26Xh7plJcPBlvLxSyZAEs49+HCSKQolnjXE4SCWc79kKF7GU5pbZcCqN5385bTTWLMCVDfN71r9SGYMB1j8JFzdUeIVM/AW87rzFWW1zIe8Cr+x/hc/6fkZTCx2cagvlqVOkzHkKQ3Gx0biiQQPCVizHLtC6T0yvnshi9+pL6G/opjRkTisatred2uaMq1fY9OVHFOeYtv8NbNyUEc+9gpuv7cR7M8pOZFGwPhanTv54DI9E6lhnK235888/OXXqFAD29vZERUXRpUuXm9bT1wW02gISk5aQmroGg8F8a1i53J3w8DmEhkxGJqtfnVDytTpWpeWyPDWXPK3l7gsechnTgn2YH+YnlvjeZ8QMERGR+o0tZYjU3TsbkbtCIpEwonUgX/1TNpMq+LFAOpVXDYv5Uu/JuZ7P0q31EzWeY/dHa+hiaE4TIZRTeQlcLAzEwaGY4ODLPB7wM4/LfuKM0J59PMQpOqGXmL7cotzlohhyG8TllPL6H8a+E04KGd9Mqqe+IXveqxBDAHKvwLL+MOEXCO1s1bBulZbeLdkwegNyqXXfiksPHSL16WcQbui2Yd+iOWFLlyL3tp5PhGAQOL45geObE03m3Hwd8QywDePU62TGXzUrhnQa+Si9xk9BJretj13BIKAvVCP3Ml/y6NTRD7mfI/ZhttWh6U7o378/ly5dolmzZgwYMAAXF+t2cboX6HQlJKesJDl5OXp9qdk1MpkToaHTCQudgZ1d3f893g5J5Wq+S8nhp4x8yg0Gi+tCHOyYE+LHxEAvnMV7EhEREZF6hW3dmYnUKsPbBFUKIgA/6/sx+6FIvLpPoZtdzX4gx77dwJX4LaTbRdPOqx/9nVqTryslRh9PXJwbSUlt8Q+4Rougy3RwOEkRbhwS+rKPh0iVVHX7GOmWDbQ0e41DBSU0d3HES2xnV8kHWy6j1Bin8r7/SGsa+tb9G/vb5vRaOPCp8ZheC/au1onnDrG2GGJQKkl/6WUTMcSxU0dCFy9G5mq9n6dWo2f3qkvExZgKDMFNPBgyuzUOLrZVutFu0HBSzp/l6rHDADi4ujF0/gtEtrc9kU6XV07++qvo8soJeKGj2ewPiURSJ8QQQRC4dOkSp0+fZty4cWazPlxcXHj22Wdxcqr72RF6vYrUtDUkJS1Bqy0wu0YqVRAc/AQR4XNQKOpOS+R7QbxSzccJGfyVXYhlGQRauTgyP8yPkb4eyKW26UckIiIiInJ/EXea9Zgm/i50jvAk0seF4W0C6d7QG7tbaCEXt3MPMScVKFzHUVq2gwNZvxHg2ID2Xv0ZILQhT1dCjD6BpFR70lKb4+OTQlDwJYa5b2QoG4kXGrKP/lyWtGFU+ECz11DpDUw/n0i53sBgH3cmBHrR18sVmY0aKNYWnz3WlpfWn2HHxSwAxnUK5eH2wVaOygokHYa/njEek8jgsVXg18wqIVli4amFhLiE8EjjR6wdilmkTk6EfPUlyTNmIvzT4s25bx9CvvgCqaOj1eIqLVCzZfFZcpJLTOZa9A6iz7gmyOS2Z4MlkUgY9NSzZCXE4ertw/BnX8LV27Y2o4JBoCw6naJtiQj/lCAVbo7Ha2wTK0d2Z2RnZ7N161YSEhIAOHHiBF27djW79kEQQwCuXHmLjMzfzM5JJHICA8fSIOJpHBzqpzmo2mBgQ3ahxfm+nq7MD/Ojt6eLzRozi4iIiIjUDqKHyB1S1z1E7pQLx7ehnP0vcn0HEt9gBAIGdKpo9KoTSJDQyK09rTx6oZA5kCcpIUaeQJIsBwAX11yCgy/h65uERCIgl02ib9//mr3OL8lXeC7O+Il1oL0djwd4MT7AiwZO9bdntiAIrDqcyG8xqayb0wNHC61HH1jy42Fpfyi/ofvF8M+g80zrxGSBpWeX8tWprwB4rctrTGw+0coRWaZ03z5S5j+N26BBBH34ARILbbZrg6zEYrYsPouyyNgEUyKBno81pk2/EKtvYgRBqDGG4pxsXLy8kdqYP4Uut5z89bFoEotN5nyebIlDUy8rRHVnqFQq9u7dy9GjR406yTk4OPDMM8/g7Gxb5VT3kpLSyxw7NgKofgsnIcB/FA0aPIuTU4SVIrMdJp2JZ3d+1etcJoGH/TyZG+pLK9cHQxiry4geIiIi9RvRQ0SkTnI4cReLdr3OCwYDEcnbcStO5EKLJ5E49kZm1xht2XauFp8kqfQirT17EenajoHaNuTqSoiRx5NcAlcu9yYhvgNhIfE8OvZ5i9danXQZCDcay1Br+TIpiy+Tsujm7sz4QC9G+nrUu3pfiUTCkz0bMLlbOPJbyOh5oCgvhJ/GmYohXefanBjyw8UfKsUQgA+OfYBar+bJVk9aMSrLuPTtS8RPP+LQsiUSK27iLZmnKhzlDJ7ZkrCW1vMzuU5ZYQHbFn9BpxGPEN66ndk1tmacKhgESg+nU7y9KiukOjIPeyR2deP9xGAwcObMGXbt2kVZWZnJvEql4vTp0/Ts2dMK0dUOri7N8PcbTlb2JgB8fQYSGfkCLi7WNWeuTUp1ehLL1RbFjXlhvuzOL8ZJJuWJQG9mhfoS6mA9oVdERERExDYRBRGRm6PXkbnvXZ5OXo82SMJ/Jsl4/Rc9XoVX6HLiA863nEGRe0MUbpPQqY6iUR3jZN5OrhWfor13f/wdIxikbUuurpgYeQLJGgiRzcTJyfyTyKycMzhqE7EjEK3E/M3LkaIyjhSV8cbVNEb7eTAh0JtObk5Wf2pcm9Q7MUSvhV+nQG6s8XjjwTD4PevEZIHfYn/jo+MfmYx72HvUfjDVuFlWg2ObNrUYjTGCQeDY5gROWDBPHTG/jU0YqCafP8OWhZ9SVlhAdkIcUz5eiLNHzd20rI02R0nB+qtokkyzQgCcuwXiPjQCqb3t3xKkpaWxZcsW0m5oDX0dNzc3Bg0aRMuW5r2p6gqCIJCfvx8Ab+++ZtdERj6PVldEZOQLuLu1rc3wrEqWWsuy1BxWp+fiIZdzuGtzs/4fPTxc+LRpKCN83fEQvchERERERCwglszcIfWmZCb3KvwxB9JO8oObKx95V9z4+xYKvPmznsACMEikxEU+TEpofwAMuiy0yu0I+lwAgp0a086rHy52FcdmOhTQ5pXBKBzNl71s3/4EcrtoynDmML3Yz0PESxrdNNRGTvaMC/Di8QAv/O1ty2jxTrnZBrbeIAiw6Xk4ucp43L8VTN9mU0aqm+M389qB1xAwfmt9tcurTGo+yUpRgaDVkv76Gzi2bYvXE9aLwxKH1l/l9K4Uk/Hgph4MmWV981SDQU/0+p858vvPFa/Hfwhr3Y4xr7+DVGp7mWqCQaD0YBpFO5JAZyYrxMsBzzGNcWjoUfvB3SalpaXs3r27sm3ujchkMnr06EHv3r1RWLHc615QUHic+LjPKCw6jqNDGN267UAqfTA+0+6G2DIVi1Oy+S2zAE21v8ElLcMZ7WfboqSIKWLJjIhI/UYsmRGpO0R/DWknAXiiuIQcmZQVHu7keEj492QZr/6qp1GmgcZxv+NeFM+lZk+A3B+Fa0W2iF51jDTlVTLK42ni1okWHt3x7uxnUQwpKCggO6eAgAApztIyBrKdgWwnWQhnH/04SF9KJeY7HlxTqnkvPoMrZSq+bhFudk1dYsu5DNYeS2bBuHb4uNRfzxQAor8xFUOc/WDCzzYlhuxO3s0bB98wEUOe6/CcVcUQg0pF2gsvUrpnD8UbNyJzc8V91CirxWOOFr2CuHQ4A7VSVznWsncQvcc3QWblbKjS/Dy2LPyUlIvnTObyU5Mpyc3B3S/ACpFZRputpGB9LBozprQALj2CcBscgdTe9oSc6uj1eo4fP86ePXtQ/2P6eyNNmzZl8ODBeHnVHf8TcxQXnyM+/nPy/skMAShXJZORsZ7g4AlWjMx6CILAsaIyvknOZkee+QynRcnZjPL1EB8eiIiIiIjcEaIgIlJJsUrLzgtZbD6XQWM/F14b1hwG/heu7Yaiiie3zxcUkWtnz1/ODhQ7S/jvRBn/+t1A20QBv9zTuJxM51zLmZS5BGPn2AOZXSO0yu0Y9DlcLjqKpKkrw4Y/bzGGXT9sJi6vM8lJrQkIjCUoMBaFfTlhJDGZVUzgB2KETuzjIc7QDkFiejM/PrBu3xQDJOcpeWX9WUrUOoZ9eYAvx7ene0PreydYhStbYcebxmNyhwoxxCPUOjGZ4VDaIV7a9xJ6wbgt8qzWs5jZ2nr+JvrSUlLnzkN5/HjlWPprryN1ccH1oYesFteNeAY4M3hmKzZ+fQYEgV6PN6Z1lPXNUxNPn2TLN59TXlxkMhfRriND57+Ik5u7FSIzj6AXKD2YStHOJNCZJoDKvB3wGtMY+0iP2g/uNklKSmLTpk3k5OSYnff29mbIkCF1/ulyadlV4uO/ICdnm9n5hMSvCQh4FJms/gjjekFgW24Ri5KzOVmstLhOAgTZKyjTG3CpZ35iIiIiIiL3BlEQEQHgz9NpvLTuLBp9RVr1hfQiXhnSDKmDO4z+Br6veJosAd7OzqYgvBEHpBpU9hI+fFzK/E0Gel0UcCrPplPMJ1xpMp7MgG5I5X4oXCeiVx3DoLtI90lTLMagTi+lOLsQZKDVOpCS3IbUlJb4+iYRHHwJF9d85OjowhG6cIR8vDgo9GUfD5EpCQIg2E5PDw8Xs+cv0+tZn1nAw34euNtwPbFap+fptTGUqCuelGeXqJm07Agbn+lFyyDb2XjVCpnnYP0MuCHjgkeWQEhHq4RkjuOZx3luz3NoDVqj8SeaP8Ez7Z+xcNT9R1dQQMqs2ajOnzcal9jZIbGzvRT80BZe9J3QBFdvB8JaWFcA1Ot0HP71B479ud5kTiKV0mv8FDqPfBSJ1La8fDRpJRRtTTSdkFTLCqkjnamKiorMiiEKhYI+ffrQrVs35HLbfS+/GeXlKcQnfElm5p+AaUkTgIN9EA0aPIfEjPj/IFKuN7AuM59vU3KILzefEQRgL5XweIAXc0J9aeTkUIsRioiIiIg8aNTdOwmRe0qLQLdKMQQgq1jNyeQCOkd4QWRf6DIHji0BwA74NDmOWU3bc1adi14mYeEoKUVOBoafEJAZtDS/vAb3ojiuNn4cg9QOhXMPRj03G88A89kbBoOB9DUnGKxtS5aukBh5AmmyfARBRnZ2JNnZDXBzzyY4+BLe3ilIJOBFPqP4g5H8QazQjH08RGvXSKQS8xvlTdlFvBKbyn+upTHM14MJAV709HRBamNpth9uvczZVOOn0aPaBtEi0Hyp0AONkzd4N4TMs1VjD/0bWj5stZBu5GzOWZ7e/TRqvfHN+5jGY3i588tWy3DQZmaSPGMmmrg4o3GpqyuhS77FqUMHq8QlGAQEQUBqoQymZe/gWo7IlOLcHDZ/+THpsZdM5lx9fBnx3MsENWluhchujn2YG87dAymLzqgck/s44jm2MfYRdUtQbd26NSdOnCA5OdlobODAgbi51d33Q7U6i4TEb0hP/xVB0Jpdo1D4EBExn+CgcUilD35mSIFWx6q0XJal5pKn1Vlc5yGXMS3YhxkhPvgqbE/UFRERERGpe4iCiAgAjf1daervypWsqnrzzWczKgQRgAFvw7VdkF+xuXISBL6+dp4pzdqTWJaBIJGweoCUQheBSXsNSIDgjMO4laRwruVMWnV2J7ipr8XrX9m6B8c8CUhl+AseDNW2J1NXSIw8nnRZASChuMif4iJ/HBxKCAq6jH9AHHK5FgnQlMs0lybQs/lBi9dYm5EHgMog8HtWAb9nFRDiYMf4AG8eD/AkzIKvSW2y/UImKw8lGo1F+jjz7iOtrV46YBXcgipMU3+fDZc3QdsJ0Ptf1o6qkiv5V3hq11ModcYp3cMaDOPf3f5ttd+ZJjGR5Okz0KanG43LvL0JW74Mh2bNrBKXVq1n96qLOHnY02dcE6vEcDPiTh5l26IvUJWaem807NSVwXOfx9HFdnxrzOE+pAGqy/noC9W49AzGbVB4nckKqY5EImHYsGEsWbIEf39/hg4dSnh43fWH0mjySUpeQmrqGgwG89kPcrk74eFzCA2ZjExmvp3sg8iBglI+Ssi0OB/iYMecED8mBnrhLJbGiIiIiIjcQ0RBRKSS4W0CubKzahOw5VwGb41ogVQqAYUTPPItrBgMQkUmiadOw5LcEiZ7+ZJdngMSCX92l1DkDE9tFZAaBFxLUxjUOJ7geS9bvG5Jfh67f/sOmUpKG68owl1aABAgeDBM24FMXQEx8oR/hBFQqVyJj+9MUlJb/APiCAq6jKNjKc5O/VEozGegXCpI5khRmcl4qkrLp4mZfJqYSW9PFyYEejPUxx1HK5g4puQreWndGaMxhVzK1xM74FIH2mHeNxTO8PgaOLkC2k8GGxGG4gvjmb1zNiUa441z/7D+vNfrPWRW6jqiunyZ5Jmz0OfmGo3LgwIJX7ECRUSEVeIqyVexZfFZclNKAfAKdKZVH+tng1xHr9Ny4KdVnNz8p8mcVCan7xNP0n7oKJsRJgW9ASQSJGbajUrtZXiNawoSCfbhtp1JkZuby6VLl+jdu7fZ+YCAAKZOnUpYWBhSGytPuh1KSi5wMmYien2p2XmZzInQ0OmEhc7Azs62f2f3g+G+7oQ7KEhSaYzGW7k4Mj/Mj5G+HmZb64qIiIiIiNwt9XiXJXIjw1oH8vnO2Mqvs0vUnEgqoEuDf0SG0C7Q8zk4uKByTVDmRRZHzGSaLpoSbcXGcG8bKcWOBl76S4bnwMEEvf6yxTp7wSDw81ufoC6rECuO5GzkWnEM7b0H4GVf0bUhQPBkmNaTDF0BMfJ4MmSFAOj1CtLTmpOe1hRvnzQefeRJi99bSsYfdBYUnJJ0RmfhZX+goJQDBaW4yaU84ufJhEBv2ro61soGSKMz8MzaUxSrjFOF/zOyBS2C6t/NsQlSKXS2njGpOU5mnyRflW801jO4Jx/3+Ri51DpvrcqYU6Q89RSGYuNuDIrISMJWLMcuwDqdUDITiti6+BzK4qrNzoGfY/HwcySkmW2YIGdcvWJWDHH3D2DEc68Q0NB2jDs1GWUUrLuCc5cAXLoFmV1j6+UxarWa/fv3Ex0djcFgICgoiIYNG5pdG2ElEe9e4uzcFIXCh/JyY0FEKlUQHPwEEeFzUCh8rBRd7SAIAsU6vVkPL5lEwlNhfrwWmwpAlKcr88L86O3pYjMipIiIiIjIg0ndfdwics9p5OdCswDjVPDNZ41T7ol6DfxbGQ01ObqCr1rNQyFVVI7FNJbyx0td8H/v3RpNB2N2JKFSd0Qiq9qo5arT2Jm+mmM5WyjXVd08BgqeDNd2ZJimAwEGj2pnkRIcNJzgYPOeCDpdCYqcFTzPpywUZvGEsIIwUizGVKwzsDo9jyEnY3no+BWWpGSTX0NN873gk+2XOZ1SaDQ2ok0gE7uE3dfritw5jzV5jLe6v4WEipv1Tv6dWBC1AIVMcZMj7w+lBw6SPH26iRji0LIl4T+ssZoYEnsskw2fnTISQwDk9jIE0yYoViOkeSu6jB5rNNaka08mf/ilzYghgs5A8a4ksheeQpteRtGWBHT5KmuHdVsIgsDZs2dZuHAhhw4dwmCoyDjcunUrOt39fZ+1JlKpnMjI5yu/lkhkBAWNp3u3v2nS+I0HWgzRGgTWZ+bT//gV5l5MsrhuXIAXTwR6s6tTE35u15A+Xq6iGCIiIiIict8RBRERI4a3DjT6esv5TPSGarsWuX1F6Yy0mpmZYKDTvgV83PNdpJKKl9TjTR7n9UnfIXew7P6ecj6bo3/GI5V5o3Adj9yxD1Rz0k8oPceW1KVcKjyCoVor0yCDJ8M1HRimaY+/wR0JEvr07mPxOlevra5MU3ajmKFs5n3hed4VXmIg23GRWHayv1Sm4j/X0klQWl5zt+y+lMXSAwlGYxHeTnzwaD3zDUk8CL/PAW25tSO5ZR5r8hjv9XqP9n7t+br/1zjKHa0SR/G2baTMm4egMt4cO3XqRNjqVci9aj8LQzAIHPkzjp0rLqLXGXfQcPdzZOwrHQltbhvZIdfpOW4yQU1bILOzo/+MeYx44VXsnZytHRYAmvRSsr85TfGuZPjnPVnQGCj4LRbBlpSlGsjIyGDlypX8/vvvlJYaZ0rk5uZy8uRJK0V2bxAEPQUFRyzO+/sNx9WlJQH+o+nWdQfNm72Hg0OgxfV1nVKdnm+Ts+l25CJPX0rmYpmKv/NLuFRq/j3eSSbl02ahtHKtP94pIiIiIiLWRyyZETFiWJtAPqtWNpNTouZEYj5dI6u1wAxoDVGvwN/vVo3lXaP/lb282e1NcstzearNUzVu5tXxCVz8z3IE34cAkEikyB06IbWLRFe+A4O2IjNFJ2g4W7CP+JIztPXqR4hzhRGjBAlBBi8CNZ6o2zrh42v+6ZpOp+PwoUsEBHrh4FBV3iABGhBPA+E7JgqrOEEXDstHc1rfAAHjuBs72dPB7f7coKUXlvOvG31DZBW+Ia4O9chBPy8OfnkCygsqjHvH/wQuftaO6pYY2XAkwyOHV4qBtY0mNY20/3sJbni67hIVRfAXC5DWIEreL7RqPbtWXST+lGnL1JBmngye1QoHZ9t7fUtlMoY/+xKq0hL8IiKtHQ7wT1bInhRK9qRUCiHV0ZdoMZRqkblaJzPpVlAqlfz999+cPHnSrHgjlUrp1q0b7dq1q/3g7gGCIJCTs524+AUoldfo0vkvXF1bmqyTSKR07LgOmcz6Bt73kyy1lmWpOaxOz6VYZ9pOeFFKNgub111zXBERERGRBwtREBExoqFvRdnM5cxq3WbOZRgLIgA9X4Ar2yDtRNXYmZ95rM/L4HzD2hvQZmWTMnMmYenpOPrFcbnNTLS6ChFCKvPCzvlx9OpT6NWHEAwVm7xSXSGHsv/A3yGcjn6DcZV5Vqx3kNNgZBuL14qJiSElxZeUlGF4eGQS0eAarq6JRmsUaOjBQXroDpKDL9HykeyXDCBDV3HTOj7Q26K4sz23iDytjlG+HrjcpvO9Vl/hG1KoNG67+OaI5rQKtu36/3uKMh9+erxCDAFIPQ5LH4Lp28Hddkw3a8JaYgiAIiSYgDffIPPtdyrH3EaMIOiD95HY1b7ocKN5anVa9Q2m1+ONkVnBtPg6lw7uRa/V0qrfQLPzbj6+uPlY7ohVm2jSSilYdwVtptJ0UgqufUNx6x+GRG6byZ4Gg4GTJ0/y999/U15uPiugUaNGDBkyBB+fulcyIggC+fn7iYv/jJKSC5XjcfGf067tcrPHPMhiSGyZisUp2fyWWYCmhqyl8yXlaA0CdqJJqoiIiIiIDWCbd1EiVmVEmxvKZs7dUDYDIJNXlM7I/3n63PAhmHv4pmKIvqSElFmzKtuB+mafpuOhd/BwrCpJqcgW6Yidy2TsnY09NLJUSWxNXsrJ3B3opDqc+wYhczH/ZFSr1XLgwIHrZ6WwMJDTp3pz4vgo8vPaAKY3pr7kMEq3go+1k/i35H0GOaUy1s/D4vezIDGLFy+n0ObwBZ67lMyRwtJbTl//dMcVTiYVGI0Nax3A5G716MmZTgO/ToG8a8bjAa3B1TqeFzei1Cp5ZvcznMk5c/PFVsJz/Hh8X3ih4v8TJxD08UdWEUMyE4pY9+EJEzFEIpXQZ3wT+k5oajUxRKtWsf3br9iy8FN2L19MTlLCzQ+yEoLOQNH2RLK/OWVWDJH7O+E3rx3ugyNsVgxJSkriu+++Y/PmzWbFEA8PD8aPH8+kSZPqpBhSUHicmJgJnD4z3UgMAcjL20th4QkLRz5YCILA0cJSppyNp8+xy6zNyLcohnRxd2Z16wbs7txUFENERKzI4sWLkUgkZv85OzvTrFkznnrqKS5dumTtUG2O7OxsNm3axFtvvcXQoUPx8fGp/NlNmzbtls4RExPD+++/z9ChQwkNDcXe3h4XFxeaNGnCtGnTqu1d7oyoqCiLv19L//bu3Wtynls9Nioq6q7itQXEDBERE4a1DuTTHVVlM7mlao4n5tPtxiwRn8Yw+H1AgE4zbtoONbc8l4+Ov8+8pg0htur8TuU5tN3+CklDXyexrKpMQirzRJCOwdH9LBrlAfTaClNGAYFrJaco81byePcPLF4ve28cTloFJTeMl5e7c+FCW+TyZkRGphMYdAmDIc9ojRSBZoaT9HUJwt9hhNnzXyot53RJxWZFqTfwS2Y+v2Tm08BRwYRAbx4L8CTQ3rxYo9EZOJFoLIaEejny4Zg29cc3RBBg84uQeMMbf0BreHQpWKltbXXUejXP73me6IxojmUe4+v+X9M5oLO1wzKL9+xZOLRogXOvnlZ5DcUey+Tv7y+b+IXYO8kZPKuVVf1C8lKT2bjgQ/JSkwHQaTVs+uIjJn2wAIWDdXxfLKFJLSF/XSy6LHNZIRJco0Jwe8h2s0KKi4vZuXMn586dMzsvl8vp3bs3PXr0wM4Kot3dUlx8jvj4z8nL329xjYtLC5tpD36/0AsC23KLWJSczcliM6/Vf5AAQ3zcmRfmR2d32/DjERGp75w+fdrinFKp5MqVK1y5coVVq1axevVqxo0bV3vB2Tj+/v53dXzfvn3Zv9/080Oj0XD16lWuXr3K6tWrmTx5MsuWLUOhuP/lsFKplMaNbcM83lqIgoiICZG+LjQPdONSRlW3is1nM0wFEYDOM27pnCnFKczZNYeUkhRS+7TkU9+pFK9YXTkvM2iJ3PwOnoPmcFZoh15bsamSSCQIkrbInMJxsd9PUXZFJoFUJmPA3PnIHcy/UehLNXAonxGqtqQq8jntnkpWSa7RGp3OntjYBly9Gk5EgwIiIq6h08UarQkNtdzK9+eMfLPjCeUa3o/P4MP4DKK8XJkQ6M0gHzfsq3XbUcil/Dy7G59uv8KS/fEoZFK+mdgBt/rkG3L4Kzi1xnjMJQAm/AL2LtaJqRpag5b/2/d/RGdEA6DUKZm7ay5f9fuKHsE9rBydKRKJBJfevaxy7VM7kjn8+zWTcQ9/J4bPa4OHv3VMEgVB4MK+3exesRid2tgYOT89ldjogxZLZ2obQWugeHcSJftTwdR2AbtAZzzHNkERbP2/jZqIiYmxKIa0aNGCQYMG4eHhUbtB3QNKy64SH/8FOTnbLK5xcookssHz+PkNRWLFMrraYGlKDm/HpVuct5dKeDzAizmhvjRyqn0fIxEREctcF0Tc3d05ePBg5bhGoyEuLo4vvviCw4cPo1arefLJJ+nVqxfBwbdWwuzj40NeXt7NF/7Dnj176myGQWhoKM2bN2fHjh23fExaWhoAQUFBPPbYY/Tu3ZuwsDD0ej3R0dF89tlnpKWlsWbNGnQ6HT/99NNtx7Vy5UrKyspqXHPx4sVKoat///41/n7nzp3LvHnzLM47O9d9sVsURETMMqJNoJEgsvV8Bm+PaonsDtJcr+RfYfbO2eSrKgSE8/kX+G97d9595SVyP/rEaK3njiX07DmM0wGPUpxXtYGRSj1QaUbiG3mNgrSddBrxSI2mh8U7kxBUeiRICNV4E5LjRZpbMaecksgqNDZ6FAQpCfHeJMR7ExLagWbNUtCoj+Dm3hZ3t7Zmz6/Xq2im3ctAr478XaBCbyZD2AD8nV/C3/kleNnJeNTfkwmB3rR0qXgibSeT8tqw5nRp4EVuqZo2IR638NN8QLi0CXb+x3hM7ggTf7YJ3xC9Qc/rB15nb8peo3EHuQM+TtZJ7zeUl5P+yqt4TpqEc9cuVonBEkFNPJDZSSuFTLC+eapGVc7uZYu4eGCPyZydvQMDZ82nee9+VojMPAV/XEUZk206IZXg9lAorlGhNpsVUp0ePXpw6tQpioqKKsd8fX0ZOnQokZG2YVR7O5SXpxCf8CWZmX9iVqkCHByCaRDxLAEBDyOV1o/bqrEBXnyYkIHqhnJaD7mMacE+zAjxwVdRjwR+EZE6gsFg4Pz58wC0bt2aVq1aGc136NCBMWPG0LNnT44cOUJ5eTlr167l//7v/27p/BMmTKCk5MbcbMsEBNhGefSt8tZbb9G5c2c6d+6Mv78/iYmJNGjQ4JaPb9asGe+//z5jxoxBJjPOhO7WrRuTJ0+mZ8+exMbGsnbtWubOnUvv3r1vK8ZbiWfNmqoHklOmTKlxrZ+fn8nr5EGjfnxyi9w2w1oH8sn2K5Vf28tlpBWUE+Z9+096PR08cZAZPyE6nH6Yzxp58uonH5Hx2htGHTLkh7bQtXUmV3u9QOKlKlFGIpFQUtCYiPbN6Pao5Sf0BYmpKM8Yix4SJIQUuxNc3JqMwHJOSuPIyjPdfKSm2JGaEklgYHNGjRpg8RqZWX/il/kWT0oUzPEZyzGHx/kjX85VC+1587V6lqXmsiw1lzYujowP9GJasA9SiYT+ze8u/a7OkX4afp8F3KAiPfodBLW3RkRGGAQDb0e/zbZE4yfBznbOLBmwhCaeTWo9Jn1JCSlz51J+4iRlhw4RtmoVjq1t58PJP8KN/lObs2NZhZdC66gQej3WCKmV/EJykhLY+MVHFKSnmsz5hjdgxPOv4hVkfeGtOq79QlGezQFd1d+FXaAzno81QRFk21kh1VEoFAwePJhff/0Ve3t7+vXrR+fOnU1u/OoCV6++T0rq9wiC1uy8QuFDRMR8goPGIZU+mGapgiCYLcHzUcgZF+DF6vSKJ8HB9nY8FerHxEAvnG/TYFxERKT2uHLlCkplRZlbmzbmmxJIpVLmzp3LkSMVbcQvXLhgdp05Fi5cePdB2jDvvPPOzRfVwKZNm2qc9/Hx4bPPPmPkyJEArF+//rYFkZthMBj48ccfAXBxceHRRx+9p+evi4iCiIhZGvg4M6C5HxHezgxvE0i7UI/b8yVQFcP21yCyH36tx/LtwG+ZsnUKherCyiWb4zfj08KHp779ltRnn0VQVtUh68/F0KT4DfxnfsKxPXkI/zyFsneS029yZ2Ry80+e9DodGxd/jL5YxUPtpiJLNBjtuyVICMpwIlDSiqwmOo6XXyErO8v0PHp3/P07mr2GIAikpKz85/8a1Dk/0Zaf6OvejfzIWWwtb8Cf2UWU6c0/TTxbWg4Z+UwPsY1OFrVKcTqsHQ/aG2rOB7wNLUZZJaTqCILAR8c+YsO1DUbjjnJHFvVfREsf01aa9xtdfj4pM2ehungRAENZGSmzZhH+4w/YN2xY6/FYonEnfwqzlDi62NGqb4hVYhAEgbO7trFn9Xfotaab2LYDhxE1ZSbyWqjJvV3sfJ1wHxRB0ZYEkElweygM16gQJFbsyGMJjUZDcnIyjRo1MjvfvHlzBg0aRJs2bXBxqTtizo0ICGbFELncnfDwOYSGTEYms0452P3mbImSRcnZhDgoeLNhkNk1T4X6capEyVOhfoz09RCNUkVE6gDV/UNat25tcV14eJXBv67aQ0uR+0/1EqK4uLh7fv7du3dXlu6MHTsWJ6cH83PsdhAFERGLLJt6h+aR8fvgz/lQlFJRGhHRiwbuDfim/zfM3DGTcl1Vx4HVF1fj28mXx1evImX2HPQFVUajuqRk3L6az7C3v2bPjhKURRoGTGuBm49lE8Rjf64jJzEegPV/f0CHrsNp7tAVXbJxLZ1EkBBwxY6RDm3IbiNwNOscWVlVwkjfvn2RSs1vRPILDlFWdtVkvLDoCNKiI4x1DOOp8OnEyPvzS3YZ0YWmdXzjAq1nMGk11KXw0zgoyTAeb/cE9HzeKiFVRxAEvoz5kp8uG9dr2knt+LLfl3Tw71DrMWkzMkiePgNNgnFHFMFgwHAbKam1Refht542eq9RK5Xs+G4hsdGm7uwKRycGzXmWpt2t47Fyq7j0CkaXW45LjyDsAmyvJlcQBC5evMj27dspLS1l3rx5ZjvESCQSevSwPZ+d2yUifA7p6T+j11cIuDKZM6GhTxIeNhO53NXK0d17BEFgb34Ji1KyOVBQ0SnKRSbl2XB/3MxkfTRwsmdHp6a1HaaIiMhdUF0QsZQhAhjdE99OSYjI3aPRaCr/b2kvcjd8//33lf+/WblMfUEURETuLRln4PtqT/pVhfDXMzDxV9r4tuHzqM95Zvcz6IQqtfnTE5/i1et9Bv30IykzZ6H9R7UE0Ofkon5lJiM+XUiuIpKINpb9G3KSEjjy2y9GYzFHN3PF4zCDhszF8YocfeENJS0qA37H4GHvTmT1FDh89QQSiYTmzZtbvE5+noTAwMfIyvoTg0FjMl9enkxK3NsEyj/j48DHUYVOYNrfOWS5y9EppCgkEh719zR7bkEQePFKCj08XBju64GTDT4dviMMBvh9NmSeNR4P7wUjFthER4al55ay/PxyozG5RM7nUZ/TPah7rcejTkggefoMdBnGApLMx4ew5ctwaFq7GxHBIHD0r3hkdlKrCh/myIq/xqYvPqIwK8Nkzj+yMSOefwUPf+vXKauTiinZm4L3xGZI7Ew3mBKpBM9HbdPpPTs7my1btpCYmFg5tm3bNiZNmlSnO2Pp9SpAQCYzFdoVCh9CQ58kOXkpIcGTCQ+fg0JRc2v5uojWIPBndgGLkrO5WKYymivVG/g+LZenw+tZaaeIzaHLN29kfytInZyQOpg399UVFFR0vbuT8zo4ILXwdF1fWIhgMJ8pbA65V+08KKsuiNTkC7Fhw4bK/48ePfo+RiRyI/v27av8f7Nmze7puUtLS/njjz8ACAsLuyVD23Xr1rF27VqSk5ORy+UEBATQo0cPpk2bRr9+tuPFdjeIgojIvSWwLbR8FC78XjV2dQfEfA8dp9IruBf/7flfXj/4utFhbx16C8/+C+n600+kzJ6N+kqVf4mhtBTN5t9p/snHFi+r0+jJTtYQ1rotiadPGs2VFRbwx8/v07xHFF3bjEIVnYOgNf6Q0uep8NkNYxv3xn50iEVFNiUlhR9/3ElAQAS9e6/E0ek4aWk/oNHkmqzV6UpITlmOkLySx/Wt2XGqH4n2LRjSNQxPO/N/eqdLylmbkc/ajHxei03lEX9Pxgd40cHNqU5vOtj3IVzZbDzm1RDGrQG59csX1lxcw8JTxnWvUomUD/p8QFRoVK3Ho7p4keSZs9DfcANoFxRE2MoVKKqlstYGGpWO3asuEX+6wpvHM8CZRh39bnJU7aApV7Lu3TdQm3FU7zBsNL0nTkNu5fauBo2e4h1JlB5KAwGKdiXjMdS2RCVLlJeXs3fvXo4dO4Zww6bh2rVrxMbG0rSWxbl7gcGgIT39VxISvyE4eCKRDZ4xuy48bBbBQRNwcAis5QjvP6U6PT+k57E0NYc0tXmfFIC1GfnMD/Or259BInWeqz163vGx/v9+E69Jk8zOxQ8bbpSdfDv4zJ+P7zNPm51LfOIJNNduvdyh+eVLdxTD7XLmzBkAIiIicHNzM7tmw4YN/PJLxQPGsWPH0rGj+RJya3Mv3pNWrlzJtGnT7j6Ye4TBYODDDz+s/Prxxx+/p+f/7bffKjvQTJ48+ZZ+hhf/Kdm+zrVr17h27Rrff/89Dz/8MKtWrcLd3f2exlnbPCCPn0VsiuGfgcsNT5O2vw4FSQCMbDiSFzu+aDStE3S8uPdFrsiyCV/zPU6dOlXOOXXtSuB779Z4yf2/xLL3xzS8wyYwcNaz2DuZpptfOryXXzf8F2V/cGpvfjMn0Qu4eXtYvM7evXsByMzMZN26bezYboeP9zKaN/8EF5cW5s8pMdDJ/wyvd/mC1yLeJf7IJVRavdm1azOqWpWV6g2sSc9jeMxV+hy7zKLkbHI0lm9abZrWj4NXtQ4TDh4w8Vdwsn7p0LrYdXx83FRse6fHOwyJGFLr8ShPniRpylQTMUTRsCHha3+qdTGkJF/F75/GVIohALtXXSQ7qbiGo2oPhaMTUZNnGo3ZOzsz+v/epN/UWVYXQ9QJRWR/GUPpwbRKP6PS/aloUmyv5Kk6BoOBmJgYFi5cyNGjR03EEKi4ofb0NJ/tZqsIgp6MjN+IPjKQK7H/QaPJJjl5GVqt+Q2RXO76wIkhWWot78Wl0yH6Am/HpVsUQ3wVcl5rEMjmjo1FMURE5AEgMzOzshTmRv8QtVrNuXPnePHFFxk7diwGg4FevXqxYsUKa4Rab1mwYAHHjh0D4JFHHqFTtf3QveB2ymWcnJwYP348S5cu5cCBA5w6dYodO3bwxhtv4O1dkS25YcMGRo8ejdaMb1tdQswQEbltDAYBaU3maU5eMGoh/FRN1dSUwoZ5MHUjSKVMazmN3PJcvr9Y9YdZritn3q55fD/0e8KWLyP9/15Ck5pKyNcLkdZggnjpcDqXDlWkyl84kI5fuCdj3vyMI+uXEx9z3GitsqiQvxZ/QJPuvek7dTLlf2ejvb4xkYD7yIYWb/ySk5NNzI0yMzP55ZffCAwMpG/fT2jcqJCU1JXk5u7GpIsKIJfq+WRcHxzMpMuX6w1syDZ/U35Vqea/cem8H5/OAG83JgR685CXW90xsfNpBDN3wy+TIeVIRWaIj3lDxtpkY9xG/hf9P5PxN7q+wcONHq71eEr37yf12ecQVMZp6w6tWhG69Dvktbz5zIwvYsu35ygvNi4N0+sFCjLK8As3/3SptmkZNYDkC2e5dGAPgU2aMeLZl3HztW4Gi0Gjp3hbIqXR6aZvBQKUHk7Ha5xtZlakpqaydevWStO1G3F3d2fQoEG0aNGizmyUBcFAds524uO/QKm8ZjSn15eSlPQdjRq9YqXoaoerZSoWp2SzPrMATQ0lAo2c7Jkb6scYf08cHpSyTREREU6dOlX5/40bN1p8/+7YsSPTp09n9uzZyOW2u1U8d+7cXZ8jJMQ6JvDm2LdvH6+++ipQ0ep28eLF9/T8qamplQ92u3XrRpMmNXdNTEtLw8PDw2R84MCBPPPMMwwdOpRTp06xb98+Fi9ezLPPPntP461NbPdVLmJTZBer2Ho+k81nM2js78J7j1h2pgagyWBoPxlOVfW5JukgHP0Wus9DIpHwr07/Ik+Vx+b4qlKKAnUBT+16ijVD1xD8xQIMJSXIXC2b15Xkq9i3NtY41qQSNn9TTv9p82jS7Sx7Vn9nkk4fG32AlPNn6D99LiHdGlO0LQnHFl4oAi0bGer1enx8fMjNNS2PycjI4OeffyYoKIioqH/RoeMrLNv+MS089uMgr/Itcfd5glbBHmbPL5dI+KRpKD9n5LM3v8SMnFLRkXNbbjHbcovxVcgZ6+/JhEBvmjibr421KZy8YPIfkHocIu489fVeciTjCMINP+kXO77I+Gbjaz2W4i1bSHv5FaMW1ABOXboQsugbZLXcrePK0Uz2rLmMXmdcXmbvJGfI7FaENLN+ds91JBIJA2bMxSc0nI7DH0Zm5Rs4dXwh+euvos9XmU7KJbgPjMCll221/YWK2uLdu3cb3TRXRyaT0bNnT3r16oXCBjv1mEMQBPLy9xEf/zklJZZbR5Yp4y22mH0Q+CY5m//Fpde4pou7M/NC/Rjk44b0Af05iIjUZ6r7h9REaWkpQ4cOtWkxBGr2QKlrXLhwgUceeQSdToe9vT2//vor/v731rvphx9+wPCPr83UqVNvut6cGHIdf39/1q9fT/PmzdFoNCxcuLBOCyISwVwerMhNSU1NJTQ0FKjwlbAlhfFe88epVF789Uyl55SXs4Jjr/dHfrMnR6piWNwTipKrxuQOMOcA+Faoklq9lqf/fprD6YeNDh0SMYRP+n5S4+l1+flInZ2Jjcln309X0GlNzas6DYugeQ83/l65mLgTR82ep3HXHjz0xGycXD2QOpp/8y+/nE/Z8UzchoRzOSOOffv2kZeXZ3YtgMHJk92FPuRLFfQOPkL/sP242usZ3O8wMpmpeCEIAlevvou3dx+8vPqQrtayLrPCSyRJZWrceiMd3Zx4LtyfQT51u4avttEb9PzvyP/47epvADzV9inmt5tf63EU/PIrmW+/bWLs5vLQQwQv+BypvX2txSIYBI78FU/MtiSTOQ9/J4bPa4OHf+23aFMWF5Fw6gQt+/av9WvfKga1nqJtCZRFm5q7AijCXPEc2wQ7P9tqcafX6zl+/Dh79uxBrVabXdO0aVMGDx6MVy0Z/90LCgqPExf3KUVFJyyucXfvSMPIf+Hp2bUWI6t9YorLGHbStDuaBBji4868MD86u9teZyORB5erV6+i0+mQy+U0bnxzM2nRVPXuGTduHL/++itQUQJ+vexBqVQSGxvL559/XimI9+7dm/3799/3mOo6iYmJlV14pk6dyqpVq277HAkJCfTq1Yv09HRkMhnr1q3jkUceuceRQsuWLbl48SL29vZkZGTck5LXESNGsHlzxYPttLQ0goLMt2k3x+2+B8D923/btvQnYhN0Cvcy+qzIL9NwJD6fXo0td3wBwMENHv4GVo+sGtOpYMNTMH0HyOTYyez4POpzpm+fzsW8CtOe9n7tebPbmzWeWl9aSvKMmchcXGj8zdf4vNKJbd+doyi73GjdiS2JZMZ7MmjOyyR1j+bvlUtQlRrX7l89ephGnbrRos9DZq8l6AwUbYpHl1uO6nI+4b2DmTtzDhdiL7Fv3z7yzXxIS5UFDFQUkGNw5lRKR+LLhvLzjFCzYghAcfEpUlJXkZK6CienRoSGTuWZ0Ed4NtyfI4VlrM3MY1N2EeUWPlxPFivJ1dhIn3iDHqSmJUG2iEwq4z/d/4Oj3BGZRMa8tvNqPYayI0fJ/M9/TMbdRo0k6L33kNSiB4ZGpWPXyosknDHNggpt4cXgmS2xd6p9T47US+fZ/NUnlObn4ejqRmSHO2wJfh9RXSuk4LdY9AVmBAW5FPfB4bj0DEZig2Vuu3fv5vDhw2bnvL29GTp0KI0aWb/E7VYpLj5HXPxn5OebtmC+jotLCxpGvoi3d9QDmxVSnQ5uznT3cK5sA28vlfB4gBdzQn1p5FQHMgxF6j33SzC4X6WoshqerluL6xkiPj4+9O3b12iuS5cujB07lk6dOnHhwgUOHDjAyZMnbdZQFeD8+fN3fY6QkJAaMyHuN+np6QwYMID09HQkEgkrVqy4L2LIiRMnKs1RR4wYcc/8v1q0aHHHgogtIQoiIjcl1MuJNiHunE0tqhzbfC795oIIQIM+0HUuHK1WB5d2Eg4tgD4vAeBs58yi/ouYsnUKkR6RfNLnExzklm/QDBoNqfOfRn2pwpE7afIUQpd+x2OvdWbP95eIO5VjtD71cgG/vn+CwbPaM+2zRexatohrx6OrQmzfiea9LbeNKo1OR5f7j9CiFyjZm0rZySwaDW5Aq3nzOX/hvEVhxFdaxiBFLAGearw9LD/ZTk5ZWfl/pfIaV678m7i4zwgOnkCHkCfo0Tyc9xvr+Su7kLUZeZwoVhod7yiVMsrPw+L5aw1BqGizbOcEQz4Eme2/xUgkEl7u/HLl/2sbp65dcB87hqL1v1WOeU6ahP8bryO5D/3nLVGSr2LzorPkpZaazLXpF0LPsY2Q1rKfgGAwcHTDOg7/+iOCUCEGbl20gCkffYWr9y28/9QCBrWOoq2JlB2xkBUS7obn2MbY+dpWVkh1unbtyvHjx41M0RQKBX379qVr1642nzZ9HaUygWtxn5CTs93iGienSCIjX8DPdwgSyYPjj5Gv1bE6LZdGTg6MtPBZMC/Uj0ulyUwL9mFGiA++CusaDouIiNQeSqWSa9cq/JPat29vdo2DgwNvvvkmEyZMACpKLGxZELnRGPZOsGaXmdzcXAYOHEh8fDwACxcuvKnR6Z1S3Uz1VsplbpUHpdDkwbkbELmvDG9t7LK/7XwmWv0tpgL2fwu8b3i6uPcjyDhb+aW3ozerhqxiQdSCGsUQgMy330F5tKr8RX3lCkkTJiLJSmXw7FYVG7cbnsKWFarZ8FkM106WMvLF1xj+3Ms4uLqhcHRi4KynLW6EBYNgdqNjKNFSsD6W3G/P0syjAfPnz2fYiJGUSx3NnqdxRJjFa5SXp5Gdvc1kXKcrJClpMYcP9+X8hRcQlBeYFOTNpo5N2N+lGfPD/PBVVGxURvq54yI3n5VxtLCU8afj2JBVgOpWf2d3ysEFcPpHOL4U1o4DVdHNj7EBJBKJ1Z4SSyQSAt95B9fBgwHwmTcP/zffqFUxJDO+iHUfHDcRQ6RSCX0nNqX3uCa1LoaUFRbw2wf/4dAvayrFEABVSTF7Vn1Xq7FYQl+mJWtBjNn3CImdFPcRkfjOaWPTYghUmKT26dOn8us2bdrwzDPP0LNnzzojhgCo1TkWxRAHh2CaN/+Irl224u837IERQ5LL1bwRm0rHwxf5KCGTTxMzMVi4Qe3v7cbJ7i14NTJQFENEROoZZ86cqfSPaNeuncV1o0ePxuUfz7Lff/+9NkKrlxQVFTF48ODKrI0PP/yQ+fPvT8m2Vqvl559/BsDX15ehQ4fes3NXb8lbV7NDQMwQEblFhrUO5IOtlyu/LlBqORKfR+/Gvjc/WOEEjyyB5QPh+sbGoIU/5sDsvSCv8EfwdbqFcwFek5+gdP9+9NXMTbVpaSROnETokiW0G9AK/wg3ti89T1lRlf+GwSBwcN1VMuIKeWhyD8I+a0NOcmKNT5o1KiV+T7eneHcypYfTwWB8o6lNLSVn8Rkc2/qyWS/lV2VLGsryaCNLx01akTqvUCjo3r275R+PwptmTf9HSuoqyspMa7wFQUdW1l9kZf2Fu3tHwkKn08hnAP9uGMSrDQLZk19MiINlg8OfMvLZW1DC3oISPOQyHvX3ZEKgF61d7/Em7cIG2P1O1dfXdsGaR2DGLqjFzb054grjeO/oe3zU+6Nbfp3VJhKZjKBPPqZ02DDcBg+q1WtfPZ7FrtUXMeiMX9v2TnKGzGlNSNPab6uadO40W7/+jLJC065LYa3a0H/G3FqPyRwyZzsUYa6UFxqXySgi3PAa2wS5j3mB1BoIgkBxcTHu7uZ9hrp37056ejrdu3cnLCyslqO7N3h6dsHLq7dRqYxC4UtExHyCgx5HKq09L577zdkSJYuSs9mYU4i+2p/ulTIVu/OKGWjGT0oqkeBsQTgXERF5sKluqGopQwTA0dGRAQMGsGHDBpKTkzl79ixt2rSphQhvn7qanaBUKhk+fDgxMTEAvPHGG7zyyv3rcrZ161Zyciqy5ydOnHjPHnTEx8ezc+dOACIjIwkOtj2z+FvlwXhEInLfCfVyom2I8Q3W5rPmU8TNEtIJer1oPJZ9EaK/vqXDtQYtxzIq+nI7NG9OxNqfsAs3vmnX5+eTNHUqpYcOEdjIg8ff6EKwmc1cXEwO6z48gUatILx1O4vXjI85ztKnp3Pp2D7chzfA/4UOOFjYHJafyWHy+RKmYU+K3oc/NK2Ic2yGu7sH3bp1w8mC6VZZWRnJyRkEB4+na5ettGu7Cm+vPmbXAhQVneTc+flEH3mI5OTlSAylDPJxp4WL+Y1Xqa6izOY6hTo9K9JyGXgilgHHr7AsNYd87T3wHkk9USFwGSGp+J1bWQxJKU5h1o5ZHM88ztRtU0kvrbnTgrWQKhS1LoYAOLjYIdyQOOQZ4MTYVzvVuhhiMOg59OuPrH/v3yZiiEQipefjTzDmjf/h7FH7Io0lPEY1ROpccXMhsZPiMaohvrPb2JQYkpOTww8//MCSJUsoLy83u0YulzNu3Lg6IYbUdBPcMLLic0Yud6dRw5fp0X0PoSGTHwgxRBAE9uQV89jpaww6EcuGbGMx5DrfJGfXfnAiIiI2TXVBpKYMEYDhw4dX/n/jxo33KaL6iUaj4ZFHHuHQoUMAPPfcc7z77rt3dK7r2c0RERE1rqteLnOrJTkbN25Ep7O8P8jKymLs2LGVpbb3K7ulthC7zNwh9anLzHW+2x/H+1uqskQ8nOw4/sYA7G41lV6ngaUPQdY/fcM7TYeB/wP7mtuJKrVKXtz7ItEZ0SyIWsBDYRXmp7q8PFJmz0F14YZWinZ2BH3wAe4jhmMwCBzbGM/JrcYdM9x8HXn8tU4WDSJVZaWs/r/5lOZXdJJp0L4TA2c9jau3D+VX8itMVnPMbyyyMLBCruVfz3Yl3NsJvV5vsUXlzp07OXToEOHh4fTr16/yTa2s7BopKavIyPwDg8FM685/kMmcadtmGZ6eXczO/5SRx4uXUyweD6CQSBjs486EQC/6erkiu93SkYIkWNYfyoy9Wxj4X+j53O2d6x6TUZrBtG3TSC+rEkECnANYOXglIa61+zerLy4m8+238fvXv7CzMRX93N5U9v9c0b46rIUXg6xgnlqSn8uWhZ+SetHUJM3F04thz75EaIu7rxe+HyjP5lB2JAPPMY2Re9uOEKJSqdi/fz9HjhypTJXu1q0bQ4YMsXJkd4ZOV0Jy8goKCo/Sof2PFsvcMjP/wsenH3K55ZbtdQmtQeDP7AIWJWdzsayGzwMJPOznydxQX1rd6wxAEZF7zJ10mBC5c7p27cqxY8dwcnKiuLgYmcxytlh6ejohISEIgkC3bt2Ijo62uLa+cfDgwUovFqjwAXnppQpPxJ49ezJz5kyj9Tf6k4wZM6ayFOmhhx7iiy++qLFkW6FQ0KRJE7Nz148LDw8nMTHR7JqCggICAwNRq9W0atWKc+fO1fj9XSciIgKtVsuYMWPo3r07ERERODo6kpuby969e/n2228ru2326tWLXbt2YX+bHRFtqcuMKIjcIfVREEktUNLroz1GY6und6Fvk9soQcg8Dz9PhBGfQ6MBN12er8pn/q75nM+r2CTZy+xZOmgp7f0q0v30pWWkPvM0yugjJsf6v/4aXv8ooYnnctm18iJqpQ6ZXMqYVzriG2r5Znn7t19yfs9OozGFoxNRU2bSqt9AMAiURmdQvCsJQaU3ew5FuBteE5shdzf/BlFWVsYXX3xhZGQYERFBVFRUpTCi1RaQlvYLqWlrUKszTc4hl7vRs8dB5HLz7RKVegNbcwpZm5HPwUJTs8wbCbK34/EAL8YFeNHA6Rbe2FRFsHww5FwyHu8wBUZ+BVbs3pBbnsu0bdNIKjYWw9r4tuG7gd/hbFd7LSZ1ubkkz5qN+tIlFOHhhP/4A3If2zAFvc6+tVeQyiT0HFP75qkJp0+y9evPKC8pNplr0K4jQ+a/iJOb9VpKl1/JB72AYwtvi2sEQbCZbiWCIHD27Fl27txJaanx371EImHu3Ln4+flZKbrbR68vJzV1DYlJS9DpCgFo3eob/PzqprBzq5Tq9PyQnsfS1BzS1FqL65xkUp4I9GZWqC+hNZRPiojYEqIgUnsYDAZcXV1RKpV07dqVI0dM75lvpGPHjsTExCCVSsnIyKhTnxn3k2nTprF69epbXn/jNvt27xNqEjtuRRD59ttvmTu3osz4448/rhRvbkZERARJSUk3XTdmzBiWLVt2R516bEkQET1ERG6ZEE8n2oZ6cCalsHJs89n02xNEAlrBMzG33H1kU9ymSjEEQK1XM3/3fL4f8j2NPBshc3EmdMkSMl59leItW42OzXr/A3Q5ufi++AIRrX14/PXObF96npZ9gmsUQwwGPXqt6c2nplzJjiVfcSX6AIPmPINbr2Cc2vlSvDOJsmOZcIO0qC/RIHO2/JT98OHDRmIIVPQzX7VqFQ0aNCAqKorw8HAiIp4iLGwG2dlbSU5ZQUlJlbobFDTOohgCFTfKYwK8GBPgRVK5ml8y8/klI9/izXW6WssXSVl8kZRFN3dnvmweRrijBWFEr4V100zFkMgoGP65VcWQQlUhs3bMMhFDmnk1Y/GAxbUqhmjT00l+cjqafz5YNElJJM+cRfj3q5G5udVaHDejz7gmtd4SVq/TcejXHzj+53qTOYlUSu8JU+k04pFaNZitjkGppXBzAsqTWUid5SjCOiJzMb/htBUxJD09na1bt5KSYj4zzMXFhdLS0jpxc2swaEhP/5WExG/QaIzLQOLiF+DrOxCJ5MH0xFiZlssH8ekU6ywbYfsq5MwK8WVKkDceduLtnIiIiHliY2NRKiu6E96sXOY61z0uDAYDmzdv5sknn7yPEYrcL9asWQOATCZj0qRJt3zc6tWr2bdvH9HR0cTHx5Obm0txcTEuLi6EhobSo0cPpk6dWqNHYl1CzBC5Q+pjhgjA0v3xvLelagPs7mjHiTdvo2zmNhEEgbej3+b3q8ZO135Ofvww9AcCXSq63wgGA1nvf0DBDz+YnMP90UcJ/O87SORy9HoDshpiNegNlU/Hr504yq6lX5s1dlQ4OtL3iRm07j8YiUSCJqOMoo1xqOOruqp4P9Ecx1aWswBOnTrFnj17KC42fSp+ncjISKKioirr+gVBoKjoJCkpq8jJ3U2P7rtxcDDv6nzt2kdIZU6EBE9AoaiKwyAIHCwoZW1GHltyi1AbzL8FuMmlnOnRCkdzPy9BgE0vwMmVxuO+zWD6dnD0sPg93W9KNCXM3DGTi3kXjcYbujdkxZAVeDl41Vos6vh4kqfPQJdpnN0j8/UhfPVq7CMjay2Wy0cy0GkMtOpjO+U6Gz//gNijh0zGXX18GfHcywQ1aW6FqCoov5RHwR/XMBRXGTM7tvHBe6L1YqoJpVLJ7t27OXnypNl5qVRK9+7d6dOnz22ntdY2gqAnM3MD8QlfoVKlWlgloUP7nyyWC9Z1fs7I43kL5Y4NHe2ZF+bHGH9PHGo5m0tE5F4hZoiIiNRvbClDRBRE7pD6KoiYK5tZ9WRnoprev6eNOoOOF/a8wN7UvUbjke6RfD/0e9ztK1LpBUEg77ul5CxYYHIOl6goghd8jtTRcn2/wSCw8avT+Ee40WVkA6QyKeWlJexdvZSL+/82e0xY63YMmv0M7n7+CIKA6kIehVsSkHva4zOz9U2fGut0OmJiYjhw4AAlJSUW1zVs2JCoqKjK1xxUlNPY2Zk3l1Rrcjl0qDeCoEEqVeDvP5rQ0Gm4ujQzWleo1fFHdiFrM/I4W2LsiTIlyJuPm4ZiDsOhr5HufMN40MkHZu0Gz4gavuP7i1Kr5KldT3Eq+5TReKhrKKuGrMLPqfaeipdfuEDKzFnoC4wFNbuQEMJWLEdRS+aVBoPAkQ1xnNqRjEQqYeQzbQltXnuiUE2kXDzHuv++YdRWt2Gnbgye+xyOLtbxfzAotRRujEd5yrwxpc+s1jg09KjdoGrAYDBw4sQJ/v77b1Qq8/4SjRo1YsiQIfjYWJnWjQiCgeyc7cTHf4FSec3iOl/fQUQ2eB4Xl6a1GF3tojEY6BJ9iUxNVTZfF3dn5oX6McjHDamNZCSJiNwpoiAiIlK/EQWRB4D6KogAPPzNIU5XK5t5rGMInzzW9u5PXJAElzZCj6dNpsp15czeMZvTOaeNxtv6tmXpoKU4yquEjsL168l46z9gqNpk2TduTPgPa5BZaDkJcGRDHCe3VZQ1BDf1YNCMVji5VaTHx8ccZ+d3CyktyDc5zs7BkT6TnqTtgCFIpFIErQFDuRaZm/mnsNqsMgo3J+AxrAF2ARWlG1qtlpiYGA4ePHhTYaRfv343fb3FJ3xFQsKXJuOent0JC52Ot3cUEonxk8ULpeX8nJHHb1kF5Gv1bO3YhPZuZoz5Lm1i/plLlMicmJC5hQH50dhJ5TBtE4Ra72nt9XKqoxlHjcYDnANYPWQ1QS611x9defw4KU/NxVBWZjSuaNSQsOUrsPOvHWFGo9Kxc8VFEs9Wtai2d5Iz9pVOePjbhuli9G9rOfzrj0hlcvpOnk77ISOtVn5SfjGPgj+uYigxLSmT2MvwGB6JU2d/mymPSUpKYsuWLWRlZZmd9/T0ZMiQITRp0sRmYjaHIAjk5e8jPv5zSkouWFzn5dWbhpEv4uZmmy0gbwe9ILAtt4gGjvYWu4R9nZTFe/EZDPFxZ16YH53da6/UT0TkfiMKIiIi9RtREHkAqM+CyLID8by7uapsxs1Bzok3B6KQ32HqriDAqTWw7XXQlMD4tdBsmMmyInURU7dOJa4ozmi8b0hfvuj3BXJpVQ11yd9/k/bCiwhqNXZBQYSv/Qk7f3+LISSezWXzorNGY07uCgbPakVQIw+govPMvjXLTcxWrxPaojWDnnoOD/+AGr5VgdwV51FfLQQJOHcNxG1geKXXiFar5eTJkxw8eNDEDLE6UVFRREVFmZ0zGLQcOtwLjSbX7DyAo2MEoaHTCAx41MSDRG0wcKCglP5erqabqLQYCn4YR9tOP6KRVohF3poCxrpLGN+qK80t3Njfb7R6LS/sfYF9qfuMxr0dvFk9dDXhbuG1FkvJ3r2kPfc8glptNO7Qpg2hS75F7lk7LWOLc8vZsvgseWllJnPdH2lIh8G19zOpCYNBz87vvqbtwGEENLTOTbG+TEvRxjiUp3PMzts38cTz0UbIPRxqOTLL7Nu3jz179pids7Ozo3fv3nTv3h07u9rtFnS7FBQcIy7+M4qKTlhc4+7ekYaR/8LTs2stRnZ/KNcbWJeZz7cpOcSXqxnh686yVg3Mri3R6cnSaGnkZDuvOxGRe4UoiIiI1G9sSRARi09FbpuhrQONvg5wdyCjyHwL2lvi91nw1zMVYgjAxmehzHQz727vzrcDv8XfyVjY2Je6j/9G/9fIydn1oYcIW7kCRXg4ocuW1SiGAJQVqZHeYCipLNKw4fNTnNqZjCAIODi7oOw6hj/9h1MmN20VnHLxHH9+8j8TR+nqqC7nV4ghAAKUHckg89MTlBxKQ9AbsLOzo1u3bjz33HMMGTIEFxfzLYkbNWpk8RpSqR3t2q4iMHAsEol5A8jy8kRiY9/m0OFeXL32ISpVVVtae6mUAd5upmKIXge/zeB3z56VYghAnsKTJeUe9Dt+hSEnYlmdlkuR1nLv8nuNzqDj1QOvmoghHvYeLB20tFbFkKJNm0l9+hkTMcSpWzfCVqyoNTEk/Voh6z86YSKGSKUSoiY1rXUxJPXSeYt/F1KpjMFPPWc1MaT8fC5ZC06aFUMkDjI8xzTG58mWNiWGQIW/kDlatmzJ008/TZ8+fWxeDDEY1Jy/8JxFMcTVpSVt2yyjY4df6rwYkq/V8XliJp2iL/JybCrx5RXvEVtyikhQqs0e4yqXiWKIiIiIiIjIfUbMELlD6nOGCMCLv5wmzNuJ4a0Daex/l7X+p36EP+cZjzUfBY9/b7ZTybWCa0zdNpVijbEZ6azWs3i2w7NGY4JOh0R+a+77mfFFbF96ntIC05vTyHa+RA4P5ZGlR1Bq9CgManrmR9OqxLjDymP/fp+wVpbTuXOWnkUdV2R2Tu7niMeIhjg0qdo0a7VaTpw4wcGDByn7p/yicePGt+wUrdbkkpb2E6mpP6DV5llcJ5HI8PUdTFjok7i7d7B8wowzjDpxiWM3eJHciINUwnBfDyYEetHDw+W+1bsbBANvHnyTjfEbjcZd7FxYNngZLb1b3pfrmqNg7Voy//u/ioyn6rEM6E/wZ58hrSUjy0uHM9j742UMeuM47J3lDJ3dmuCmtSPKAOg0GvZ+v4wzO7fQb+osOgwbXWvXvhn6Mi2Ff8VRfsZ8VohDU088Hm1ssW22LfDHH39w5swZAPz8/Bg6dCgNGpjPNrBVUlN/4Ersf4zGnJwiiYx8AT/fISalfXWN5HI1S1Jy+Ckjn3KD+Y4xU4O8+ciCX5OIyIOKmCEiIlK/saUMEVEQuUPquyByTxEEWDsBYo3b5vLoMmjzmNlDTmefZuaOmaj1xuLFq11eZVLzWxMLBI2G8vMXcOrQvnKsvETDzhUXSLlk2lmmzA7WOajIkVX9yXzQzZ6SnT9SkptD24HDGDBznslx1TFo9JTsS6VkXypYaKfo0MwL9+ENsPOt8njQaDScOHGCQ4cOMXHiRIKDzXcKSUpKws7OjqAgY78Mg0FNZtZGUlJWUlp6ucYYG0b+HxERcy3Ol+Yn89fWL/nZqw/HHG6eaRDqoGBcgBfjAr0IdTCfsXKnlGpKmbFjhlFHGUe5I0sGLqG9X/sajrx31GTm6z56NIHvvXvLotzdYDAIHPkjjlM7k03mPAOcGD6/De6+tecbkp+exqYvPiQnKQEAqUzOhP99YrVMkOqoYgvI/+UKhjIzXiEOcjxGRuLUwc8mfDcMBgNSC22HS0pKWLZsGT169KBTp07IZHWvBa3BoCH6yEBUqlQcHIJp0OBZAvwfRiqt221kz5YoWZSczcacQvQ13GW1cnHk2XB/Rvl51FpsIiK2gCiIiIjUb0RB5AFAFETuMSVZsKgblFczLXVwh3lHwM28Geae5D08v/d5DNU6VEiQ8EnfTxgcMbjGywkGA+kvvUzxtm0EvvsuHo88XDlnMAic2JzA8S2JcMNfhxaBnY5aLtjrGd85lA/HtEFTruTohnV0ffgxFI7mN5yCIBhtrnSFKoq2Jlp8Oo1MgkuPINz6hyF1qNoYXH/jMIfBYGDRokXk5ubStGlToqKiCAw0Lm8SBIGCwiOkpKwiN3c3Jt8g0K3rDpydG5qP6zqqYhAMXBMc+CUjn18z88nS1FwmIwEe9vNgccuIms99m5RoSpi7ay5ncs6gkCr4ZsA3dAvsdk+vUROF69eT8ea/TcY9J0/G/7VXkVjYzN5LNCodO5dfIPGcaRZQWEtvBs1sib1j7W0wLx3cy86l36BVGZfSufsHMPXjr7FzsG4ZgDq5mJzFZ0xe/g7NvPB8tJFFQ+TaRKPRcODAARISEpg+fbpFUUSv19u0EKJWZ5GQuIjwsBk4OprvrJSdvQ21JofgoMeRSq3/s79TBEFgb34Ji1KyOVBg2QMKoK+nK/PC/Ojj6WITwpuISG0jCiIiIvUbURB5ABAFkfvAhQ2wbqrxWKMBMGm92dIZgN+v/s5/DlelW/s5+fHtgG9p7Gn5D0sQBLI++ICC79dUHfd//8JrxgyjG9OkC3nsXHEBdZnpRj/RTcJbb/XE1eXmGQ+CwcAfH/+XsJZt6DB8NFJp1eZFnVBE4aZ4tGnmb56lzna4DQ7HuVMAEmnNN83nzp3jt99+Mxpr1qwZUVFRBASYGr0qlQmkpH5PRsZ69HolAN7efWnXdoX57+MGUac6OoPAnvxifs7MZ0duMVoLbytzQnx5p7H57Ja7oUxbxot7X+SJ5k/QO6T3PT9/TRjKykiePoPyf0oXAHyefhqf+fNqZaNTnFvO5kVnyU83NU9t2z+UHmMamfjj3C+0ahV/r/yO83t2mMzJFfY8NH0OraIG2sQGsHBLAqX7UwGQOMrxGNUQp3a+Vo9NEAQuXLjAjh07KC6uKAscPnw4nTt3tmpct4tGk09S8hJSU9dgMKgJCHiYli0+s3ZY942N2YUsSMzkYpn51scAMgk87OfJ3FBfWrnaRpcnERFrIQoiIiL1G1EQeQAQBZH7xPoZcH698diIL6DTkxYP+e7sdyw8tZAG7g1YMmAJgS6BFtcClOzZQ+pc09IWr6lT8XvlZaMn+glJRaz69AR+WtNNkk+oC0Nmt7ppGcLpHVvYvXwRAIGNmzJ47vN4B1fViwsGAeXJLIq2J2IoNU3hB7ALdMZrXNPKNr03Uj07xBzNmzcnKioKfzPmslptMekZv5Ka+j3Nmr2Pt1eviomCJPCsKolJTl5OfsEhQkOn4+XZ0+LGMVej4/esfH7KyOfyDZuDPZ2bWuxEU6bT4yy/8yfdNQk29xt9URFJk6egjo3F//XX8JoypVaum36tkK3fnkN1w+tGKpXQd2JTWvSqvVbDeanJbFzwIXmppiU73iFhjHj+FXxCbaOzDYCg1ZP11Snkvk54PtwImdu9Lee6E7Kysti6dSuJiYlG446OjjzzzDM4Odn+JlqnKyE5eTnJKSvR66sLvRK6dtmCi0sTq8V2P3nnWhqLU8xn/DnJpDwR6M2sUN97XjYoIlJXEQUREZH6jSiIPACIgoh51Do99nexqUWZD4u6Q2lm1ZidM8w9BF7mzQIFQeDHSz8yInIEHg4eN72EIAjkfPYZecuWm8y5jRhB0PvvIVEoMBgEpqw4RvTVXKLK7eigMS05CG/tzYj5bS1eqyg7i9X/Nx+tukoYkNnZ0fPxJ+g44mGjbBGDSkfxnhRKD6ZxY9G5RCEj4KVOyFzN30zrdDqio6M5fPgw5eWWO/60aNGCvn37mhVGDAYdEomsQlRIPAhrHoGez0O/1zEIeqKj+6FSV3SjcXZuTGjokwT4j0YmM1/+IAgCZ0rKWZuRxx/ZBTRwtGd7p6Zm12artXQ9cpGHvN0YH+BFPy835GayGgyCAamNmizqcnJQnjiB29ChtXbNayez2b70vNGYg7MdQ+a0IrhJ7ZinCoLAhb272L3iW3QaU0PiVv0G8tCTc7Czr90yGUEQUF0pwKGJp8XsKn2ZFqmT3OpZIeXl5ezZs4fjx4+b7cYjlUoZO3YsLVq0sEJ0t4ZeX05q6vckJn2HTldodo2f3zBat1pYu4HVEukqDV2OXERX7dfnq5AzM9iXqcHeeNjVbU8UEZF7jSiIiIjUb0RB5AFAFESqSMgtY/PZdDafy6R5gCufj2t3dye8uhN+HGs8FtYDpm2Ge+jHkLdyFdkffWQy7tyrFyFffsGKmCze3VzVRaaZRsYwlQLZP5Yljq52jHujC84elmvez+7axs5l35h0HgEIaNSEIXOfxzvEuK5el1tO4ZYEVBer/CDchkTgFnXzLgRqtZqjR49y+PBhVCrLqdstW7akb9+++Pn5mU7mxMLygaAqrPi6zTiyuo/g/KUXTJba2XkSHDSBkJDJ2NubOdc/lOsNZKq1NHAy/7P6Jjmb/8VVtf71V8h5PMCL8YFeNPyn7eSPl37kaMZRPu37KQqZ+JT1Osc3J3BsY4VxqWegM8PntcHd13wWzr1Goypn97JFXDywx2TOzt6BAbPm06J3v1qJpTr6Yg0FG66hupiH+7AGuPaxzfdng8HAqVOn2L17N0ql0uyayMhIhg4diq+vby1Hd2sYDBrS038lIfFrNBrzGRISiZygoMeJiJiPg71p+V5d4WqZCm+FHC8L4sazl5L4NbOARk72zA31Y4y/Jw4y2xRwRUSsjSiIiIjUb0RB5AFAFEQq+D0mlRd/rfJOcLWXc+LfA+4uSwTgr2chZrXx2KD3oMfTd3Q6rUGLndTOZLzor79If/0N0Bn7hAhNWzCl8Xhy5VUp6gFuDvwyviOHvr9MYZaSUc+1I6SZ102vnXrpPNu//ZLCzAyTOZlcTvexE+k8agzSG4wRVVcLKNwUj6AzEPBCRyTyW7+xVqlUHD16lOjo6NsTRkqzYVl/KDQuezjdrwt5+niL55FI7PD3G05o2JO4uba65Tih4kl+n2OXuao0zS4A6OLuTCNJPNvPvYlUUNEzqCcL+i3AUV47m/7r6HJzyflqIf6vvYrUsXavXROCILBj+QU05XoGz2yJopbMU7MT49n05ccUpKeazPmGN2DE86/gFVS774uCIKA8nUPhX3EI5f/8Tcsl+D/bATs/2yo3SU1NZcuWLaSnp5udd3d3Z/DgwTRv3tzqGSzmEAQ9mZkbiE/4CpXK9DVQgYSAgNE0iHgWJyfbKZe6HQRB4FhRGd8kZ7Mjr5h/RfjzUgPzZZnXlCqulakZ5ON231qNi4g8KIiCiIhI/UYURB4AREGkgswiFd0/3G2UALFsSicGtDAtybgt1CWwuIfxxlxmD08dAF/zZRfmEASBL2O+5GLeRb7p/w12MlNRpPTAAVKfex7hhie0qS6+vNF9FtnOXkgk8OPMrvRo6INGpSPtSgEN2t76E1utWsWhX37g5JY/zWaL+Ec2Zsjc5/AJizCOXy+gL1Qh9za/AdeXaSn49Qqu/cOwD3MzmVepVBw5coTo6GjUavOCA8DkyZNpGBoAq4ZD+injyabD0Y9dQkZ2RdtepdKyMALg4d6Z0NAn8fUdgERyc2EssVxN1LHLqAw3eSsyqHBQHsWhbD89PD34buAS5LXUmlOTmkry9Blok5Nx7tOb0K+/RqKwnSwVnVaPVCatNfPU2KOH2LLwU/RaU8+btgOHETVlJvJa/vnoi9UU/HEN1aV8kzlFmCu+T7W9qTFxbVBaWsquXbs4ffq02Xm5XE7Pnj3p2bMnCht6jV1HEAxk52wnPn4BSmWcxXW+voOIbPBCnfUM0QsC23KLWJSczcniqs8GLzsZJ7q3xEnM/BARuStEQUREpH4jCiIPAKIgUsVj3x7meGJB5dePtA9mwd2WzUCFj8WqERj1xgxqDzN2ghlh40a0Bi3vHH6HP+P+BGBog6F82PtDsx4U5WfPkjJ7DvrCQqPxPAc33uw+k8GjevHa0Oa3FLZGpSP2WBYteweZPNlNu3KJ7Yu/oCAjzeQ4qUxO9zHj6Tx6LDILrXVvpODPa5RFV2SeOLX3w31ohNmWoeXl5ZUZIzcKI+7u7jzz9Hzk66ZA7FbjA4M6wLRNoKgwcxUEA3n5+0lJWUV+/oEaY3NwCCE0vvoZQAAA9BBJREFUZCpBQY8hl7vWuLZIq2NDdiFrM/I5XWK+dKA63lIVcyIa8FiAJ4H293fTqIqNJWXGTHQ5VeUAbsOGEvTJJ0hqqd1p+rVCyks0NGxvuSypNinISGPNq88btdVVODoxaM4zNO1eu11+BEFAGZNN4cZ4BJVpRyipsx0eDzfEqbX1S05iYmLYvn27RXGyWbNmDB48GE/P2vF/uRPi4heQmPi1xXkvr940jHwRN7c2tRjVvaNcb2BdZj7fpuQQX27+9/RBkxCeDPap5chERB4sREFERKR+Y0uCiPiIQ+SuGd7aOH1458UsVFr93Z84ohd0q9YNRqaAlo/CLZpqvn347UoxBGBrwlY+PfGpWdNCxzZtCP/pJ/S+xpkt3qpiPj+0mHmeJbd0TUEQ2PPDZfb9dIUti8+hVho/QQ9u2pzJH39Fp5GPIrnh+zDodRz69Qd+euNfZCfWnIUBoM0qo+xoVRmO8lQ2mZ+eoHhPMoLWYPz9OToSFRXF888/T9++fbG3rxJN+vTujXzHa6ZiiEc4TPylUgwBkEik+HhH0b7dKrp22UpQ0DikUvO+ICpVKlevvcf588/e9Htxt5MzNdiHbZ2asKdzU+aE+uIqNVhcn2dw4P34DDoevsjPGXkW190typhTJD0x2UgMASg/dx59vmkmwv3g0uF0/lxwip0rLpKVWFwr17wZnoHBDJpdVb7mH9mIyR9+WetiiL5ITd6qCxSsizUrhji29cX/xY42IYYAyGQys2KIj48PkydPZvz48TYthgAEBY5FIjEVpN3dO9Kh/U+0b7eqTooh+Vodnydm0in6Ii/HploUQ9zlMvTicyQREREREZEHBjFD5A4RM0SqyCpW0e0D47KZpVM6MfBuy2YAtOWwpA/YOcIjS8Dv1rI0AM7nnmf69umU64y7rrzY8UWebGW+jW95egZnJ03DLcPYQ0OiUBD85Re49qvZIPLsnhQO/HK18ms3HweGzG6Nb5hphkTG1StsW/wF+WkpJnNSmYzH//MhwU0tf7/562NRnsgyOyfztMd9WCSOrbzN+g+Ul5cTHR3NlStXmNVKg3z3W8YLHDxg5i6OJxQSGRmJt7e3xTg0mnzS0teSmvoDGk22yXzr1ovw8x1s8Xhz7E7ezb/2voLSoRUq5z5oHNuChfKb6K7NLZq13g2lBw6Q+syzCDd4sNg3aULosqXYmTOkvYcYDALRv1/j9K6q14eTu4LHXu2Mi+e9/37vhJ3ffY3c3p7eE6cht7t51ta9QhAqWlUXbopHUJmKr1IXOzwfboRjK9t6ii8IAitWrCAlpeJ3qlAoiIqKokuXLshvMSvMFrh85T+kpf0AgKtLSyIbvoi3V1+b9Dq5Gcnlapak5PBTRj7lBssibLC9HU+F+jEx0Ouu2oOLiIhUIGaIiIjUb2wpQ0QURO4QURAx5vEl0RxLqHpi/nC7IL4Y3/7enLwwGVwDb6lM5kYOpR3i6d1PoxOMnx6/1+s9RjUcZfYYfXExF5+cjfxClVms1N2diB/WYF/DH2xZkZo1b0Sj1xnfVMvkUvpMaEKLnkEmx+g0GqLX/8Txv35HEKqOC2zclPH//dioLe+NCDoDpYfTKd6djKA2n5GjaOCOx8hIFEEuZucN535D+tt040GZAqb8SbZjIxYtWoREIqFt27b06dMHLy/LJrIGg4bs7K0kp6ygpKSiFayDQyg9uu826yUiCAYEQWuSYbI3ZS8v7H0BnaHqd6aXutOiwTNkyNsQV+3JbTd3ZzZ0MP87KdRWHH8n7S6LNm0m/dVXTcx2Hdu3J/Tbxcjc3W/7nLeDplzHjhUXSDpnmv3SfmAYPcY0uq/Xv46qtBS5QmHRD0QwGJDcw85Pt4KuUE3B71dRxxaYnXdq54v7yIbInGtPoLkd0tPTWbp0KW3atGHAgAG4utZcTmYNSktjUanT8fGOMjuvVmdx5swswiOews93iEm2W13gbImSRcnZbMwpvLHLuRGtXByZF+bHSF8P7GzAg0ZE5EFBFEREROo3oiDyACAKIsZ8H53IW39eqPzaxV7OiTcH4GBn/Sdpm+I38dqB14zGZBIZCx9aSO8Q8yn+BpWK5Bf+Rfmev5E4OBC2YgVOHW4u8CRfzGPn8ouoykzNJpv1CKTP+CbYKUx/JpnXYtm2+AvyUpOR2dkx+aOv8A6+eZtdAH2phuIdSZQdzzSyW6lEAs6dA3AbFI7MpdrGNikavh8N+htSw8eugFZjWLduHRcuVP1Ob1UYEQSBoqKTJKesxNOjC6GhU82uy83by6VLrxISPIng4IkoFN4cSD3Ac3ueQ2sw/vmNazqON7q+AcCJYiU/Z+SxIbuQ9xoHMz7QfPbK54mZfJmUxVAfdyYEetPb0+WWOj/k//gjWe++Z2J+69ynNyFffnnfO8wU5ZSzZfFZ8tPLTObaDQil+6ONasU8NT32Mpu/+pgG7TszYMbc+369myEIAsrjWRRujjcrAEpd7fB8uDGOLS1nM91vBEHg8uXLJCUlMWTIEIvrCgoKbLI0RqlMIiHhKzKz/kSh8KZH9z3IZOa78wiCUCczQq4z8Uwcf+dbLoXs6+nKvDA/+ni61OnvU0TEVhEFERGR+o0oiDwAiIKIMdklKrq+b1w2893kjgxqGWC9oKqx+sJqPj3xqdGYo9yRZYOW0cbXfL27oNOR+e67uPTpi+tDNZfKVKckX8X2pefJSjD1e/AOdmHI7FZ4+JtuMnRaLUd++xkHFxc6jXjklq93HU1aKYWb4tCYuS6AxEGGW/8wXLoHISmMh+UDoPyGp+wD3oFez5Odnc2iRYvMnkcqlVYKI3ezqTt1air5BQf/OacCiWt3Po6NIUVjvNkd22Qs/+72bxMz3DK9HhkSHMx0ezAIAt2OXCJZpakcC7a34/EAL8YHehHuaFpyIggCuYsWkbvQ1DDSbeRIgt5/D8l9LgtJv1rI1iXnUJUaC0JSmYS+E5uazTK61wgGAyc2b+Dg2tUY9BW/i5EvvEqTbr3u+7VrjEsQyF12DnVckcmcUwc/PEZEInWyXlZITk4O27ZtIy6uovPKlClTiIyMtFo8t4NKnUli4jekp/+KUC2brmHDl4kIn2PFyO4fBwtKGHvauEuOTAKj/TyZG+pLa1fbatMsIvKgIQoiIiL1G1EQeQAQBRFTxi2J5mi1spnR7YL48l6VzVgi9WRFG1578yUh1fnsxGesurDKaMzD3oPvh35PA/cG9zQsvc7A4d+vcfbvVJM5hYOMh6Y2v6OOIemxl4g7eYzuYyea9WwQBIHyc7kUbUlAX2jeFFDupcBT8iH2ZX8bT3SaAcM/A4kEpVLJoUOHOHbsGFozrVWhQhhp164dvXv3vm1hpLQ0lqPHhpqdu6KSsrfEjssqKQ83epS3e7xttjNQTZjb7FSnp4cLEwK9GObrgZNMimAwkPX+BxT88IPJWs8nnsD/9dfue2nIxUPp7PvpCoYb8vcdXOwYOqc1QY097uv1AZTFRWxbtICEUyeMxhWOTkz+6Cs8/K0rcOryVWR9cRJBU1FeJnVT4PlIIxybWy8rRKVSsW/fPo4ePYqhmgeFr68vTz31FLJa6kR0J2g0+SQlfUtq2g8YDKbvF3K5Oz2678XOzrSld12gVKfHQSpFbiajShAEhpyM5UxJOU4yKU8EejMr1JdQB9trdSwi8iAiCiIiIvUbWxJE6l7hr4jNMqKNcbeZXfeq24w5dGrY9U5FlsPOt26+Hnih4wuMiBxhNFaoLmTm9tlkK03NQG+FgnXr0JeYpl3L5FJ6P96EQTNbYmdvvCHSqPRsW3KeQ+uvotdbNvG7Ea1GzbbFX3Jswzp+ePU5Mq5dMVkjkUhwauNLwL864jYwHImd6Z+4Ll+NpOyGtr9NhsDQj+Gf1HAnJycGDhzIc889R48ePcwaPhoMBmJiYli4cCEbN26k8IaWxTWRl7fX4lxTBwNzfNW8GypnVnhjBIPK4lpLXClToaghzf1QYSlPX0qm7aHz/N+lJLa//zH5ZsQQn2efwf+N1++rGGLQGzi4/ip71lw2EUO8gpx57NVOtSKGpF46z5pXnjURQwD8IiKR3YEXy71G7uWA+7AK8dKpoz8Bz3ewmhhiMBg4ffo0X3/9NdHR0UZiCFRkjFy8eNEqsd0Mna6E+PgvOBwdRXLKcrNiiEzmTGjIlDrpD5Kl1vJeXDodoi+wObfQ7BqJRMK/IgJ4rUEgJ7u34L+Ng0UxREREpF6wePFiJBKJ2X/Ozs40a9aMp556ikuXLlk7VJsjOzubTZs28dZbbzF06FB8fHwqf3bTpk277fPl5uby8ccf07NnTwICArC3tycoKIiuXbvy0ksvER0dfdvnjIqKsvj7tfRv7969Jue51WOjoqJuO0ZbQ8wQuUPEDBFTsktUdHt/N4Zqr6hvn+jIkFb3+Kly9mX4bQZkna8ae+J3aNT/podqDVqe+fsZDqUdMhr3VoTzxyM/4ulw62aZeStXkf3RR9g3b07Yd0uQ+5pv7VmQWca2786b9YQIbOTO4JmtcPa4edeQ/T+u5Phfv1V+LZFI6TTyEXo8Nsmi6aWuSE3xtkSUp6oEH6dO/nh1zISfnwB1EQS2g2mba8yyKS0t5dChQxw/fhydzrS9KVRkjLRv357evXvj4eFx0++npOQCKSmryMj6CwTz54SKp9TBQeMJCXkCB4dbLxnJ1+r4PauAtRl5XCi9uagSnp7K0Oi9DDx6EK/SYvz//SZeEyfe8vXuBFWZlh3LL5By0bSFb3hrbwZNb4nC8f4KEYLBwNEN6zj8649Gxr4ASCR0e3Qc3cdMQFpLmQ6CQUBfrEFu4W9CMAhokouxj7i/xrY1kZ6ezpYtW0hNNc0AA3B1dWXQoEG0atXKpvwn9PpyUlO/JzHpO3S6QrNrpFJ7QoKfIDx8DgqF9TJv7oSrZSoWp2SzPrMAzT+3Nm1dHdnWsYlN/R5ERETEDBFrMmfOHL777rubrrO3t2f16tWMGzeuFqKqG9T0WTJ16lRWrVp1y+dat24dc+fOJS/P1ED/OqNHj2bDhg23EWGFILJv375bXi+VSklOTiY4ONho/FY/N/v27WtWULkZtpQhIgoid4goiJhnwndHiI6v+sMe1TaIrybc47KZvDj4thdolVVjrkEwLxocPW56uFKrZMb2GZzPO2807qhvzNbxa/B2cr7pOYo2biT9pZcrv7YLCSFs+TIU4eFm12vVevb+dJnYo6Ztch1d7Rj1XDt8Qix3mygrLGDZ0zPQaTUmc15BIQye+xxBTf6fvfuOjqraHjj+nZLeK+kJPVTpHelNQERAREXAQlPsT58/fU99dn3YUOGpdBVRRJSm1NB77y1Aeu91ZjLz+yNmyDAz6QmB7M9arDW599wzJ4Vk7p599rbeorcwKouMtZHokvLwe6kLKhdbSDoH61+E8YvBpWItkrOzs9mzZw+HDx+2GhixtbXlhRdewN7evkJzFhYmczryS2Jjf8RJaT1jRqFQ4eMznJDgx3Bz61ChuUucys5jRXwaqxPTydCVnbVko9WyS5tC2EjLW3pqSnpCLhvmnyIjMc/sXIchIfQc27TWi6fmZqSz8atPuH7ymNk5Rzd37pnzEqHtOtTqGkrTpeaT/usldOkFNHquM0q7+rXdJDc3l23btnHkyBGL51UqFT179qRv377Y2dWP1shQ3AEqNm4l1659hUaTbHGMQqEmIOABwsKewt6uftR+qgiDwcDBzFy+ikpiU6rl+km/dmhKb4/6181HiIZMAiK3Tvfu3Tl48CBubm7s3r3beFyj0XDlyhU+++wz9u7dC4CDgwOXLl0yu1m2xtvbu8wb/Jtt3779tsowKB0kCA4OplWrVmzatAmoXEBk2bJlTJs2Db1ej6+vL7NmzaJPnz54enqSkJDAlStXWLt2LW5ubvzyyy+VWuPVq1fJzTV/E7a0s2fPGgNdQ4YMMX4OpZV8rrNmzWL27NlW53JycqJx48qXHqhPAZFbnwMt7ij3tPc3CYhsOVe8baZGu814NYUh/4ENL904lh0HG1+B+/9X7uWONo6MDfg3J+Nmo7RLMR4vUF3lWtZ5vBw7l3m9vqCApLmfmBzTxsRwbdJDBH/zDQ5t25hdY2OnYvDU1vg3dWfXzxfR627EIR1cbHHzKbuAn5O7Bw+99wl/fv0pSVdNa2OkxcWw4t8v03nkffSe+Ag2tuY3YnYhrvjOugtdcl5xMATAtxVM22AcYyjSk/bTBZy6+2PfzN3iOlxcXBg+fDi9e/e2Ghhp3759hYMhAHZ2PnRu9Rae/o+w+fQ7tLdJIjf3otk4g6GIpKT1ZGQcpHevXSiVFS+g2c7FkXYujvy7aQB/pWbyU3waEWnZFpvydLdVEDa0doMhAPFXMs2CIUq1gv4PtaRVr9ovnnr91HE2zPsveZkZZudC2nXgnqdfxMm9bjqhGPQGcvfFkfnnNQza4qBY5p9X8RhTN+2Fy1NUVMSRI0fYtm0bBQWWs42aN2/O8OHD8fKqX1kVBQXxHDn6IAUFlrNZQIGf3xgahz2Do6PlgG59VGQw8GdKJl9HJXEkyzyoWEIBHM7Mk4CIEEJQvN3z9OniNwTbtWtH27ZtTc536tSJcePG0bt3b/bv309+fj4rVqzgpZdesjSdmUmTJpFtYSu5NX5+t08AHuDf//43Xbt2pWvXrjRq1Ihr165VOhhw7tw5pk+fjl6vp2/fvsbAx83mzJmDRmP+Rmh5KrKe5cuXGx8/+uijZY719fU1+zm500hARNSo4W38eOP308ZtM+F+LiRmFRDqVX7WRaV0fQLOr4fI7TeOnfwJWo2CVqPLvDQ9V8OH62PI0zyGY+h8lDbZoLfnv/0+o7Nf2cEQAKW9PaHLlhL1+BNoo6ONx4vS0oh69FGCvpyHU69eZtcpFAra3h2Ib6gLf/7vNNlpBdjYqRg+va1ZnRFLfELCeOiduRxeu5p9q36kqHQgwmDgyLrfiDxygKEznyUo3Dwoo1AqsGlk/fuQuz+e/FMp5J9Kwb6NF+73NEbtZbnFbOnAyO7duzl8+DBFRUWoVCr69rXcyrg8jd2bM73PUgwGA+npe4mOXkJK6jazcUGBj1QqGFKavUrJGF8Pxvh6EFug4eeENH6KT+N6qW40j7RqavX641l5NHW0w0Vd/QBf694BpMTkcGp78Y2qg6stI2a0w79p7W4F0euL2LfqJ/av/smstbBCoaTXAw/T7b7xKJV1k52hS8kn7deLZt2RcvfF49DWG/um7nWyDmuuXbvGxo0bSUw0z+4C8PT0ZPjw4bRo0aKOV1YxdnZ+2Nh4WAyI+PgMo0nj53B2rp9rtyS/SM8vCWksiE4mMt9y4WgAO6WCCY08mRniQzPHigdohRDiTnbhwgXy8oqDyO3bW+6yqFQqmTVrFvv37wfgzJkzFZ5/3rx51V9kPfbWW29Ve445c+ZQWFiIt7c3q1evthgMKWFrZUt8dej1en744QcAnJ2duf/++2v8OW43EhARNcrHxY5He4YR5OHAPe38CXC3fENdbQoFjPkSvu5VXAejxNrnILgHOFuu5wHw8aYLpOZqAE/yox/DPvBHnmn3FkOb9K7w09uGhBC24keipk+n8OyNolP6vDyiZswk8MMPcL3nHovX+oa68sBrXdmy5Cwtu/vh4VfxYJFKrab72Ado2qU7f83/jIQrl0zOp8fHsfLNf9Jp+Gj6PPgoNknHIS8Nwi2vpURRrpbMLVHGjwvOpJJwPg2XvoG4DAhGaWf5V4WLiwsjRowwBkZUKpXVX+wajYYNWzYwsM9AXF2td61QKBR4evbG07M3eXlXiY5eSlz8KvT6fJRKOwIDJ1m9trAwGTs769/70gLtbXk+zI9nQxuxPyOXFQmp7EnPYbi35fXr9AamnrpKpq6IUb5uTPLzoqe7U7VqE/QZ34z0+FwK83SMmNkOF8/avXHLzUhn3ecfEnP2tNk5Zw9PRj7zMkGt6+ZdAIPeQM7eOLL+upEVUprK3a5e1H2IjIy0GAyxsbHh7rvvpmfPnhaLDtcXCoWCpk1e4PiJacZjnp59adrkBVxdLb8Yro/StTqWxKawMCaFFK31mkNuahXTAr15PMgbH9tb14ZZCCHqo+PHjxsft2vXzuq40FJbwK1tkRaVd/78ebZu3QrA008/jbe3d52vYevWrcTGFjdXGD9+PI6O0ma+/r6KE7etN+81z06oFW5BMOJDWDPzxrG8FFj3HEz83tgxpbSTMRmsOHjjxl9f6E8vuw+Y0aNrpZ9e7e1N6LJlxDw9h7y/o+gAaLXEvvgSutQ0PCc/YvFaeycbRs5uX+YNn6ZAh42dyuIY7+BQJr39Xw6v+429v/xAUenWuAYDRzf+QeShvQzzOEiQTXxxB5luT1p9rtwD8Rjyb/qDV2QgOyKG3COJuA1rjGMnXxRWalq4urpyj5UAUInft//OmYNnOH74ON27dqdPnz64uJSdxu7o2JiWLd+kSZPniYtbia4ox2qhx/z8KPbtH4yXZz+Cg6fi4dHL5GuXvWULObt34/fGGybHlQoFvTyc6eXhjE5vsNiiEyAiPZsETfHX+ZeEdH5JSCfMwZYH/Tx5wM+TgCp0qFCqlAyf3halWomNbe1nZKjUNmQlm3dUatyhM8OfegFH17opVKpNziN91SU01y3XfHDq4Y/biDCrgbi61KdPH44fP05W1o21tm3bliFDhpT5rk5dy84+i4tLa4vnPD374u7eDYOhiKZNXsTDo3sdr656DAYD9x+7zLlc68WRA+1smBnsy0P+njjVQAaXEELciUoHRKxliAAmbwRUpT6EsKx0PZAJEyYYH6enp5OSkoKnp2etb71dtmyZ8XF522Uailv/alOI6rjrQTi/rvhfifPr4OTPcJdpVWy93sC/fz9jskvAwUbFf8a0q/I70SpnZ4K/+R9xr7xC9sY/b5wwGEh89110KSn4PPesxfnLes4inZ4/Pj+Ou68j/R5qaXFLjVKlotuY8TTtXJwtcnMb3oyUFFamNKGHt4reG16CjOsw+D9goYWsS/9glE42ZG26hj7XNDCiz9aSvuoiOfvjcB/dFLtQ69kd1hyJPcKxg8ewxRb0cODAAY4cOUKXLl3o06cPzs7WO9wA2Ni4ERo6vcwx0THLMBiKSEndRkrqNpydWhIcPI1Gje4la9XvJLz1Fuj1qFzd8H3heYtzWAuGAKyINy8Sdi1fwwdXE/jwagL9PV140N+T4d5u2JX6Giddz6IwV0dwa0+L89o51t272PbOzox85mVWvvkK+qIilCoVfR58lC6jxtZqa+ESBr2BnD2xZP51HXQWskI87PAY18JqDZtbwdbWlqFDh7Jq1SoaNWrEiBEjCAsLu9XLMsrKOsmVyE9IS9tFx47f4+nR02yMQqGgfbv/oVa71Iusm8pSKBQ8EuDFa5dizc61dXZgdogvo33csanlIsRCiFsnP7vytRRK2NipUFt50yE/R4PFgmIVoLZVWd3yXJCrxaCv+MQOLnXT9rt0QKSsuhClO5uMGTOmFlfUsJRsQ3Jzc6NVq1b88MMPfPTRR5w8edI4pnHjxkyZMoUXX3yx3NfHlZWTk8Nvv/0GQEhISIUK2v7yyy+sWLGCqKgo1Go1fn5+9OrVi6lTpzJgwIAaXd+tIgERcXtTKGDUZxC1D/JK3bBu+AeE9QG3G1WxVx2J4Xh0hsnlcwY1K3Nbz6Zrm/C096SLXxerY5S2tgTOnUuipxfpf+/JK5H6v/+hS03B/803UVQirX7vr5dJvJpF4tUskqOzGT69rdWtNV5BwTz49kccWf87e1d+b9aJxsfu74KDyRfAoAfMb3wVSgXO3f1xbO9D1tYocvbGwU1/yLUxOSTPP4FDBx/chje22hb1ZieTTzL3t7m0KDKtU6DT6di/fz+HDx+ma9eu9O7du8q/+HW6bOLiTKtw5+Re4Nz5f3Lx9Fs4HCzEyVmFKktB6jffoPbxsZq9Y4nBYECJApUCiiy8vjEA29Oy2Z6WjYdaxdhGHkzy98T+fDZbl51DpVIw/p9dKrU9qrYEtAinz6QpHPtzLaOefbnM7kQ1SZucR/ovF9FEWS625tTTH7fhjW9JZ5nU1FRiY2OtvlvWpk0bFAoF4eHhqOqo/XB5cnIuEnn1U5KTb1SGj7wyF4/Ov1gMetjYVD6QWdcMBoPVgM2D/p7892oC6X93iern4cLsEF/u9nC+LYM8QojKWfSP3eUPsuLuB1vQrr/lbhQ/vnmAghytxXPl6ToyjG6jm1g8t/q/R0mPL7vTR2lPLRhYpTVU1okTJwAICwuzun15zZo1rFy5EijeUtG5c/n19W6Fmvjdv3jxYqZOnVr9xVTQ2bNngeKv/5w5c/jqq6/Mxly9epU333yTVatW8ddffxEQUHOF9n/99VdjB5rJkydX6GtYsuYSly9f5vLlyyxbtoz77ruPJUuW1KuM2aqo/bcEhahtzj7FQZHSCjPhj6eNRSMz87R88Od5kyGNvZ14vI/1NMAV51fw0o6XeGbbM1xMN+96UppCqaTR66/h89yzZucyV/1KzDPPorfSneJmlw4ncnL7jQKIaXG5/PLBYS4fMd/qUEKpVNF19P1M/uAzAjxv3LC1cEmmhWsK+N9V3F5XVXZQRumgxn1UExo93wn7lpY7jOQfTyZx7mGytlxHrym7he3J5JPM2DyDK/ZXiHSJRI95VoBOp2Pfvn18/vnnbNq0iZycnDLntCQn5wIKheUb1SJ1Pjkj9SS+oyX9UR3aID2FFy9SmY7jCoWCb9uGcbxXG95oGkBzR+vBoHRdEYtiUxhy+CLjo6PZF2ZDhl7P+q9PUpBbtRddVVGks/5cXUbex5SPv6yTYIhBbyB7RwyJnx+1GAxRedrj/WQ7PMY0q/NgSGFhIVu2bOHrr7/m999/t9oqUKFQ0KZNm3oRDMnPj+LM2Rc5cPAek2AIQGbWMVJTI27NwqpBqzewKiGNIYcvci4n3+IYJ5WKJ4N9uL+RB5u7tGBlh6b087w9M16EEOJWSEhIMG6Fubl+SGFhIadOneKFF15g/Pjx6PV6+vTpw6JFi27FUu9YaWlpQHEtka+++gp3d3cWLFhAUlISBQUFHDp0iBEjijsdnj59mgkTJqDXm792rqrKbJdxdHTkwQcf5Ntvv2XXrl0cO3aMTZs28dprrxm39axZs4YxY8ag1dbd69vaIBkiok4YDAZyCnW42NfS9oDW90L7iXBy5Y1jV7bB4UXQ9XHmbr5AWq5p5sSb97bBzsJec4PBwJfHv+Sbk98AkK3NZtbmWSy/ZzkBztajtAqFAu+ZM1F5eZHwxptQ6hdYzrZtxMyeTfDCheW+gFepldjYq9AW3Ag2aAuK+Ovb0yRcCabnuKaoVJZjmZ5nv2GibwTHbAI4khrIIL8r4BYMD/0MdhXPvrDxccR7WlvyL6SRuS4SXbLpTYpBqydrSxS5hxJxv68pDq3M9zueSj7FjM0zyNHmgA0c8z7GBbcL9NP2wznZ2ewXvFarZe/evRw6dIhu3brRq1cvnJwqllHh7t6FPr13Ex//G9Exi8nLu2o+SA35PfTk99Cjdb+EOmUL3t4DrQZSLPGxtWFWiC8zg304lpXHioQ01iSmk11k+Y9VooeavzzUXPO14YE9ORzbFEXPsda72NQEraaQiKXfkpGYwPj/+4/FrTAKpRI7x7rJVtFczyJzo4XvhwKcewbgOjwMZR3UTynNYDBw+vRpNm3aZNIe8K+//uKhhx6q07VUVEFhAteufUVc3M8YDJYL3Nna+lCkr1jgtT7I0RXxQ3wq30QnE1tY/GJqfnQSX7Sy3P73hbDbqz2jEELUJ8eOHTM+Xrt2rdXXo507d+axxx5j+vTp9bpo+KlTp6o9R1CQ5cyh2lKSnVFYWIhKpWLjxo306NHDeL5Lly6sW7eOUaNGsXHjRvbu3cvq1asZP358tZ87JiaGiIgIAHr06FFud7zY2Fjc3d3Njg8ZMoQ5c+YwYsQIjh07xo4dO5g/fz7PPPNMtdd4q9Tfn3Jx2zMYDJyOzWL9qXjWn4qjfaA7Xz3cqfaecMSHcHUXZMfdOLbpX1x06cL3+01bTg5r04h+LSx3I9Eb9FxKN+3ekpSfxIzNM1g2Yhke9pYzJ0p4TJiA2tOT2BdexFD4d1tIpRL3Bx+s0LuZTTr48MCrXfnzm1OkxpqmW57YFk3itSyGPdkGZ4+bOpIc/Bb2zkOpgM6ecdzlHo/awQUe/gVczG8kTmzeSHjvftiVUV3aoaUn9s3cydkXT9aW6xgKTDNCijILLXYIOZ1y+kYwpJSOYR15e8Db5GXlsXPnTo4fP26WqaHVatmzZw8HDx6ke/fu9OzZs0KBEZXKkaCgh/FzvocL7z9CWsgFNK0sZ4FkZBwkI+MgDvYhBAU/SoD/A6jVFQ8QKBQKOrk50cnNibeaBbIhOYMV8WnsybCc3XLX1ULa3B1It3trtzBZSvR11n/+ESnR1wE4+Psquo99oFafszx2jd1w7NKIvMM3CrSpvezxGN8Cu8Z1n2KZkJDAxo0buX79utm5ixcvcunSJZo3b17n67JGo0nj+vUFxMR+j15vuc2sWu1OWOgMgoImo1LVUmevGpRYqOW7mGSWxaWSqTP9nfJbYgavNvHH365u9tMLIURDUbp+SFlycnIYMWJEvQ6GQNk1UOore3t7Y1BkwoQJJsGQEkqlko8//piNGzcCsGLFihoJiHz//ffGNyOnTJlS7nhLwZASjRo1YtWqVbRq1QqNRsO8efNu64CIwlCZvHFhFBMTQ3BwMADR0dF1HmG8Hfx2LIbnV54wfmxvo+Tov4bgaFuLv2Avb4Hvxxk/NDh686bdSyyNDzEes1Mr2fJCP4I9rQcCCnQFzNg8g6NJR02Ot/duz7dDv8XRpvwWVXmHDxM9+yn0WVn4vfkmHg9OLPea0rSaInb+eIHz+xPMzjm42DDksTYEt/q7UOeFP+GnSX/XCPmbUg2P/ApN+ptdf2HfbtZ99gEuXj4Mnf40YR3K3x9alKMha/N1cg8mGAuQ2Ya54jPDtFvOqeRTTN883SwY0juwN58P+Bw71Y3tJmlpaezcuZMTJ05Y3cJSUlyqIrTx8URPn07hpcvFH/vryR2oJ6+bHqwkJykUanr1jMDe3r9Cz2HNtVMprPzpHIf91ZwIsyXLqTjrwalAz68OPnToH2x2jUav5/ekDO7xccOpGtsxDAYDp7b9xfYl36LT3LhpViiVPPjWh3VWJ8Qafb6OhE+PoM/W4Nw7ENehoXWeFZKXl8f27ds5fPiwxZ81pVJJ9+7d6devH/b2tdv+uCJ0umyiohYSFb2IoiLL+9BVKidCgh8nJOQx1OqyOzbVB5dyC5gfncSqhHQ0Zbz0eLWxP8+GNarDlQkh6tqlS5fQ6XSo1eoKBaGlqGr1TZw4kZ9//hmAiIgI47aHvLw8Ll68yCeffGLMIunbty87d+6s9TXd7q5du2bswjNlyhSWLFlS5nh/f38SEopf1y9durTMbStBQUHExsYSHBxMVFSU1XEV1aZNG86ePYudnR3x8fF4eJT9Bm9FjBo1ivXr1wPFGSWVqXdS2d8BUHv33/U79Cdua/1a+KJSKij6+w9CgVbP9vPJjGxfvRvPMjUbDJ2nwZHFED6K813+ww+LLlD6r91TA5qVGQwBsFfb88XAL5j651QuZ1w2Hj+ZcpKXdrzE5wM/x0ZZ9vYfxy5dCP1+OXn79lU6GAJgY6ti4JRW+DV1Y9fKSxSV6sqRn63ljy+O021UY7p0SEexapppMATg3nkWgyF5WZlsXTQfgOzUZH59/w3aDhhK/0cfL3MbhcrZFo+xzXHqEUDm2isUXs3EfXRTk2BISc0Qs2BIgHkwBMDT05P77ruPvn37smvXLouBkd69e5f5dSpRcOEC0U9OR5d0o9aKTbwSz99daTX0fdJ9zxMT+z0aTbLJdb6+I6oVDDHoDRz58xoH1l7F2QD9U7XcfSafa75qTjV3oGtLbzp0NQ+GAGxOzWLOuShevahkjK87k/y96OzqWKm6CAW5OWz+5ksu7jcvOKeysSHbSl2MmmYoMoDScpEzpYMazwdaolArsAur26wQvV7P0aNH2bp1K/n5lutTNGnShBEjRuDjYzlrrK7FxHzPlchP0ekyLJ5XKu0ICppMaMgMbG0tdy+qLwwGAwczc/kqKolNqZbbLJfo6urE7BAfhnnf3sXZhBA1r7YCBg7OtTOvvVPddZCrqJIMEW9vb/r162dyrlu3bowfP54uXbpw5swZdu3axZEjR+ptQVUorrFRXUFBQWVmQtS04OBgY0CkvJv54OBgYmNjSUqyXkOwog4fPmwsjjpq1KgaCYYAtG7dusoBkfpEAiKi1ng62dKrqRe7LqUYj60/FVe7ARGAoe9A477Q5n5aKRRsfNaXN/44w94rqYR6OTL9bssVwW/mZufG/MHzmbxxMgm5N7I0dsXu4s29b/JO73fKvXG1b9EC+3L26JVFoVDQpm8gvqGu/PnNKbJSStUHMMDBtVdJ2HqaIc4q7EuXiuj3T+hguRbCzu8XkZ+VaXLs9PZNXDtxhCHTn6ZJx65lrsnW3wnvJ9uhjcvFNvBGXZITySeYuXmmMRgyK+EBjjmdR9nCmc8HmgdDSvPy8jIGRnbu3MnJkycxGAwEBQXRtGn5NTdy9+8n5uk56G8qyKr28SH4u2+xb9kSdwYTGvokiYkbiI5eTHbOGQCCg6dZnTc75zxOjk1QKi2/YNIU6Ni65ByRx02DLEoDdFXb8+9hbXHzsb6FYUV8cXGtnCI9P8Sn8UN8Gs0d7Zjo58kDfp742pX9giru4nnWf/ExWcmJZud8Qhsz8tmX8Qq0HIypSdqEXNJ+uYhzrwCcOlt+Z/9WtNKNjo5mw4YNxMfHWzzv7u7OsGHDCA8Pr1fFObXadIvBEIVCTUDARMLCZmNvV7/raRQZDPyZksnXUUkcycqzOk4BDPd2Y3aIL13dbn0XJiGEuBPl5eVx+XLxG3wdO3a0OMbe3p7XX3+dSZMmAcVbLOpzQOTmwrBVUdddZtq0acOhQ4cAKCoquzFByfma2LpUuphqRbOuK+JO2WgiARFRq0a28zcJiGw7n0RuoQ4nu1r80bNzhrY3ts00b+TCD090Z8OpBNwcbLC3qXiqvp+TH/8b/D8e/fNRMgtvBBH+uPIH3g7ePN/5+WotNWvjRgwaDW7l9Hj3CXFhwqtd2br0HNdOppici8pry8qC/zLc42Ma2VyGuyZB/39anavn+ElkpyYTdfqkyfGctFR+++At2vQbRP9Hn8S+jBa4CoXCLBgyY/MMcrXFqf2dclpxb3p/7k3vj42dK8pkHfiV36bXy8uLsWPHGgMjd911l9Ub1atXr3Lt2jVaZ2SS9u9/w00Vrm0bNyb422+xDbrRelmptMPffyx+fveRkXGI1LQduLneZXH+oqICjh17BIXChqCgRwgMmGTybnxGYh4b5p8kPcH8Zq9ZF18GTm5lNZUWIKFQyzYL75hfyivknch43r8azyBPVyb5ezLYyw0b5Y2vg0Gv59Da1ez+aRkGC9XHOw4fzd0PT0NtW7spuIYiPdkRMWRti4IiAxlrr2DfzB2VW8VaMteW7OxstmzZYmwveDO1Wk2fPn3o3bs3Njb171284OBpRMcsQ6tN+/uIAj+/+2jS+BkcHELKvLY+KDIYGHr4AmdyrBd4tVMqmNDIk5khPjRzvPVblIQQ4k524sQJY/2IDh06WB03ZswYnJ2dycnJYfXq1Xz66ad1tMKG4e677zZuq7ly5QpDhgyxOjYyMhKAwMBAq2MqQqvV8tNPPwHg4+Nj7GJTE0q35L1ds0NAAiKilg1r48dra06bbJvZdj6J0XfV7X8ahUJR5cyUJu5N+HLglzy56UkKim68wF90ehE+Dj480vqRKs2bu3cvsS+/AlotupRUvB5/rMzx9k423DOzHcc2R7F/zRVKB2Vz9L4cypnIqI47YfQXUMa73W6+fox//V1ObvmTHd8vQltguo3gzI6tXDt5jCFPPkXTzt3L/zy0uczZOscYDFEZlMxIvFH8SXsli8QvjuLU3R/XwaGoKpBG6u3tzf3332/1vMFgYOvWrcTExLBXq6VFixa0uHgR27+DIg6dOhH89VeorKRBKhQKPDy64eHRzepzJCT+jlabDkBk5Cdcu/YVfn73ERw0lZSrnmxedBZNvmm3D4UCeoxtSschIeVmHGTpiujv6UJEWraFZsRQZIBNqVlsSs3C20bNeD8PHvT3JFhbwMavPuH6yWNm19g7uzBs5rM062pepKumaeJySF91EW3cjfoWhoIi0n+7jNeU1rc046KsYEirVq0YOnRojaWLVpXBoEev16BSmQcD1GpnwkJncenyu/j4DKdJk+dwdqo/hV7Lo1Io6OLqZDEg4qZWMTXQm8cDvcvNgBJCCFEzShdUtZYhAuDg4MDgwYNZs2YNUVFRnDx5kvbt29fBCivvdsxOuPfee7GxsUGr1bJ69WpmzpxpcdyOHTtI/XvLc9++fav1nBs3biQ5uTiT+aGHHqqxYrmRkZFs3rwZKN56XN3Aza1kuXenEDXE4+9tM6VtOGU5fb3O5KdX+pIOvh34b7//orqpReuHhz5k49WNlV/CmTPEPD3HmNWQ9PHHJH74kcV3+0tTKBV0GhbKmOc64GB/IyPCWZnCoCZ/wsTvQV1+VoBCoeCuISOY+t+vCG1v/ocxNz2NNR+9zYYv55Kfk21hhhucbJx4s9ebqJXFv2D7ZHUiRHNT8EkPufviSfjvYXL2xGKw0qa2oq5cuUJMTHHnIK2NDWfatWXd6FGcadMau2FDCVm00GowpCIMBgPR0YtNjun1hcTFreTAwRFEJT2FjdsxKBXKsHNUM3pOBzoNDa1QMKCFkz0/3tWUwz1b82pjfxo7WP++pWh1LIhOpv/BC9y9eT+/a9UU2ppmYQSGt2Hyh1/UejDEoNOTuekaSV8eNwmGlNCl5aPPs9wWtq4MHDjQLPPD29ubyZMnM3HixFsaDDEYDKSkRnDo0H1cufKx1XGBgQ/Ttcsa2rf76rYKhpSYGexL6f8FgXY2vN0skKM9W/NqE38JhgghRB0qHRApK0MEYOTIkcbHa9euraUVNUxeXl488cQTAGzevNmYuVFadnY2zz33nPHjGTNmWJxLoVCgUCgICwsr8zlLb5cpq4hraWvXrkWns/5aLjExkfHjx6P9+z7mqaeeqtC89ZV0maki6TJTcSsPRfHKrzd6hdupi7vN1Oq2GUtyU2HDi5B4FmbsBJvKp2n/duk3/r333ybH1Eo1Xw/6mp4BPSs8T/LXX5PyxTyz4673jibg3XdRVCCNPzezkE2f7yAhDsYGzsVvzrfgXvl0+uIOJZvYsXwhmnzz7R+Obu4MfvIpmnct+/PbGrWVlyJeoqd/Tz7wep3cv6IpyrRcFV7t64j7qCbYt6jajenChQuJjo62eM7e3p6ePXvSvXv3KncL0WjSOHVqNhmZh8ocV5jlR/qlQag0QxgxvUuZ9ULKYzAYOJCZy4r4NP5IyiC/nODY+HVLaBxzGYVCSff7J9Jz3IMoq9GppiIKo7JIX3UJXZKFmhAKcOkXjOugEBQ2tz7WvnPnTrZt24adnR39+/enW7duqGr561Oe9PSDXIn8L5mZRwBQKGzp1XMr9va3X5rpqew8votJ4e3mgbiqLX9dHz99lev5GmaH+DLax91k25cQomGrSocJUXXdu3fn4MGDODo6kpWVVebfw7i4OIKCgjAYDPTo0YN9+/bV4Urrt927dxtrsQCkpKTwj3/8AyhuAlAS7ChhqT5JcnIyXbp0ISoqCrVazcyZM7n//vtxdXXl1KlTfPjhh5w/fx6AWbNm8fXXX1tcS8mbb6GhoVy7ds3imPT0dPz9/SksLKRt27acOnXK4ribhYWFodVqGTduHD179iQsLAwHBwdSUlKIiIhgwYIFxgyWPn36sGXLFuzsKrdduj51mZGASBVJQKTi0nM1dH13C7pS7ce+mNSRe2th24zBYODw9XS6hHqYvkt/4U/4Yw7k/l2puefTMOzdKj3Hd6e+4/Ojn5scc1Q7snbsWnwdfSs8T+rCRSR9bP4OsVPfvgR9/hlKx/Jb++qL9CQcPERAiBoCq1f4Kislmc3ffsm140csng/v3Y/BT8wusxPNkcQjtPNuh63KFr2miOwdMWTviAGd5Zt7+1aeuI1sgo135QIJSUlJ7NixgzNnzlgdY29vT69evejevXulf0mXyMo6RXT0EhKT1mMwaK2OU6vdCAycRFDgI9Vu3wuQoyvij6QMfkpI42CmeRaGS3YG03+ci6u7B/fMeYngNrWbzqrXFJG16To5e2IttidUN3LEc3wLbIPrrvWrVqslJSUFf3/LX2+tVsv27dvp2bMnLi63tiVtVtZJrkR+QlraLrNzAf4P0KrV+7dgVZVnMBjYkZ7NV1FJ7EovLmD8r6YBPBVi+fdejq4IJ5WyXhWsFULUDxIQqTt6vR4XFxfy8vLo3r07+/fvL/eazp07c/ToUZRKJfHx8fj6Vvz17Z1s6tSpLF26tMLjrd1mnzt3jnvvvdckuHKzxx57jAULFlitdVaRgMiCBQuYNWsWAB999JExeFOesLAwrl+/Xu64cePG8d1331WpU099Cojc+rfxxB3Pw8mW3s28TY5tOFk722YOXk1jwoJ9jPh8F6uPxqAt0oNeDxHv3wiGAOz7Cq7tqdJzPN72cR4Kv9HBRYGCZzo9U6lgCIDX448R8OEHcNNevtxdu7g+dRq69PK39ihVSgJ6drcaDCnI1XJgbaRJy15rXL19uP+fbzJs1nMWgx5J1yJRqcvOXOncqDO2quKtH0pbFW5DQvF7sTMO7b0tji84l0bip0fI2BCJvqDsbRZFGRnGx76+vkyYMIFZs2bRunVry3MXFLBt2zY+++wzdu3aRWFhYZnzW+Lq2o42bebSu9cOwsKewsbGckaLTpfJ9esL2LuvP6fPPEdO7qVKP1dpzmoVDwV48Uen5uzuHs7TIb74qG/8um574RjNOnZh8kfzzIIhu9Oz+S0xnYJqbksqUXA5g8TPjpKz20IwRKnAZWAwjeZ0rLNgiMFg4OzZs3z55Zd8//33FBRYLtxpY2PD0KFDb2kwJCfnIidPzeLQ4bEWgyEAmVnH0estZ1LVF1q9gVUJaQw+fIEHT0QagyEA30Yno7GSzeSsVkkwRAghbrGLFy+Sl1ec2VnedpkSJdtm9Hq9sa2qqDmtWrXi+PHjfPzxx3Tv3h1PT09sbW0JCgpi4sSJbNu2jYULF1a78Pvy5csBUKlUPPzwwxW+bunSpbz11lsMHz6cFi1a4OnpiVqtxt3dnXbt2jFjxgz27t3LqlWr6rRtcW2RDJEqkgyRyvn5UDQv/3qjq4mdWsmRfw3BuYa3zTy25BDbzt8IfHQL8+TnmT0h6Rz8rx8Ulbopdg+FWXuLu9JUkt6g5+WdL7M1aivv93mf4Y2HV3nNOTt3EvPscxjyTYub2jZuTMh332JTxSJFBr2BDfNPcu1UKo0auzLsyba4eFZsC0l2Wgpbvv2KyKPFW0YUCiWT3v6YWJdsMjWZDAoZVOn1FF7NJGNdJNrYHIvnlc42uI1obLFta/6p00TPnIn3jOl4Wtj/mJCQwI4dOzh37pzV53dwcKB379507dq1QhkjBr2BI39eJ6C5GwHNiwMhRUUFJCT+TnT0YnLLCHp07Pg9nh4V30JVETq9gR/2H2Dhhau84u/KPcPusXizOf7YZXZn5OCmVjG2kQeT/D1p7+xQ6RtTfYGOzA1XyT2YYPG8TaAzHuOaYxtQ+f8/VZWcnMzGjRuNldcBevbsybBhw+psDRWRl3edq1e/ICHxdyym1AD29kE0afwMjRqNQamsn/XNc3RF/BCfyjfRycQWWs+Q+iw8mAf9vayeF0KIm0mGiBANW33KEJGASBVJQKRyMvI0dHnHdNvM5w92YEyHmqtIfDExm6Gf7jQ59ubo1kzt3bj4gz1fwOZ/mV7UeRqM/qxKz6cp0nA+7Tztfaq/XSH/+HGiZ8ykKDPT5Lja15fgrz/H/uibMOA1CO5a4TmP/HmN/Wtu3DjaO9kw5LHWhLSp2I2LwWDg3K7tbF/yDW0HDsVxcDue2voU2iIt/+3/3yoFRQx6A3lHEsn86xr6HPMbLNchobgOMq2Dkh0RQewLL2LIywOFgsDPPsN12FCL8yckJBAREWHce2nJkCFD6N27d5nrLMzTsmVJcYtjBxcbJrza1SSYZDAYSEvfQ3T0YlJTI0yudXZuRbeua6v8zri2sAAbO+uBq+zUFFy8LGfcXM8vpPt+86BQKyd7Jvl7cn8jT7xtK3bznbLsLAVnU81PqBW4DQnFuU8QClXdvPtfUFDAjh07OHDggLFtYAmlUsmsWbPw8fGpk7WUpaAwgWvXviIu7mcMBssZT7a2PjQOe5qAgAdQKmu3LXJVJRVq+S4mmaVxqWTqiqyO87FV80SgD1MCvXC3qZ9BHSFE/SQBESEaNgmI3AEkIFJ5UxcfJOJCsvHjoa0b8c2jXWps/pd+OcGqIzHGj90dbdj7z4E4ltwA6otgyUiIuqk41MO/QvPBNbaOqiqMjCTq8SfQxZtuJ1LaKwnunYSjnwLGzoe248qdKz9bw7LX96ErvOlmRgFd7wmjy8jGKCtY4DAnPY3T2ed5Ztdz5OuKs1jUCjVz+89lYMhAMhITsLGzw8m94gVS9QU6srZFF9ekKCr+FaRyt8Pvxc4obG4U+kpfsYKEt98p3vZU8inY2hK6fBkOd91ldf74+HgiIiK4cOGCyXEHBweee+65MjNEUmJy2Pi/U2Ql38jY8Q11YexLnVDbmBchy829QnTMUuLjf0WvL6BVqw8J8B9vNg6Ka0mo1a44OoaZnSvSadnz8w9cPriXR97/DFuH8mvI3Oyjq/F8ci3R6nkbhYKh3q5M8veiv4cL6jJ+BrQJuSTOO2b8/gDYhrniMa45Nj6VX1tV6PV6Tpw4wZYtW8jNNa+lAsV7Z0ePHo23t+UgUV3QaNK4fn0BMbHfo9db3pqlVrsTFjqDoKDJqFRVL75bmy7lFjA/OolVCeloynhp0NTBjlkhvoxv5IG9SnbeCiEqTwIiQjRs9SkgIq9kRJ25p51p8cOIi8nkFNZMe86EzAJ+Px5rcuzRHqE3giEAShXc9zXY3FQf44+nq9SKtzwx2THoDRWv42DXpAlhK37Ernkzk+P6Aj1REV5kRwGrHoPDiy1PUIqDiy33v9QJ15u7nhjg0PprrPvyBPk5FatbcLbgMnN2PmsMhgDoDDo2XN2AXl/Ehi8+ZslLT3Fuz44K94RX2qtxv6cxjZ7vjH0rTwDc7mlsDIYY9HqS/vtfEt76j0kwBMChcydsmzQpc35/f38mTZrE9OnTadmypfF47969ywyGXDiQwK8fHjYJhgAkR2UTeyHD4jVOTk0Jb/kf+vTeQ7Nmr9LId7TFcQaDgQsX3mDf/sGcODmDtPR9xq9XWlwMP77+Eod+X0V6fBzbFn9T5udnTQcXR+72sL6FRWswsD45k0dORtJ53xnevRLHlTwrNTj8nHDpX/xHR2Grwn1MU3ymt6+zYEhsbCyLFi3i999/txgMcXV1Zfz48UydOvWWBkMACgsTiIpeaDEYolI50zjsGXr3iiA0dHq9DIbkF+mZciqSvgfP82N8mtVgSFdXJxa3DWNX93AeCfCSYIgQQgghbnuSIVJFkiFSeZl5Wrq8uxltkQG1UkHvZt68PaYtIV7Vv8F6f8M5/rfzxvYQO7WSPf8ciLezhZvfQwth/Qumx9o9AOO+rfY6ShxJPMKcrXMY3XQ0/+z2z0ptnyjKzCR61mzyjx41PaEw0OQ+DXb/2AKeZQcEShTmadm69BxXT6SYnXP2sGPYk23xa+Jm9foD8Qd4euvTFBSZ3jQPChnEx/0+5vj6tez8fpHxeLOuPRj8xFOVyhYBKLyehW2ICwqFAn1hIfGvvkrWho3G87bNh6HPT8exsx8Bb7+NwrZyWw3i4uLYt28fo0aNshgQKdLpWb5gNcmReTjk+aPgRiaIvbMNQ59oQ3C4Z6We82aZmUc5fGSCyTFn51Yosjuzf/lJtPmmW4hGPfcKLXv2rdJzReUX8nNCOj8lpBJTYL32Q4lubk486O/JA408TbJGDDo9GesicekXhNqjai2MKys3N5etW7dy9Oaf/7+pVCp69epF3759sa3kz0FtOnX6GZKSbhSeUyrtCAqaTGjIDGxtq/ezUxfuO3qJ/RY6GimA4d5uzA7xpaub9Q5TQghRGZIhIkTDVp8yRGTTr6gzbo42zOrfjEB3e4a29sPDqWZuZrIKtPxwIMrk2PjOQZaDIQBdHoPz6+DKthvHTv0MrUZB6zHVXs/WqK28vONlNHoNP57/ER9HH55o90T5F/5N5eZGyP89TOyze8mJvXET6tUmH7uZP1U4GAJg52jDiJntOL45mn1rrmAoVcMlJ72Q3+Yepff4ZrTrH2QWtNkfv5+ntz5NYZHpu95DQofw4d0fkp2QyN6V35ucu3xoPzFnTzNg2gxa9elf4UCQXagrALr0dGKenkP+kRutfxXOjbBtdR8KpQp1sAvaxEJsgyv3sxMQEMC4cZa3GuVmFPLHgkNcyz8DrgbynWJwyA3GIc+PRqHuDJ/RrsLFaMsSFW2e2ZOTcw4U52gxXkXKWQ9Sz3qgy1ejVKnJz8qq8nOFONjxUmM/XghrxJ70HFYkpLEhOYMCveX498HMXJI1Wib5md64K9RKPO5rZvGamqbT6Th06BARERFWOwK1aNGC4cOH4+lZ/wIMTZs8T3Lyn4CCgICJhIXNxt7O71Yvq8Jmh/iy/9RV48e2CgUP+HkyM8SHZo51EwwTQgghhKhrEhARdeqFIS1qfM4VB6JMtt4oFPBk3zKCBgoF3PslfN0TCksVMV33PIT0BOeq91pPyU/hlZ2voCnVRvPzo5/jZe/F2OZjKzZJ8kWUa2cQ1DuL+ENuZF51wr1JLj7/+hhCK9+5RKFQ0HFoCI0au/DXt2fIy7qxNn2RgV0rLxF/JZMBj4Rja1/8K2Ff3D7mbJtjNRhio7TB3smZJp27cXH/bpMxBbk5bPxyLhf27mTIk0/j7FmxIq6a6Giin5yO5qZe6vbtHkChLM7Y0EZnk/TVcRw7+eI2PAyVa/ndYsoSdymdP789QxJnwLE4WKBXach1vYLWI5bO/fph72JeN6SyDAYDDg6hqNUu6HTZZudtHIvw75JCo46p5MX606HnvwltOaTaz6tUKOjr6UJfTxcytYGsScpgRXwax7PzzMZO8ve6pS1S16xZw+nTpy2e8/T0ZMSIEbfsXUS9XkdC4hoSE/7grrsWolSat8FzdGxMeMt38fDojoNDiIVZbq10rY7fEtOZFuht8fs82MuV5o52JGl0TA305vFAb3ztqtfuTwghhBCivpMtM1UkW2bqB41OT9+PtpGYdePGfURbP+Y/0rn8i0+shN+mmx5rORIe/KE4aFJFGyI38MquV0yOqRQqPh/wOf2C+5V9cX46fDsI0q4AYDBA1nUHXB+Zg2Lwa1VeU4nczEI2LzxD7MUMs3Mefo4Mm96WC4aTPLP9GbNgyNDQoXxw9wfY3HQzeHH/brYsnE9+lmmHHAA7JycGTJlO67sHlnmznX/yJNEzZ1GUlmZyXO3fCofuz1u8RmGrxGVAMC59glDYVK6WgcFg4MTWaPauvkIRhaT6HACF5V+FLi4u9OnTh06dOlW7H3xhfjp7NrxKvmIH9u5l13DxcO9BcMhjeHsNQKGomVoNBr2BnL1xHNl9nT8aqdkQoCbDVonSYGB/syaEhFjePvXm5Vi6uDox1NsVW2Xt1I2Ijo5m4cKFJsdsbGzo168fPXr0QK2u+/i9waAnKflPIiM/JS+veEteePh7BAZMrPO1VFVUfiHfxCTzQ1wa+Xo937dvwmAvV4tjz+fmE2Rni7O6+kFAIYQoi2yZEaJhq09bZiQgUkUSEKkffjkczT9WnTQ59tvsXnQMqUANC4MBVj5SvH2mtPvmQ4eHqrWu5WeX89Ghj0yO2avs+Xbot3Tw7WD5oiId/DAeIrebHm8zFsYvrlaQpjR9kZ4Df1zl6F/Xzc4pbeD3VvOIdbpscnxY2DA+6PsBaqXlm9K8rEy2Lf4fF/butHi+cYfODJk+x2K72OytW4l98SUMBaZ1StSNGhG0YD4YfMlcH4ku1XLxT5WHHW73NMGhbcUyHDQFOrYvP8/lI0nGY1qbLHKdr6O1s15c18XFhb59+9KpU6cq3ZynRF9nwxcfkxx1DTDgGpKDT7s0XILMszVKc3AIpUnj5/Dzu7fSz1maJjaH9NWX0MbmGI9pFbDbR81lFyUvNvE3a3kMcDG3gLsPFrcx9rRRMb6RJw/6e9LaueaLg65evZqTJ4v/P7dv357Bgwfj6mr55r02GQwGUlMjuBL5CTk5Z03O2dn50bPHNlSq6mUn1baT2Xl8HZXE2uSM0o2C6OnuxG8d5eZDCHFrSUBEiIatPgVEpES8uG3p9Qa+KVVIFaBbY8+KBUOgOMAw+nNwvOkm/fDi4mBJNUxuPZlpbaeZHCsoKuDpbU8TmRFp+aLN/zIPhvjfBWO+thoMKbhwgetTpqJLMS+aao1SpaTn2KbcM6sdtg6mN/ZJtjEkOFwzOTYibESZwRAAR1c3Rj37Mve++H84urmbnb96/AhLXpzNqW2bTDrRpK9YQczTc8yCIXYtWxK28iccWrXCobUXjZ7vXNyFxs78neui9ELSfjhH8jen0MTlmJ0vTact4tePjpgEQwBstK609+/HI5MepYmVDjbZ2dls2LCBL774gkOHDqHTVaxDkkGv5+jGtfzw6vN/B0MAFGRFuXBlfSjZJ0fi43UvSqXluij5+dfR6jIq9FyW6DVFZKyPJOnLYybBEAAbAwwuVPLPvs0tBkMAfoq/kbWTpi3im5hkBh66wNDDF1gcm0KGtuKdovR6PVll1EYZPHgwYWFhPP7449x///23JBiSnn6AI0cf4MTJJ8yCIVDcUSY5+a86X1dFGAwGtqdmMeH4ZYYevsiaJNNgCMC+jFyOZZUdhBNCCCGEaCgkQ6SKJEOk5uiK9GTka60XQbVi2/lEHlty2OTYoqldGBjeqHILOLcOVj4MKKDnUzDwX2BT/SKCBoOB1/e8zh9X/jA57ufkx/IRy/FzKlVw8ejy4va/pTn5wvTt4Gb5Z0sTE8O1SZMoSk7BJiSEkO++xTakcrULMpPz+evb0yRHZVOozmNVu4/Jtr9xAzyi8Qje6/NemcGQm+VnZ7F9yTec2x1h8Xxo+44MnTEHV29fsrduJebpOSYBKKdevQj84nNUzubtY4uyNWRtuk7u4QSw9JtLAU7d/HAdEorK2XKA4cAfkRzecM3kWJeRYXQd2Rjl3x1Wrl+/TkREBFevXrUwQzFXV1fuvvtuOnToYDVjpEinZfUHbxF16rjZOZWNDf0eeYwOw0ahUCjQaFKIiV1BbOz3aDQ3AlxqtQu9e+1Bra58h4/882lkrLlMUYblIqVO3f1wG9EYpb3l9Wv1BjrtO0OyxnrQw06p4B5vNx7096KvhzNKK8G7a9eu8eeff2IwGJgxYwbKWtp6U1VZWSe5cmUuaem7rY5xcW5Dk6Yv4OXZ75bWW7mZVm/g96R05kcncSbHciYVgEoBY3w9eDGsEU2lUKoQ4haSDBEhGrb6lCEiAZEqkoBI9RTpDRyITGX9qXj+PJ1AxxB3vpvStVJzPPC/fRy8euPmvUUjZ/589m7jTW2lbHkLmg2GsN6Vv7YMWr2WZ7c9y67YXSbHm7k3Y8nwJbjZuUHUflgyCvSl2qOqbGHqegjuZnFeXVoa1yc9hOb6jW0vKi8vQr79BvvWrSu1Rp22iP99vYYNhl+I8jhjPH5P43t4t8+7lQqGlHb58AG2fPsluRnm21CGPPk07QcPByBt+fckvvsuAG7334//W2+iKKdWhyY2h4y1V9Bcs5xtoLBX4TooFOc+AWY3rnq9gfVfniDqbBp2jmoGT21NWHvzrTxQfBMfERHBtZsKvZY2e/ZsfH2tF+Ld8t1XnNi80eSYT0gY98x5Ce+QMLPxen0hiYnriIpeTE7OOUJCnqB5s1ctzp2be5ns7LP4+o4wKfRZlK0hY+0V8k9azhxS+zrgcX9z7MKst1wG0Oj1rE5M56f4NIstWW8WaGfDRH9PJvp5EupQHODMyMhg8+bNnDlz42dr1KhRdOnSpdz56kJOzkUir35KcvImq2McHZvSpMnz+PoMq7F6LjUhR1fED/GpfBOdTGyh9fbKjiolD/t7Mj3Yl2D7+tOqWAjRcElARIiGTQIidwAJiFTP78djefan48aPbVVKDr0+GDeHihWtTMkpZMTnu0jOvvHO98fj2zOhS3BNL7Xa8rR5PLnpSU6mmNY66eTbif/1eAv77wZDbrLpReXUMdFERxP12ONoo6NNjiudnAj66kucevSo1BoNBgPzjs3j21PfAjCyyUje7f0uqr+7u+Rna7Bzsql0sCk/J5uIpd9ydueNFschbdsz/vV3TQIViR98iNLVBe9Zsyr8zrvBYCD/VAqZG65azIBw7OiL58SWFq8tyNGyddk5+kxohpuPY7nPdfXqVSIiIrh+3bTuSps2bZgwYUKZ12oLClj2yhwyEuIB6DxyDH0enILatuwbU4PBQEbGARwcw6y2bz177hXi41dhZ+dHUOAjBPhPRHO8kMyN1zAUWMjqUClwHRiCS78gFOrK3dhH5hWyMiGNlfFpJGis33yX6OXmSN/MRHL37DDbXuTo6MicOXNwcKj5OiQVlZd3natXvyAh8XcspxuBvX0QTRo/g5/ffSgU9afQaI6uiC+uJ7I0LpVMXZHVcd42ap4M8uHRQC88bKSpnBCi/pCAiBANmwRE7gASEKmerAItXd7egqZIbzw2d8JdjOtc8a9jgbaINcdi+WZnJLkaHbteHohtJW/y6kp6QTqPbnyUa1nXTI4PCOrPJwV2qA99e+Ngz6dh2LvlzqlLTiZq+gwKz50zOa6wsSHgow9xHTGiUmssCYrE5caZBEN0miJWfXQEB2cbhj7eBgeXyr/DHHn0EJu/mUdhXh5T/vslbr6mN/gGg6HKWxAM2iKyd8aSHRGNQVv886SwUeI28y6cA8233VTH1atX2b59O1FRUUD52SEl4i6eZ/0XHzN0+hxC23eokbVoNCns3tMXg+FGtxqlwg6XqJ54RA3FLjfAZLxdEzfcxzbDpgIBoLIUGQxEpGWzIj6Vv1Ky0JbxJ6Tn5VPcFXvF7LiPjw8TJkyo0NeuNhgMBg4cHEFu7iWL521tfWgc9jQBAQ9Yre1yKxXq9XTbd5ZEK1uZmjrYMSvEl/GNPLBX1c/fiUKIhk0CIkI0bBIQuQNIQKT6nlh6mC3nEo0fDwr3ZeHUym2bgeItENHpeYR6Vb7GQl2Ky4lj8obJJOWbFvQc13wcb9iGotjwD2jSDx76GZQVeze6KCeHmKeeJu/AAdMTCgWNXn8Nz4cfrtQaDQYDBgwoS20L2LbsHOf2Fmc3OLnbMezJtvg3LXurxc1yDx4kNzaGguZNCWl7l9Vx+TnZODi7VGruErrMQrI2XiXveDLZYa7sPJvO2Bc74Rtas4U5DQYDV69eJSYmhrvvvhsozgJJuhZJYHjxdiWdTscPP/xA+/btad++PSqViiKdDlUNto6NvPoFV69+bvW8U0o7PK4PxTm/A+73NMGxc6Mar3uRqtHxW1I6P8alcjbXtHaFUq9n8v4/cdDeCNjY29szYMAAunTpgkp1azMuEhL+4MxZ05bOarU7YaEzCAqajEp167JXKmLe9UTejYw3OdbV1YnZIT4M83azWstFCCHqAwmICNGw1aeAiLx1JG6Zke1NswR2XkomM7/8VPybKZWK2guGpFyCxfdA4pnyx5YjwDmA+UPm42JjesOv1Wsp6jS5uGbIuIUVDoYAqJydCf72G1yGDTM9YTCQ+PY7JH3+OTfHPLVF1r/GCoXCJBhydk+cMRgCkJtRyJq5RzmxNdpsXmsy//iDqMefIPXfb+KVZ7m4J0DU6RN8+9RjHPtzLQa93uo4a9RudjiObspFX0cijqei0+j583+nKcg1/XxzjyWRsz8Ow83tNypIoVDQpEkTYzAk7uJ5lv/zGX59/w0ykxIAOHHiBFevXuX333/nyy+/5Pjx4zXWNrmEq0s73Nw6Wz2f632KmM5ziRryJhn+29HrrX/tq8rLVs0TQT6sCQ/gtZx42sZGYvd3ACQ0NcEYDFEoFHTr1o1nnnmG7t27cy6vkGmnrrIpJROd/tbE5Bs1GoWzU/GWKpXKmcZhz9C7VwShodPrRTBEbzBwtIy6LY8GeOGsUqIARni7sbZTc9Z2bs4IH3cJhgghhBBCVJBkiFSRZIhUX3aBls7vbEGju3Hz+98JdzG+Ettmao1eDwf/B1veBF0B+LWDJ7aBuvrp84cTDjNj8ww0eg3T2k7j+U7PV/ude0NREYnvvkv6jyvMzrlPGI/fG2+gUKvZG7uX/+z/D18P/pombpbby5YWfzmDv749TW6mxuxc004+DJzcyqx1r3FNBgMpX39NyrwvjceUrq6ErfgRu6ZNTcZqCvJZ+tLTZCUXZwwFtWrL0JnP4OFnuu2jLEnXs/jzm9Nkp5pmKoS18+KeWe1RKBXo83Uk/PcQ+lwdNn6OuI1qin0z9wo/R2lFOh37f13Bgd9+wWAo/hkODG/DuNff5ssvvyIzM9NkvKenJ/369aNt27bVzo7QF+hQ2KlQKBRkZZ0kKnoxSUkbMBisd4OxsfEgMOBBgoImY2dXyU5MVmi1Wg4cOMDOnTvRaIp/RnQKJde8/XEpyKNRdjqNGzdm+PDhNGp04zlfuxjDwtjigq++tmom+HnyoJ8nzZ1qrvOJVptJVPRCfLyH4OrazuKYlJTtpGfsJzRkBra2njX23NVRUKTnl8Q0FkQlczW/kH09WhkL1N5sbVIGrZztaSYdY4QQtxnJEBGiYatPGSISEKkiCYjUjCeXHWbz2RvbZga09GHxNMudVerUoYWw/gXTY3e/DANfq5Hpt17fSkxODFPaTKmR+eDvAMT8+aR8Mc/snPOgQUS/OJ5n9r5EYVEh3g7eLBy2sEJBkbwsDZsXnSHmvHm3GPdGjgyf3havm2p1GDQa4v/9Bplr1phd4/Hww/j963WTY1sXLeD4X+tMjqlt7eg76VE6Dh+NoowWrQaDgTO74tj180X0OtNfZwoFdLu3CZ2HhaJQKshYF0nO7liTMfZtvHC/pzFqr4pnBaTGRLHhy7kkXTWvj9F85P0cjYyyeq2Xlxd333037dq1q3TrWYPBQN7xZDLXXcF9TDMc2/sYzxUUJhAT8z2xsSvQ6TKszqFQqPH3H0+r8PLr1JRnyZIlVjvweHh4MGzYMFq2bGkS8Cso0tNh7xkyLBQD7erqxIP+ntzr646LumpBI50um6joJURHL0Sny8bLqz8d7lpYpbnqUrpWx5LYFBbGpJCivRHYmhbozfst5O+LEOLOIgERIRo2CYjcASQgUjPWHIvluZXHjR/bqBQcfm0Ibo7m3WbyNDpSczQEe1avKGSFaAvgm/6QXKpgqUIFT2yGQOvbFMqUnwF/zIEh/wHPxjWxSovSV/5MwltvFWe5lHIhWMkH4xTkOhTfnHrZe7Fi5Ar8nf3LnVOvN3Bo3VUOb7hmdk5to6T/wy1p2aN4nqKsLGLmPGNe1wTwnPIovi+/jKJUhoTBYGDrogWc2LTe4nMHtGzNsJnP4hkQaHZOW1hExA/nuXgw0eycg0txEdig8OJ3/osyC4n/8BBY2qKhUuDSNxCXAcEo7azX+TDo9RzduJZdK5ZQpDXfeuTfvCXDZz9Pam4+27dvJy4uzupcXl5exoyRigRGtCn5ZPx+mcJLGQAonW3we6Ezypv+rxQV5ZOQsIao6CXk5V22OFdg4MOEt/xPuc9ZnpMnT7J69WqTY7a2ttx999306NEDtYWaKb8npTPjzHWz46U5KJWM9nVjkr8XPdycKpRBpdPlEhOznOtR35oFhLp0/gU3t07lf0K3QFR+Id/EJPNjfBp5ReZbxRyUCg73bIOXrXSJEULcOSQgIkTDJgGRO4AERGqGpW0z1trnLtlzlf+sO8s97fyZcXdT2gVVrrBnpcWfgG8Hgr7UNgTvFjBjJ9hUssaAXg8rH4YLG8DeDcZ+Ay2H1+x6S8navJm4F1/CoDHd6vJLbwW/3F0cjLin8T282+dd1MqK32hdO5XClsVnKcwz35rRpm8A3Xo7Ef/0LDSXb8qcUCpp9OqreE5+xOrcUadP8NeCL4zbZkpT29jSe+IjdBo5BuXfNVbSE3L585vTpMWZ11nwb+rG0Cfa4uxhutWg4EoGmWsj0SZYrs2gdLHBbVhjHDv5oripxXBWShJ/zf+MqNMnza9Tqeg5/iG6jRmP8u9gj8Fg4NKlS0RERJQZGPH29qZfv360adPGYmDEoC0iKyKG7IhouKnuiVM3Pzzut/xHxGDQk5a2m6joRaSl7TI516P7Zpycys8OKo9er+e7774zfn4dOnRg0KBBuLhYL4ybrSvi96QMVsSnciQrr9znaOxgy4N+Xkzw8yDA3nzLWlFRPjGxP3D9+v/QatMszuHp2ZeOHZZU7JOqI6ey8/g6Kok/kjNu/raaaOvswBetQmjtfOvrmgghRE2RgIgQDZsERO4AEhCpOdOXHWZTqW0z/Vv6sOSmbTO6Ij39Po4gNiPfeGzOwGa8OLRl7S5ux0ew/aatBT2eguHvVW6e3Z8W1yMpbfQX0Nl8y0xCbgL/3vNv3uj1BoHO5lkRFZV36BBXZ85AmVv8NTvaVMHH45QUqRRVCoaUyErJ569vT5N0PdvsnEt+HG1PLMChINV4TOHgQODc/+IycGC5c2sK8tn141Kz7TMl/Ju3ZNis50iLt2X78vNoC823XXQYHEyPsU1RWWk3atAbyD2UQNZf19BbCOwA2AQ54z66KXahrsVbciK2sH3pt2jyzW/gvYJCGPHUCzRq0szy8xkMXLx4kYiICOLj4y2OgeJWtP369aN169bGwEjBhTTS/7hC0U11UUo4tPXC86FWZsGbm+XkXiI6egkJCb/h4dHT6hYSrTaLq9fmERT4CI6OoQDk5eWh1Wpxc7McgLx+/Tpbt25l2LBhBAZW7uf1Qm4BP8Wn8ktCusk2EUuUQD9PF95vEUSYgx1FRYXExa3g2vUFaDTJVq/z9b2HJo2fxcnJ8venLhkMBnakZ/NVVBK70nPKHNvPw4XZIb7c7eFc492BhBDiVpOAiBANmwRE7gASEKk5vx+P5dmfjhs/VisVHH59MO6OtlbHAPw8oyfdGtdyIcQiLSwcAnHHSh1UwNR1ENanYnNc3QnLxoChVDq8gyfM3AVupj83VzKuMHPLTBJyEwhzDWPpiKV42lftc9wfv58Pf5zNSyvySXGFtyepKLRVMKLxCN7r816VgiElirR6dv1yiTM7Y83OqbV5tD6/FO/U06h8vAmevwCHtm0qNX/02VP8teBzMhMTzM4plGpUdj1R2XVGUaojjq29ioFTWtG0o2+FnkOfpyVraxQ5++Itb6MBbFq5cihuIxeO77Z4vvPIMfR5cApq2/KL7RoMBi5cuEBERAQJCeafFxRni8yePRt9lpbMdVfIP51qcZzK1Rb3Mc1waONV7vOWptWmo9VmGYMdN7se9R2XL78PKPDyGkh2Vnf27EkiJCSUhx56qMzPrTo37Vq9gW1pWayIT2VzapbVjAl7pYJjPVuQm7Saa9e/prDQ8tcRwMdnKE0aP4ezcy0HTStAqzfwe1I686OTOJNjObgFoFLAGF8PZgX70M6lDrYGCiHELSIBkVtn/vz5zJ492+I5R0dHgoOD6d+/P88++yytWrWq49XVb0ePHuXPP/9k165dnD59mqSkJGxsbAgICKBXr148/vjj9O3bt0JzRUVF8cUXX7B+/XqioqKws7OjWbNmPPDAA8yePRtHx6q9Dujfvz87duyo1DXbt2+nf//+Jscq+rquX79+REREVOr5QAIidwQJiNScnEIdnd7ebLJt5qNx7Xmga/HX12AwMGrebs7EZRnPdwh257fZvermndPkC7CgLxSValvqHgKz9oKd9a0BAGTFwf/uhtzS72ArYPJqaGqaMXEu9RxPbHqCLM2Nz7OtV1sWDluIo03lfikeSjjE7C2zKSgqwCfDQL4t5DjWTDCktAsHEti+9DRFetNsDJ/k43TRbCd4wQJsKpk1UEJbUMDun5Zx9M+1YOHXlELlh43TMJQqL7wCnRk+vS3ujSr/x0OblEfm+kgKLpgXjQXQ6bWcy9zPuYz9GCj+GXXx8mH47OcJadu+0s9XVmBk3Nj7Ccv0JGvLdQwaC62HleDcKxDXISFl1jqpCr1ex759AygoNN3ek5PjQWxsK4YPe50mTWo/uJBUqGVVYjor4lO5dFOb5hEuWTyheZ2CAvNAnAFQAN5eA2nc5FlcXdrW+lorKq5AQ7f9Z9FZ+WvrqFLyiL8XTwb7EGxhW5AQQtxpJCBy68yYMYNvvvmm3HF2dnYsXbqUiRMn1sGq6r9+/fqxc+fOcsdNnjyZ7777Dtsy3ixbv349Dz/8sFlHwhItW7Zkw4YNNGlS+e3NlQ2IKJVKoqKizLJ8G1JARKq0iVvO2U7NgJY+/HXmxraZ9afijQGRPZdTTYIhADP7Nam7NHKfljDo37CpVIeZjCj46zW49wvr1xVp4ZepNwVDgAGvmQVDAAJdAvF19DUJiJxOPc0LES8wb9A8bJTmhWYtOZZ0jKe2PkVBUfE70cnuxV+nEWGWgyH6wkKUdpbbepbFUFSE2+aFdD6wldNtniDP0Q8Ah/xkOrmeJ/TzH1C5ulZ63hI29vYMmDqd5j16s2nB56THm96oG4oS0Oasof3w/6P/pHDUtlXrSmLj64j3tLbkX0gjc10kuuR8k/NqpQ3+Dk04m7EXgDb9BjFg6nTsHJ2q9HwKhYLw8HBatGhhDIwkJibi5eaJ11YNmUlXLa8zxAWPsc2x9a/a85YnOWWzWTAEwNk5nZYt93Lp8gQMPE5w0MPY2nrXyhoAfO1smB3iy6xgH45m5bEiPo01SenkFOnpmDWXAsyDIQAr7f9FkWMHJgc1oa1zOYHKOhZgb8vYRh78kmAadPO2UfNkkA+PBnrhYSN/joUQQtS+48ePA+Dm5sbu3TcyYDUaDVeuXOGzzz5j7969FBYWMm3aNPr06VPhLbHe3t6kplrObrXEUmZCfRUbW/z6IyAggAkTJtC3b19CQkIoKipi3759zJ07l9jYWJYvX45Op+PHH3+0OM+JEyd44IEHyMvLw9nZmVdffZUBAwaQn5/PTz/9xLfffsuFCxcYOXIkhw4dwtnZ2eI81ixevJjcXMu18kqcPXvWGOgaNGhQmd/fWbNmWc0oAnByqp3XpXXpjngFVlspR6LujGwfYBIQ2XM5hfRcDR5Otvxvp2mBzsbeTgxp7Ve3C+wxu7gg6vU9N44dXQrho6DFUMvXbP43RN/UaaX5UOj7osXhrrauLBi8gMkbJxOfe6PWxJ64Pfx7z795t8+7KBVldyM5kXyCWVtmka8zvakfFjaM9/qaB0N06elcnzwZ93Hj8Zo2tcy5b5a7bz/p33+PM9DlyEecb/kwKV7t6NEokqbvfImiAttIKiIovA2TP/yCPSu/58j63ynOBSjWedSj9Hu4cttxrHFo6Yl9M3dy9sUXZ2gU3KhPcix1K45u7gyZPodmXbrXyPMplUpatWpFi8bNOPLDTvRXstHr883HOarJ7+nEuit76ZdhR7hfeI0HA9PS0ti1M5rc3Nb4+V9CrTbvoKNW53Lt2hdERS2gUaMxhARPq9XtKAqFgs5uTnR2c+Kt5gFsTIjD89JVk51nAB4ePfELeY5tZ2zJTdezIT2SADsbJvp5MtHfkzCHygf7qipLV4SrlXbBs4N9jQGRpg52zArxZXwjD+yt1LoRQgghapper+f06dMAtGvXjrZtTbMpO3XqxLhx4+jduzf79+8nPz+fFStW8NJLL1Vo/kmTJpGdbV5jzho/vzp+PV8N4eHhvPfee4wbNw6VyvRvfY8ePZg8eTK9e/fm4sWLrFixglmzZlncPvPcc8+Rl5eHWq1m06ZN9OzZ03hu4MCBNG/enJdffpnz58/zySef8O9//7tS62zcuPxOlsuXLzc+fvTRR8sc6+vra/Zzcqe57bfM1GbKUVlky0zNyv1720yhTo+DjYqBrXz55/Bwsgq0jPzCtH7Du2Pb8nB3yzUQalX6Nfi6F2hLRV2d/WD2PnC8qc7H6dWwaprpMfcQmL7DfOxNIjMjmbJxChmFGSbHp7aZyotdLAdTAM6knOGJTU+QozUt1jg4ZDAf9fvILMNEn5dH1LTHyD9xAgDPxx/D96WXKnWznfT556TOXwAUhynsZv6DJs9Oq7Xsnagzp/ntw4/RFabStGs/7nvpH7XyPEU5GjI3XSP3YALXsk+T2SKHQY/NxMGl6hkv1hiKDCR9eQxtvHk036mbH67Dwvhpzc9cunQJKH7x0L9/f1q2bFntr3NeXh47d+7k4MGD6P9u06xSaWnU6AoBgedxcCj7RY2HRy9Cgh/Dy6ufST2X2nLlyn+5dn0+AG5uXWja5Hk8PHqwMj6NZ89HWbymp7sTk/y9GOnjhpOqallEZTEYDBzMzOXr6CQOZ+ZxqGdrHK0EOd6+EkcXV0eGebuhlEKpQogGTLbM3Brnzp2jdevWAMyePZuvvvrK4rhly5YxZUpx4f+pU6eyePHiOlvj7WzdunWMHj0agGeeeYbPP//c5PyhQ4fo1q24ccSMGTNYsGCB2Rx6vZ62bdty7tw5PDw8SExMxMamYlniFaHX6wkJCSE2NhZnZ2cSExMtJg+UvMZ84403ePPNN2vs+UvIlpkaUtspR6LuONmpeWloSwLcHRgQ7oOjbfGP5rM/HTMZ5+1sy7hOtyj45BEGw96Fdc/dOJaTABv+AeNLde1IvgC/P216rcoOHlhebjAEoIlbE74c9CVP/PWEcdsLwJIzS/B28GZKG/PONJEZkTy5+UmzYEj/oP58dLd5MMRQVETM888bgyEAaQsXUZSSiv87b6Oo4C9en2eeQRsdQ/ZffxHw/vu4jRppdWxeloYDayPpdX8z7Byq9qsnpE1bpnz8Bae2raXr6PusjqtMkU+DXo/ipna3KmdbPO9vgaG5LY1SFfTtb7lAVmFkBproHJx7B6BQVy0goFApcB/bjOSvb3wvbPydcL+vGXahrsTExBiDIQAJCQn89NNP+Pv7079/f1q0aFHpwIhOp+PQoUPs2LGDggLTIp9FRTbExYWTn9+dvn3dMbCFjIz9FudJT99LevpeHB0b06Xzamxsqh4wMhgMpKRsRaNJITDwQYtjQkKeICvrFCGhT+Lp0dv4ea9KtNxuF2BfRi77MnL5v4tK7vP14EF/Tzq7OlY7mFRkMPBXSiZfRSWZtA9emZDGtEDLW4r+1TSgWs8phBBCVEfJdhkozhCxJjT0xhuPOl3ZXeDEDaW3/1y5csXs/Jo1a4yPp02bZnYeijOIH330UV599VXS09OJiIhgyJAhNbbGrVu3Grf/jB8/XnZScJsHRGo75UjUrSfvNs3iiUnPY91J0zalU3qGYW9T8+/yVljnqXB+HVzecuPY6VXQ6VFo0g8Ks2HlI6ZZJAAj/wsBHSr8NHf53MXc/nN5ZtszFBlubN347+H/4uXgxagmo0zG+zv709arLfvi9xmP9Q3sy9z+c7FRWQhuKJU4de1K7g7T4lCZv/+OLj2NoM8+Q1mBX5AKhQL/997Fc8oUHNpZT6fT6w1sWniG2AvpxJ5PZ/iMtngHmdd50BfpObD2Kj7BLjTrbLlbjHsjN/pOesTqcxkMBn7/77v4hjWm+9gHUKktB3cKcnPYvuQbHN3c6ffIYxbHeLULw4swy89TZCDjj0i0CbnkHIzHfWQT7Ft5VulG2y7EFadufuSdSMZ1SCjOPQNQqIrnKf3ipbT4+HhWrFhRqcCIwWDg7NmzbNmyhfR0y0Vk7e3t6devH127dkWtVgPTyM4+W9y2N3EtBoPG7BpbW58qB0MMBgOpaTuIjPyM7OxTqFTO+PoOw8bGw2ysjY07HTsuNTv+TZswViem81N8GqdyzLcdAeQU6fk+PpXv41Np7mjHg/5eTGjkga9d5d51KSjS80tiGvOjkonMLzQ7/7/oJB4N8EIlGSBCCCHqmdKvKdq3t14YPjHxxjb2imzBEMU0mhuvkZRK8zfKdu3aBRTX3ejcubPVefr162d8vHv37hoNiCxbtsz4uLztMg3Fbbtl5lanHMmWmdr31tozLN5zzfixg42Kfa8ONGnHe0tkxcHXPaAgE2wcYejb0OXx4nOrHoMzq03Hd3wExlhOSSzP75d/5/U9r5scUyvUfDnoS3oH9jY5XlhUyHPbn2N37G56BfTii4FfYKcqu35CxurfiP/Xv6CoyOS4/V3tCV6wALVH8U2pNjERm0aNqvQ5AOxfc4Ujf143fqyyUdJvUkta9fI3HsvNKGTTwjPEXcrAxl7FA//XFXffyketz+zYyp9ffwqAT0gYw2Y/T6PGTU3GXD1+hE3/+4KctFRQKHjwzQ8JDG9dqefJ2R9PxprLJsfsmrvjPqoJNo1MC0wZDAbyTySj9nbA1kIgCIrbABt0elSupt8zvV7PmTNn2LFjBykpKVbXExAQQP/+/WnevLnVwEhOTg6ff/45Wq15jRClUkn37t25++67cXBwsHh9YWEysbE/EhP7PVrtjayM9u3m4+NjpZaOFQaDgfT0vURGfkpmlmkmWGjoTJo1rdp2qNPZefyUkMavCemk64rKHKtSwH2+HnzVuvwteOlaHUtiU1gYk0KK1vq7ZW5qFb93aka4k+WvoRBCiMqny+dlWd4aXxE29vbY2Fp+PVSteW3tsLG3t3guPycbg95CtzgrHF3dqryOyhg2bBibNm0CIDMzE1crxe8feughVqxYAcDhw4fLvHkXN/z222/cf//9APzjH//go48+Mjnv4+NDSkoKd911l9U3vADS09Px9CzOKp8wYQI///xzjawvJycHPz8/cnNzCQkJ4dq1a1ZfM5Ycb926NTqdjqioKNRqNX5+fvTq1YupU6cyYMCAKq+lPm2ZuW0DIq+99hrvvfceAPv376d7d8uFDj/44ANeffVVADZt2lRjETYJiNSujDwNPd/fRr72xg3NtN5hvDG6ZgpoVtvJX+DQt3DffPD6+2Z7/wL48xXTcX7t4PHNYFP1m6OFpxby2dHPTI45qB1YNGwRbb1NszI0RRoWnlrItLbTsFdb/iN9s+yICGKfex7DTVsnbJs0Ifibb8j4+WfSv/+e0B++x74K/egLcrX88MZ+CnLMb8Jb9/an78QWxF/JZPOiM+Rn3xjjHezMuJc7o65ERlB2WgpLX3yKwrwbGToKpZLu902g+/0PotdpiVi+kFNb/zK5zt3Pn0c/nGf1hc3NDFo98R8eRG/hc0IJTt39cRsSitLRBm1yHhm/X6HwcgY2gc74PtUBhbLy2QMlhdB27NhRZgX3wMBA+vfvT7NmzSz+kdu+fbtZO7Y2bdowaNAg4x/f8hQVFZKYuJbo6EUUFeXTs+cWFArz75PBoOfM2Rfx8R6Ej88wlH9v3UpPP0jk1U/JyDhocX6l0oHevSKq1c2mUK/nr5QsVsSnsiMtG2svSx/292RueIjVeaLyC/kmJpkf49PIK7L+4jbQzoYZwT485O+Fs5XCqkIIIYpV9mZo7sRR5Y6xZuBjM+k4zPL1Xz/xEPnZWRbPlafn+En0mvCwxXNLXpxNaozl2laWvLhyXZXWUFl+fn4kJiYSFhbG1auWu9qtWbOGcePGodfrGT9+PL/88kudrK2yaqJe3eLFi5k6dWr1F0Px67SePXty8GDxa5tDhw7RpUsX4/mCggLjG04jR45k3bqyv+fOzs7k5ubSo0cP9u3bV+bYilq6dKnx833ttdd45513rI6tyNf3vvvuY8mSJbi5VT6gV58CIrftlpn6kHJ0O9Hr9ZVqg3WrfbcrkpzMG+9Aq5QK7gt3Jjk5uYyr6pBfPxjVF/QqSE4GgwFOb4PcUjdMdq4w8DPIyAFyrM1UrtGNRnPN7xqrLq4yHssmmydWP8FXg74ixNX0Zm584Hiy07PJpoJVvtu0weGTucS99A/0WaVeFFy8SOLQoRj+Tv/LmPYYwd99W6VMkQFPhrJ92XmSY0y/Dge2ZHD2aCTZ6YWlm8cAkHs5k9OH3Alsbr51wpqLB/aSlpFh9q7Mlh+XcSRiGzpNIdkp5j9DhYlJnD9+BL+mLSr8XIZRjcj66yraWPNiqKlbM1DsuYh9S0/yTyVjvBu/lEHen2qcu1atqrq/vz8PPPAAZ8+eZd++fRa3vVy8eJGLFy8SEBBA7969zVJdW7RowY4dO8jNzSUgIIABAwYQGBhIUVFRpf5/2dj0o3Hju9FokklJsVzDIzVtDxcu/MaFC79ha+uLn999ZGcdJ91KIATA3j6Y0JAnycjQoVBU7/97TwX0DHAlwdOeP5IyWJ2UTnSB6ZafYSHuFj/vszl5/C86mW1pWejLeNsg3MmBaYHeDPN2w0apID89DcubdoQQDZ2Xl5fFNHoh6kJCQoJxK8zN9UMKCwu5ePEiixcv5osvvkCv19OnTx8WLVp0K5Z6W/r000+NwZCxY8eaBEMAk+47Falr6eTkRG5uLjk5Vb+HuFlltss4Ojpy7733MmjQIMLDw3F2Lr4P27FjBwsWLCA1NZU1a9YwZswYNm/eXKOFX+vabRsQOXfuHADNmjX7e5+7ZeHh4WbXVERMTEyZ5+Pj48s8X9+kpqbi62u5JsPtosPn5Y+pX3Lg3a61+gxd6FL+oJpy5TKUUYCrNryypO6e67WVf9TNE82rm6epf64Dhyo4bne5o2rKsGpenwzsqomFCCHueElJSfj4+NzqZYgG6tixG9tT165dazUDoHPnzjz22GNMnz69zHusW+3UqVPVnqOmMgx27NjBP//5T6C4Te38+fPNxpQuYm9rW/72fzu74m1e+fk18zZLTEwMERERQHGb4BYtyn4TMDY2Fnd3d7PjQ4YMYc6cOYwYMYJjx46xY8cO5s+fzzPPPFMj67wV6u9PeRkKCgqMe+nL+0H28PAwRtiio6Mr/Bwl6ThCCCGEEEIIcTsrq2ZFaTk5OYwYMaJeB0MA2ra1Xsy/Lp05c4axY8ei0+mws7Pj559/ppGFbGr7UtuySxdftaawsLhwu7W6bpX1/fffo/87g7qkpXJZLAVDSjRq1IhVq1bRqlUrNBoN8+bNk4BIXasPKUdCCCGEEEKI2jfr2x+qfG1Z9cGmfmL+Tn6F57VSqBVg4lsfVqqoal0oHRCJiIjAy8sLgLy8PC5evMgnn3zCsWPHuHDhAlOmTGHnzp1WZhIlrl69ytChQ0lPT0elUrFixQqTcg2lubjcKKpfkXvS3NziLdkVudetiOXLlwPFmScTJ06s9nxNmjRhyJAhrF+/nsuXLxMXF0dAQEC1570VbsuASF2kHJWXTRIfH2/sciOEEEIIIYSoHbXVhaW25nVwttxR7lYqCYh4e3ub3bR369aN8ePH06VLF86cOcOuXbs4cuRIve4uc/r06WrPERQUVGYmRFni4uIYPHgwcXFxKBQKFi1axNixY62Ot7e3x9vbm5SUlHJLM6SnpxsDIjWxa+Hw4cOcPXsWgFGjRuHhUfH6fGVp3bo169evB4q32EhApA7VRcrRndY1xsvLi6SkpFu9jErR6w0oq9CNQ9xeDHpDlbquVPp5/m6oVRNVySv8nHX0ud0uDAY9oKjT70FV6Q0GFNTtz4sQ4s5W8o68EHUtLy+Py5cvA9CxY0eLY+zt7Xn99deZNGkSULzFoj4HRG4uDFsVVe0yk5KSwpAhQ4iMjARg3rx55RYpBWjVqhW7du3i8uXLxg4rlpw/f97kmuoqXUy1IttlKuo2bVZr5rYMiNzqlKPbkVKplEJeQgghhBBCNDAnTpww1o/o0KGD1XFjxozB2dmZnJwcVq9ezaefflpHK7x9ZGZmMmzYMGPGxQcffMBTTz1VoWv79OnDrl27yM3N5ciRI3Tv3t3iuB07dhgf9+7du1rr1Wq1/PTTTwD4+PgwYsSIas1XWsnXALhts0MAbsveXyUpR1B+N5iaTjkSQgghhBBCiNtF6foh1jJEoDibfvDgwQBERUVx8uTJ2l5alRkMhmr/q2x2SF5eHiNHjuTo0aMAvPbaa7zyyisVvv6+++4zPl68eLHFMXq93pjR4e7uzoABAyq1xptt3LiR5ORkAB566KEaK5YbGRnJ5s2bgeJ6IoGBgTUy761wWwZE4Eb6UEnKkTU1nXIkhBBCCCGEELeL0gGRsjJEAEaOHGl8vHbt2lpa0e1Ho9EwduxY9uzZA8Czzz7LO++8U6k5unXrRt++fQFYuHAh+/btMxszd+5czp07Z3wOGxsbi3MpFMVbkMPCwsp8ztLbZSqyrQeKv+9l3V8nJiYyfvx4tFotQIUzZOqr23LLDNyalCMhhBBCCCGEuJ2UBEQcHR1p0aJFmWPvueceFAoFBoOBdevW8dprr9XBCuu/SZMmsWnTJgAGDhzI448/XmZhV1tbW4tf688//5zevXuTn5/P0KFD+b//+z8GDBhAfn4+P/30E9988w0ALVq04MUXX6zWmtPT01m3bh1Q3Ka4U6dOFbpuzpw5aLVaxo0bR8+ePQkLC8PBwYGUlBQiIiJYsGABqampQPE9uQREbpH77ruP999/HyhOObIUEKnplCMhhBBCCCGEuF3o9XrjjXu7du1QqVRljg8ICKBjx44cPXqUgwcPkpSUhK+vb10stV5bvXq18fG2bdto3759meNDQ0O5du2a2fGOHTuycuVKHnnkEbKysvi///s/szEtWrRg/fr1JnUzq2LlypXG5iIVzQ4pERcXx7x585g3b57VMePGjeO7774zdnS9Xd22W2ZqMuVICCGEEEIIIe40Fy9eJC8vDyh/u0yJkm0zer3e2FZV1JzRo0dz8uRJnn/+eVq0aIGjoyPu7u506dKFDz/8kGPHjtGsWbNqP8/y5csBUKlUPPzwwxW+bunSpbz11lsMHz6cFi1a4OnpiVqtxt3dnXbt2jFjxgz27t3LqlWrqty2uD5RGG7jfjnHjh0zphw5OzuXmXJ0+PDhakfZSouJiTEWaY2Ojr7j2vQKIYQQQghRGy5dumRsO9q8efNbvRwhRB2ryu+A2rr/vm23zEDdphwJIYQQQgghhBDiznHbbpkpUVcpR0IIIYQQQgghhLhz3NYZIiVCQ0P55JNP+OSTT271UoQQQgghhBBCCHEbuO0zRIQQQgghhBBCCCEqSwIiQgghhBBCCCGEaHAkICKEEEIIIYQQQogGRwIiQgghhBBCCCGEaHAkICKEEEIIIYQQQogGRwIiQgghhBBCCCGEaHAkICKEEEIIIYQQQogGRwIiQgghhBBCCCGEaHAkICKEEEIIIYQQQogGRwIiQgghhBBCCCGEaHAkICKEEEIIIYQQQogGRwIiQgghhBBCCCGEaHAkICKEEEIIIYQQQogGRwIiQgghhBBCCCGEaHAkICKEEEIIIYQQQogGRwIiQgghhBBCCCGEaHAkICKEEEIIIYQQDcD8+fNRKBQW/zk5OREeHs7MmTM5d+7crV5qvXP06FHee+89RowYQXBwMHZ2djg7O9OiRQumTp3Krl27qjz3yy+/bPK9iIiIqNI8/fv3t/r9tfbP0nNV9Nr+/ftX+XOuL9S3egFCCCGEEEIIIWrf8ePHrZ7Ly8vjwoULXLhwgSVLlrB06VImTpxYd4urx/r168fOnTvNjms0Gi5dusSlS5dYunQpkydP5rvvvsPW1rbCc584cYJPP/20JpdbYUqlkubNm9+S564vJCAihBBCCCGEEA1ASUDEzc2N3bt3G49rNBquXLnCZ599xt69eyksLGTatGn06dOHwMDACs3t7e1Nampqhdeyffv22ybDIDY2FoCAgAAmTJhA3759CQkJoaioiH379jF37lxiY2NZvnw5Op2OH3/8sULz6vV6nnzySXQ6Hb6+viQlJVVrnYsXLyY3N7fMMWfPnjUGugYNGlTm93fWrFnMnj3b6nknJ6eqLbQekYCIEEIIIYQQQtzh9Ho9p0+fBqBdu3a0bdvW5HynTp0YN24cvXv3Zv/+/eTn57NixQpeeumlCs0/adIksrOzK7wePz+/ii/+FgsPD+e9995j3LhxqFQqk3M9evRg8uTJ9O7dm4sXL7JixQpmzZpF3759y533iy++4NChQ4SHhzN27Fjef//9aq2zcePG5Y5Zvny58fGjjz5a5lhfX1+zn5M7jQREhBBCCCGEEOIOd+HCBfLy8gBo3769xTFKpZJZs2axf/9+AM6cOVPh+efNm1f9RdZT69atK/O8t7c3c+fOZfTo0QCsWrWq3IBIdHQ0//rXv4Di2i5VrRtSGXq9nh9++AEAZ2dn7r///lp/zvpOiqoKIYQQQgghxB2udP2Qdu3aWR0XGhpqfKzT6WpzSXeU0tt/rly5Uu742bNnk5OTw5QpU+ps69DWrVuN23/Gjx+Po6NjnTxvfSYBESGEEEIIIYS4w5UOiFjLEAFITEw0Pq7IFgxRTKPRGB8rlWXfZv/888+sW7cOT09PPv7449pemtGyZcuMj8vbLtNQSEBECCGEEEIIIe5wpQMiZdWFWLNmjfHxmDFjanFFd5YdO3YYH4eHh1sdl5GRwbPPPgvAhx9+iI+PT62vDSAnJ4fffvsNgJCQkAplpfzyyy+0bNkSBwcHXFxcaN68OVOmTGH79u21vNq6IzVEhBBCCCGEEPVWUY6m/EFWKO1UKGxUFs8V5WrBYKjSvApbFUpby/Pq87QY9BWfV+Vc8Rat1XHixAkAwsLCcHV1tThmzZo1rFy5EijeUtG5c+c6WVtlKRSKas+xePFipk6dWv3FUFyb44MPPjB+/MADD1gd+/LLL5OQkECvXr14/PHHa+T5K+LXX381dqCZPHlyhb6GZ8+eNfn48uXLXL58mWXLlnHfffexZMkS3NzcamW9dUUCIkIIIYQQQoh6K/6dA1W+1n1MU5x7Blg8l/jJYfS5VauR4TIoBLchoRbPJS04iS4pr8JzBX1QfjeS6kpISDBuhbm5fkhhYSEXL15k8eLFfPHFF+j1evr06cOiRYtqfV13ik8//ZSDBw8CMHbsWLp06WJx3O7du/nuu+9Qq9UsWLCgRgI7FVWZ7TKOjo7ce++9DBo0iPDwcJydnUlOTmbHjh0sWLCA1NRU1qxZw5gxY9i8eTM2Nja1vfxaIwERIYQQQgghhLiDHTt2zPh47dq1Vm/EO3fuzGOPPcb06dNRq+vvreKpU6eqPUdQUFANrKR4q8w///lPoLhN7fz58y2O02g0TJ8+HYPBwPPPP19mYduaFhMTY+xi06NHD1q0aFHm+NjYWNzd3c2ODxkyhDlz5jBixAiOHTvGjh07mD9/Ps8880wtrLpu1N+fciGEEEIIIYQQ1Va6fkhZcnJyGDFiRL0OhkDZNVDq0pkzZxg7diw6nQ47Ozt+/vlnGjVqZHHse++9x7lz5wgJCeGNN96o03V+//336PV6AKZMmVLueEvBkBKNGjVi1apVtGrVCo1Gw7x5827rgIgUVRVCCCGEEEKIO1jpgEhERASnTp3i1KlTHDhwgOXLl9OxY0cALly4UKEbZgFXr15l6NChpKeno1KpWLFiBf369bM49vz587z//vsAzJs3Dycnp7pcKsuXLwfAzs6OiRMnVnu+Jk2aMGTIEKC4rkhcXFy157xV6nfoTwghhBBCCNGg+b/evcrXKu0sFz4FaPRCl2oVVbXGd2b7ShVVrQslARFvb2+zm/Zu3boxfvx4unTpwpkzZ9i1axdHjhyptwVVAU6fPl3tOYKCgsrMhChLXFwcgwcPJi4uDoVCwaJFixg7dqzV8Z9++ikajYYmTZqQl5fHTz/9ZDam9Oe0bds2EhISABg9enS1AiiHDx82FkcdNWoUHh4eVZ6rtNatW7N+/XqgeItNQIDlWj31nQREhBBCCCGEEPVWbXVhUTnVTiFIpWP9KjCZl5fH5cuXAYyZIDezt7fn9ddfZ9KkSUDxFov6HBCpifobVe0yk5KSwpAhQ4iMjASKMz7KK1JaWFgIQGRkpPFrXJa3337b+Pjq1avVCoiULqZak9k/hioGE+sb2TIjhBBCCCGEEHeoEydOGOtHdOjQweq4MWPG4OzsDMDq1avrYmm3nczMTIYNG2bMuPjggw946qmnbvGqrNNqtcZsFB8fH0aMGFFjc5duyXu7ZoeABESEEEIIIYQQ4o5Vun6ItQwRAAcHBwYPHgxAVFQUJ0+erO2lVZnBYKj2v8pmh+Tl5TFy5EiOHj0KwGuvvcYrr7xSoWuXLFlS7npKF1rdvn278XhYWFil1lnaxo0bSU5OBuChhx6qsWK5kZGRbN68GSiuJxIYGFgj894KEhARQgghhBBCiDtU6YBIWRkiACNHjjQ+Xrt2bS2t6Paj0WgYO3Yse/bsAeDZZ5/lnXfeuWXrUSgUKBSKcoMlpbfLlLetp8TatWvR6XRWzycmJjJ+/Hi0Wi1Avc6QqQipISKEEEIIIYQQd6iSgIijoyMtWrQoc+w999yDQqHAYDCwbt06XnvttTpYYf03adIkNm3aBMDAgQN5/PHHyyzsamtrW+7Xuralp6ezbt06oLhNcadOnSp03Zw5c9BqtYwbN46ePXsSFhaGg4MDKSkpREREsGDBAlJTUwHo06ePBESEEEIIIYQQQtQ/er3eeOPerl07VCrr3XGguBZEx44dOXr0KAcPHiQpKQlfX9+6WGq9VrqmyrZt22jfvn2Z40NDQ7l27Votr6psK1euNBZzrWh2SIm4uDjmzZvHvHnzrI4ZN24c3333HXZ2dtVa560mW2aEEEIIIYQQ4g508eJF8vLygPK3y5Qo2Taj1+uNbVXF7Wf58uUAqFQqHn744Qpft3TpUt566y2GDx9OixYt8PT0RK1W4+7uTrt27ZgxYwZ79+5l1apVVW5bXJ8oDHdKv5w6FhMTQ3BwMADR0dEEBQXd4hUJIYQQQghR/126dAmdTodaraZ58+a3ejlCiDpWld8BtXX/LRkiQgghhBBCCCGEaHAkICKEEEIIIYQQQogGRwIiQgghhBBCCCGEaHAkICKEEEIIIYQQQogGRwIiQgghhBBCCCGEaHAkICKEEEIIIYQQQogGRwIiQgghhBBCCCGEaHAkICKEEEIIIYQQQogGRwIiQgghhBBCCCGEaHAkICKEEEIIIYQQQogGRwIiQgghhBBCCCGEaHAkICKEEEIIIYQQQogGRwIiQgghhBBCCCGEaHAkICKEEEIIIYQQQogGRwIiQgghhBBCCCGEaHAkICKEEEIIIYQQQogGRwIiQgghhBBCCCGEaHAkICKEEEIIIYQQQogGRwIiQgghhBBCCCGEaHAkICKEEEIIIYQQQogGRwIiQgghhBBCCNEAzJ8/H4VCYfGfk5MT4eHhzJw5k3Pnzt3qpdY7R48e5b333mPEiBEEBwdjZ2eHs7MzLVq0YOrUqezatatC82g0GhYuXMjw4cPx9/c3ztOyZUsee+wx9u/fX+U19u/f3+r319q/iIgIs3kqem3//v2rvNb6Qn2rFyCEEEIIIYQQovYdP37c6rm8vDwuXLjAhQsXWLJkCUuXLmXixIl1t7h6rF+/fuzcudPsuEaj4dKlS1y6dImlS5cyefJkvvvuO2xtbS3OEx0dzciRIzl16pTZPBcvXuTixYssXryY559/nrlz56JQKGrl8ymhVCpp3rx5rT5HfScBESGEEEIIIYRoAEoCIm5ubuzevdt4XKPRcOXKFT777DP27t1LYWEh06ZNo0+fPgQGBlZobm9vb1JTUyu8lu3bt982GQaxsbEABAQEMGHCBPr27UtISAhFRUXs27ePuXPnEhsby/Lly9HpdPz4449mc+h0OpNgSPv27XnhhRdo2bIl2dnZ7N69m7lz55Kbm8unn36Kv78///jHPyq1zsWLF5Obm1vmmLNnzxoDXYMGDSrz+ztr1ixmz55t9byTk1Ol1lcfSUBECCGEEEIIIe5wer2e06dPA9CuXTvatm1rcr5Tp06MGzeO3r17s3//fvLz81mxYgUvvfRSheafNGkS2dnZFV6Pn59fxRd/i4WHh/Pee+8xbtw4VCqVybkePXowefJkevfuzcWLF1mxYgWzZs2ib9++JuN+//13YzCkZ8+e7Nq1y2SuIUOGcO+999KzZ0+0Wi3vv/8+zz//PGp1xW/ZGzduXO6Y5cuXGx8/+uijZY719fU1+zm500hARAghhBBCCCHucBcuXCAvLw8ozk6wRKlUMmvWLGMdizNnzlR4/nnz5lV/kfXUunXryjzv7e3N3LlzGT16NACrVq0yC4js2bPH+PjVV181C6wAdO7cmVGjRvHbb7+Rnp7O+fPnazQgodfr+eGHHwBwdnbm/vvvr7G5b1dSVFUIIYQQQggh7nCl64e0a9fO6rjQ0FDjY51OV5tLuqOU3v5z5coVs/Majcb4uEmTJlbnadq0qfFxYWFhzSzub1u3bjVu/xk/fjyOjo41Ov/tSAIiQgghhBBCCHGHKx0QsZYhApCYmGh8XJEtGKJY6YCHUml+m92iRQvj48jISKvzlARTFApFjRc8XbZsmfFxedtlGgoJiAghhBBCCCHEHa50QKSsbRhr1qwxPh4zZkwtrujOsmPHDuPj8PBws/OTJk3C1dUVgA8//JCioiKzMceOHWP9+vUAPPjgg8bxNSEnJ4fffvsNgJCQkAoVtP3ll19o2bIlDg4OuLi40Lx5c6ZMmcL27dtrbF23mtQQEUIIIYQQQtRb5XXNKIutrS02NjY1Pq+NjY3V1qp5eXkYDIYKz1VXnTpOnDgBQFhYmNUb7TVr1rBy5UqgeEtF586d62RtlVUT7WgXL17M1KlTq78YimtzfPDBB8aPH3jgAbMxPj4+LFmyhIcffpg9e/bQtWtXnnvuOVq0aEFOTg579uxh7ty5aDQaOnTowCeffFIjayvx66+/Gn/mJ0+eXKGv4dmzZ00+vnz5MpcvX2bZsmXcd999LFmyBDc3txpdZ12TgIgQQgghhBCi3vr444+rfO0999xDt27dLJ776quvjEVGK6tfv34MGDDA4rnFixeTnJxc4bnefPPNKq2hMhISEoxbYW6uH1JYWMjFixdZvHgxX3zxBXq9nj59+rBo0aJaX9ed4tNPP+XgwYMAjB07li5dulgcN3bsWA4fPswnn3zCokWLmDJlisn5Ro0a8dZbbzF9+vQaD5RVZruMo6Mj9957L4MGDSI8PBxnZ2eSk5PZsWMHCxYsIDU1lTVr1jBmzBg2b95sNeh4O5CAiBBCCCGEEELcwY4dO2Z8vHbtWqvZAZ07d+axxx5j+vTplWr3WtdK2tdWR1BQUA2spHirzD//+U+guE3t/PnzrY7VarX8+OOPrF271mIWUWJiIitWrKBFixaMHDmyRtYHEBMTQ0REBFDcJrh0PRNLYmNjcXd3Nzs+ZMgQ5syZw4gRIzh27Bg7duxg/vz5PPPMMzW21rpWf3/KhRBCCCGEEEJUW+n6IWXJyclhxIgR9ToYAmXXQKlLZ86cYezYseh0Ouzs7Pj5559p1KiRxbG5ubncc8897Ny5E5VKxcsvv8y0adNo0qQJBQUFHDhwgP/85z/s3r2b0aNH8+mnn/Lss8/WyDq///579Ho9gFlWiiWWgiElGjVqxKpVq2jVqhUajYZ58+bd1gERKaoqhBBCCCGEEHew0gGRiIgITp06xalTpzhw4ADLly+nY8eOAFy4cKFCN8wCrl69ytChQ0lPT0elUrFixQr69etndfwbb7zBzp07AVi4cCEffvgh4eHh2Nra4urqypAhQ9i+fTsDBgzAYDDwwgsvcPLkyRpZ6/LlywGws7Nj4sSJ1Z6vSZMmDBkyBCiuKxIXF1ftOW+V+h36E0IIIYQQQjRo//jHP6p8rbXCpwBPPfVUlectq2bCtGnTKlVUtS6UBES8vb3Nbtq7devG+PHj6dKlC2fOnGHXrl0cOXKk3hZUBTh9+nS15wgKCiozE6IscXFxDB48mLi4OBQKBYsWLWLs2LFWxxsMBhYvXgwUt9+1FnRSq9W8/fbb9OnTB71ez+LFi/n000+rtMYShw8fNhZHHTVqFB4eHtWar0Tr1q2NHXFiY2MJCAiokXnrmgREhBBCCCGEEPVWbXVhqa15HR0da2XeqsrLy+Py5csAxkyQm9nb2/P6668zadIkoHiLRX0OiNxcGLYqqtplJiUlhSFDhhAZGQnAvHnzyi1SmpiYSFpaGmD9e1Ci9Nf9/PnzlV7fzUoXU63J7J/6FvSrKtkyI4QQQgghhBB3qBMnThjrR3To0MHquDFjxuDs7AzA6tWr62Jpt53MzEyGDRtmzLj44IMPKpRpVLomi06nK3OsVqu1eF1VaLVafvrpJ6C47e+IESOqNV9ppVvy3q7ZISABESGEEEIIIYS4Y5WuH1JWdoKDgwODBw8GICoqqsbqV9QGg8FQ7X+VzQ7Jy8tj5MiRHD16FIDXXnuNV155pULXenp64urqCsC+ffvKDIrs2LHD+Lhx48aVWuPNNm7caGwB/dBDD9VYsdzIyEg2b94MFNcTCQwMrJF5bwUJiAghhBBCCCHEHap0QKSsDBHApNXr2rVra2lFtx+NRsPYsWPZs2cPAM8++yzvvPNOha9XKpXGr21cXBzvvvuuxXHp6ekmQZZRo0ZZHKdQKFAoFISFhZX5vKW3y5S3rafE2rVrywzYJCYmMn78eGMmS3Vq8dQHCsOdsvmnjsXExBAcHAxAdHR0jfWxFkIIIYQQ4k526dIldDodarWa5s2b3+rl3PG6d+/OwYMHcXR0JCsrC5VKZXVsXFwcQUFBGAwGevTowb59++pwpfXXuHHjjNuIBg4cyGeffYZCobA63tbWlhYtWpgcO3/+PJ07dyYvLw+A0aNHM2XKFGPb3f379/PZZ58RFRUFwKBBg9iyZYvF+UueOzQ0lGvXrlkck56ejr+/P4WFhbRt25ZTp05V6HMNCwtDq9Uybtw4evbsSVhYGA4ODqSkpBAREcGCBQtITU0FoE+fPmzZsgU7O7sKzV2iKr8Dauv+W4qqCiGEEEIIIcQdSK/XGzuytGvXrsxgCBTXgujYsSNHjx7l4MGDJCUl4evrWxdLrddK11TZtm0b7du3L3O8pUBFeHg4v//+O5MmTSIlJYW1a9dazcIZOHAgv/zyS7XWvHLlSgoLC4GKZ4eUiIuLY968ecybN8/qmHHjxvHdd99VOhhS30hARAghhBBCCCHuQBcvXjRmJJS3XaZESZ0MvV7P+vXrmTZtWi2usGEZPHgw58+fZ+HChWzcuJEzZ86QkZGBWq3Gz8+Prl278tBDD3HvvfeWmYFSEcuXLwdApVLx8MMPV/i6pUuXsmPHDvbt20dkZCQpKSlkZWXh7OxMcHAwvXr1YsqUKfTs2bNa66svZMtMFcmWGSGEEEIIISpPtswI0bDVpy0zUlRVCCGEEEIIIYQQDY4ERIQQQgghhBBCCNHgSEBECCGEEEIIIYQQDY4ERIQQQgghhBBCCNHgSEBECCGEEEIIIYQQDY4ERIQQQgghhBBCCNHgSEBECCGEEEIIIYQQDY4ERIQQQgghhBBCCNHgSEBECCGEEEIIIYQQDY4ERIQQQgghhBBCCNHgSEBECCGEEEIIIYQQDY4ERIQQQgghhBBCCNHgSEBECCGEEEIIIYQQDY4ERIQQQgghhBBCCNHgSEBECCGEEEIIIYQQDY4ERIQQQgghhBBCCNHgSEBECCGEEEIIIYQQDY4ERIQQQgghhBBCCNHgSEBECCGEEEIIIYQQDY4ERIQQQgghhBBCCNHgSEBECCGEEEIIIRqA+fPno1AoLP5zcnIiPDycmTNncu7cuVu91HolKyuLn376iRdffJF+/frRrFkz3NzcsLW1xdfXl/79+/PRRx+Rmppa5jxHjx7lvffeY8SIEQQHB2NnZ4ezszMtWrRg6tSp7Nq1q1rr7N+/v9Xvr7V/ERERZvNU9Nr+/ftXa731gfpWL0AIIYQQQgghRO07fvy41XN5eXlcuHCBCxcusGTJEpYuXcrEiRPrbnH12MGDB5k0aZLFc8nJyezYsYMdO3bw8ccf8/333zNs2DCzcf369WPnzp1mxzUaDZcuXeLSpUssXbqUyZMn891332Fra1vjn8fNlEolzZs3r/Xnqc8kICKEEEIIIYQQDUBJQMTNzY3du3cbj2s0Gq5cucJnn33G3r17KSwsZNq0afTp04fAwMAKze3t7V1uhkRp27dvv60yDIKDgxkwYACdO3cmODgYf39/9Ho9MTExrFq1itWrV5OSksK9997LoUOHaN++vcn1sbGxAAQEBDBhwgT69u1LSEgIRUVF7Nu3j7lz5xIbG8vy5cvR6XT8+OOPlV7j4sWLyc3NLXPM2bNnjYGuQYMGlfn9nTVrFrNnz7Z63snJqdJrrG8kICKEEEIIIYQQdzi9Xs/p06cBaNeuHW3btjU536lTJ8aNG0fv3r3Zv38/+fn5rFixgpdeeqlC80+aNIns7OwKr8fPz6/ii7/FBgwYQFRUlNXzDzzwAGvWrGHs2LFoNBreeustfv31V5Mx4eHhvPfee4wbNw6VSmVyrkePHkyePJnevXtz8eJFVqxYwaxZs+jbt2+l1tm4ceNyxyxfvtz4+NFHHy1zrK+vr9nPyZ3mtg2I5OTkcPToUQ4ePMjBgwc5dOgQ165dAyA0NNT4WAghhBBCCCEaugsXLpCXlwdglr1QQqlUMmvWLPbv3w/AmTNnKjz/vHnzqr/IeurmAIYl9913H+Hh4Zw/f97i1ph169aVeb23tzdz585l9OjRAKxatarSAZHy6PV6fvjhBwCcnZ25//77a3T+29FtGxAZPXq0xQIwQgghhBBCCCFMla4f0q5dO6vjQkNDjY91Ol1tLumOU7KFpKCgoErXl95CdOXKlZpYkomtW7cat+6MHz8eR0fHGn+O281t22XGYDAYH3t4eDBkyBCcnZ1v4YqEEEIIIYQQon4qHRCxliECkJiYaHxckS0Yoti5c+eMX+Pw8PAqzaHRaIyPlcqav1VftmyZ8XF522Uaits2IPLQQw/xww8/cOnSJdLS0ti0aRNeXl63ellCCCGEEEIIUe+UDoiUVRdizZo1xsdjxoypxRXd/vLy8rh06RKffPIJAwYMoKioCIBnn322SvPt2LHD+LiqQRVrcnJy+O233wAICQmpUEHbX375hZYtW+Lg4ICLiwvNmzdnypQpbN++vUbXdivdtltmpk+ffquXIIQQQgghhKhlGk3FO5fcTKVyQqWytzJvGmCweK78eR1QqSxvN9BqMzAYiio8l61t3bype+LECQDCwsJwdXW1OGbNmjWsXLkSKN5S0blz5zpZW2UpFIpqz7F48f+3d+fhUZV3/8c/s2Tfd7JBWGSHgqBsoRAQLUJZZNHqg4BaFatdtdpf3ehjfazW5alPC22VRbQqIGoRaCsYIgoom8gShBCQLISskH2ZzPz+SDImZCFkmyTzfl0XF5NzzpzzPQyEzGfu+3uv1pIlS676eWvWrNHSpUsb3f/www/rjjvuuOrzWq1WPffcc/avFy5ceNXnaMp7771nX4Fm0aJFzfozPH78eJ2vk5KSlJSUpDfeeENz5szRmjVr5Ofn16Z1drQuG4gAAAAA6P52fXZ9i5/bv//Tio5a1OC+vV/cpIqK3Badt3fMT9WnT8OjAA4cvE1FRaeafa6pU9q+V8TlMjIy7FNhLu8fUlZWppMnT2r16tX605/+JKvVqtjYWK1atard6+pORowYoZUrV2rMmDEtev7LL7+sL7/8UpI0d+5cjR49ui3Lu6rpMp6enpo1a5amTp2qgQMHytvbW1lZWUpISNDKlSuVk5OjDz74QLNnz9bHH38sFxeXNq21IxGIOJHyggLZKivl5u/v6FIAAAAAdJBDhw7ZH2/evLnR0QGjRo3SXXfdpXvvvVdmc+d9q3jkyJFWnyMqKqpFz5szZ449rCgpKdHp06e1fv16vf/++7rjjjv0yiuvaObMmVd1zoSEBD322GOSqpa6XbFiRYtqa0xqaqp9QZKxY8eqf//+TR6flpYm/wbeM06bNk0PPfSQpk+frkOHDikhIUErVqzQT3/60zattyN13r/lDpaamtrk/vPnz3dQJW3nzIcf6sD//I/cg4Lk26eP/Pr0kW/fvvLr21e+ffrIIySkTYafAQAAAOg8avcPaUphYaGmT5/eqcMQqekeKO3N39+/Tlhw3XXX6bbbbtO6deu0ePFizZ49W6+//nqzp+McO3ZMc+fOlcVikZubm9avX6+wsLA2rfnNN9+U1WqVJC1evPiKxzcUhtQICwvTxo0bNWjQIJWXl+vVV18lEOmOoqOjHV1Cm7uUnCxJKs3JUWlOjjL37auz38XHxx6U1IQkfn37yisiQoZ26HIMAAAAoP3VDkR27txpX4yiuLhYJ0+e1EsvvaRDhw7pm2++0eLFi/Xpp586qNKua9GiRfroo4+0fv16Pfjgg5o9e7YCAgKafM6ZM2d04403Ki8vTyaTSW+//bYmTZrU5rWtW7dOkuTm5qZbb7211efr06ePpk2bpi1btigpKUnp6emKiIho9XkdgUDEieRfYS3rioIC5Rw+rJzqhks1TO7u8o2JqRpNUiss8enZU8YuPF8MAAAAnd/E2C9b/FyTyavRfWPH/FutaaramFHXvnNVTVU7Qk0gEhwcXO8N9/XXX6/58+dr9OjROnbsmHbt2qUDBw502oaqknT06NFWnyMqKqrJkRAtMXv2bK1fv15FRUXatm2bbr/99kaPTU9P1w033KD09HQZDAatWrVKc+fObdN6JGn//v325qgzZ868YkjTXIMHD9aWLVskVU2xIRDpZlJSUprcf/78eV1/fcsbPDlCwRXuqTGVpaXKO3FCeSdO1NluMJvl07Pnd1Nvqn/3jYmR2aPx/yQAAACA5mqvVVhcXQPb5bwuLv7tct6WKi4uVlJSkiRp5MiRDR7j7u6uxx9/XD/60Y8kVU2x6MyByOWNYVuipavMNCUkJMT++Ntvv230uOzsbE2bNk3J1SP4X3311Ss2Om2p2s1UmzNdprlstpaFiZ1NuwYiFoulTTrOtsdf1itpaZOdzmz2v/+twtRUXUpOVv7p07qUnKxLp08r/8wZVZaUXPX5bBaL8pOTlZ+cLG3f/t0Og0FekZHyqwlJao0qcfXxacM7AgAAANCUw4cP2/tHjBgxotHjZs+eLW9vbxUWFmrTpk16+eWXO6jC7iMtLc3+2Nvbu8FjLl26pJtuusk+auO5557TT37yk3app6KiQu+8846kqrBm+vTpbXbu2kvydtXRIRIjRJyK0cVFvr17y7d3b2nqVPt2m9Wq4owMXTp9uiogqQ5KLiUnqyI//+ovZLOpKDVVRampSk9IqLPLIzS0wT4lboGBNHQFAAAA2ljt/iGNjRCRJA8PD91www364IMPdO7cOX399dcaPnx4B1R49Trr6IQNGzbYHzc0iqW4uFgzZszQwYMHJUm//e1v9eijj7ZbPdu2bVNWVpYk6fbbb2+zZrnJycn6+OOPJVX1E4mMjGyT8zpCuwYiZrNZiYmJrT5PeHh4G1SDxhiMRnlFRMgrIkIREyfat9tsNpVmZ9cJSGoel2Znt+haJZmZKsnM1IW9e+tsd/Xzqzf1xq9PH3mGhxOUAAAAAC1UOxBpaoSIJM2YMUMffPCBpKrleTtrINLR1qxZo9tuu03u7u6NHvPyyy9r69atkqSYmBjFxsbW2V9eXq65c+fq888/lyT97Gc/0zPPPNOiemreH/Xq1Utnz55t9Lja02WaOyVn8+bNTa40dOHCBc2fP18VFRWS1G6jWzqKwdZZ47UWiImJ0bfffnvFvxhtITU11b4STUpKSrecYtOU8kuXvgtIaqbeJCerqNYwsbZg9vCQb62ApGZUiXdUlIydfDkwAAAA1Hfq1ClZLBaZzWZdc801ji6n2xszZoy+/PJLeXp6Kj8/XyaTqdFj09PTFRUVJZvNprFjx2rPnj0dWGnnFRMTo4KCAs2bN0+xsbHq27evvL29VVBQoCNHjuitt96yBx2urq7asmWLbrjhhjrnmDdvnjZt2iRJmjJlil555ZUmP/h1dXVV//79G9zXnEAkLy9P4eHhKisr09ChQ3XkyJFm32tFRYXmzZuncePGKSYmRh4eHsrOztbOnTu1cuVK5eTkSJJiY2O1fft2ubm5NevcNVryPaC93n/zjhIt4urnp5CRIxVy2bA7S3Gx8s+erdOnJP/0aRWcOydb5dV327aUlCj32DHlHjtWZ7vRxUU+MTHfTbupDkt8YmJkcnVt1b0BAAAA3YHVarWvyDJs2LAmwxCpqhfEyJEjdfDgQX355ZfKzMxUaGhoR5Ta6eXm5urvf/+7/v73vzd6TFRUlFatWlUvDJFkD0Mk6ZNPPrni6JvWfsj/7rvvqqysTFLzR4fUSE9P16uvvqpXX3210WPmzZun11577arDkM6GQARtyuzpqcDBgxU4eHCd7ZXl5So8d+67qTfVvxecPavK6n+oV8NaUaFLp07p0qlTdbYbjEZ5R0fbQxLfWo1dXbwaX3YNAAAA6G5Onjyp4uJiSVeeLlOjpseF1WrVli1btHTp0nassGvYsWOHtm/frvj4eCUmJurChQvKycmRu7u7wsLCNGLECM2cOVMLFy6Up6eno8uVJK1bt06SZDKZdMcddzT7eWvXrlVCQoL27Nmj5ORkZWdnKz8/X97e3oqOjtb48eO1ePFijRs3rr1K71BMmWkhZ58y01aslZUqSkuz9yapPQXHUlTUptfy7NHD3sTVHpb07Su3Nl5/HAAAAI1jygzg3Jgy0waSkpL02Wef1dlWWFho/33NmjV19v3gBz9Qjx49Oqo8NJPRZJJPz57y6dlTkZMn27fbbDaVZGbWCUlqRpWU5ea26FrFGRkqzshQxu7ddba7BQbWWfGmZkSJR2goDV0BAAAAoJvqsoHIZ5991ujwrZycnHr74uPjCUS6EIPBIM+wMHmGhSl8/Pg6+0rz8pRfE5DUWv2mOCOjRdcqy81VZm6uMvftq7PdxdvbHpLU7lPiFRkpg9HY4nsDAAAAADhelw1E4LzcAwLkPmqUQkeNqrO9oqio7tSb6rCkKDVVNqv1qq9TUVionK+/Vs7XX9fZbnJzk2/v3lWr39QaVeLdsycNXQEAAACgi+iygciSJUu0ZMkSR5eBTsTFy0tBw4YpaNiwOtsry8qUf/ZsvT4lBWfOyGqxXPV1KsvKlHfihPJOnKiz3WA2y6dnz7oNXfv2lW9MjMweHq26NwAAAABA2+qygQjQXCY3NwUMGKCAAQPqbLdaLCpMTa3XpyQ/OVmWkpKrvo7NYqmaypOcrNTaOwwGeUVE1OlTUhOauPr6tu7mAAAAAAAtQiACp2U0m+UbEyPfmBhp6lT7dpvVquKMjDpTb2p+L8/Pv/oL2WwqSktTUVqa0j/9tM4uj5CQeiGJb9++cg8KoqErAAAAALQjAhHgMgajUV4REfKKiFDExIn27TabTaU5OfVCkvzkZJVkZbXoWiVZWSrJytKFL76os93V19cektj7lPTtK88ePWjoCgAAAABtgEAEaCaDwSCP4GB5BAcr7Prr6+wrz8+3r3ZTewpOUVqaZLNd9bXK8/OVdeiQsg4dqrPd7OFRJySp+d07KkpGM/+cAQAAAKC5eAcFtAFXX1+FjBihkBEj6my3lJQo/+zZqpCkdkPXc+dka0FDV0tJiXKPHVPusWN1thtdXOTTq1e9PiW+MTEyubm15tYAAAAAoFsiEAHakdnDQ4GDBilw0KA62yvLy1V47ly9USX5Z86osqzsqq9jrajQpaQkXUpKqrPdYDTKKypKfrVDkurHLl5erbo3AAAAAOjKCEQABzC5usqvXz/59etXZ7u1slLF6em61ECfkorCwqu+js1qVeG5cyo8d05pO3fW2efZo0f9JYL79JF7QEBrbg0AAAAAugQCEaATMZpM8o6Olnd0tCInTbJvt9lsKsnKUv7p03XCkvzkZJXm5LToWsUZGSrOyFDG7t11trsFBlaFJLVGlfj37y+P4OBW3RsAAAAAdCYEIkAXYDAY5BkaKs/QUPUYN67OvrKLF+09SmpPwSnOyGjRtcpyc5WZm6vM/fvrbA8cMkSRcXGKiouT/4ABLAsMAAAAoEsjEAG6ODd/f4WOGqXQUaPqbK8oKrI3ca099aYwJUU2q/Wqr1PTzPXI//2fPMPDFRUXp6gpUxQyapRMrq5tdTsAAAAA0CEIRIBuysXLS0HDhilo2LA62yvLylTw7bf1+pQUnD0ra0VFs85dfP68Tv7jHzr5j3/Ixdtb4RMnKmryZEV8//ty9fVtj9sBAAAAgDZFIAI4GZObm/z795d///51tlstFhWmpVVNvbmsoaulpKTR81UUFurctm06t22bDGazQkeNsk+t8Y6Kau/bAQAAAIAWIRABIEkyms3y7dVLvr16KWrKFPt2a0WFsg4eVGp8vFLj41WUmtroOWwWiy588YUufPGFDj73nPz791fk5MmKjItT0NChMhiNHXErAAAAAHBFBCIAmmR0cVHYmDEKGzNG1z76qC4lJSmtOhzJ+frrJp978eRJXTx5Usf+9jd5hITYw5GwMWNkdnfvoDsAAAAAgPoIRAA0m8FgkP8118j/mms05N57VZKVpbSdO5UaH68Le/eqsqys0eeWZGUpacMGJW3YIJOHh8InTKjqOzJpktwDAzvwLgAAAACAQARAK3iEhKjfggXqt2CBLMXFOr9nj9Li45WWkKCy3NxGn1dZUqLU7duVun27ZDAoZMQIRU6Zoqi4OPn27t2BdwAAAADAWTGhH0CbMHt6KnrqVI195hnN3blT09at06C77pJvnz5NP9FmU9ahQ/rqxRf10cyZ2jxjhg798Y/KPHBA1srKjikeAADACaxYsUIGg6HBX15eXho4cKDuv/9+JSYmOrrUTiU/P1/vvPOOfvWrX2nSpEnq16+f/Pz85OrqqtDQUE2ePFnPP/+8cnJymn3O7OxsPf/885owYYJ69OghNzc3RUREaMyYMXrkkUe0Z8+eq65z8uTJjb6+jf3auXNnvfM097mTJ0++6ho7G4PNZrM5uoiuKDU1VdHR0ZKklJQURbGaBtCo/LNn7X1Hsg8dks1qbdbz3AICFPH97ytqyhT1GDdOLl5e7VwpAABob6dOnZLFYpHZbNY111zj6HKcyn333ae//e1vVzzOzc1Na9eu1a233toBVXV+27dv17Rp0654XHBwsN58803ddNNNTR63YcMGLVu2rMkAZfbs2frggw+uqs7JkycrISGh2ccbjUadO3dOkZGRdbYbDIZmPX/SpEkNBipX0pLvAe31/pspMwDanW9MjHyXLtWgpUtVmpen9IQEpcXH6/znnze5pG9ZXp7OfPihznz4oYyuruoxdqwi4+IUOXmyPENDO/AOAAAAur6vvvpKkuTn56fPPvvMvr28vFynT5/WK6+8ot27d6usrExLly5VbGxsvTfLjQkODr6qERLx8fFdaoRBdHS04uLiNGrUKEVHRys8PFxWq1WpqanauHGjNm3apOzsbM2aNUv79u3T8OHDGzzPG2+8oaVLl8pqtSo0NFTLli1TbGysAgMDlZGRodOnT2vz5s1ycXG56hpXr16toqKiJo85fvy4PeiaOnVqk6/vsmXL9MADDzS636sbfFhJIAKgQ7kHBKjPnDnqM2eOKsvKdOHLL5X6ySdKi49XSVZWo8+zlpcr/dNPlf7pp9q3fLkChw5VVFycIuPi5N+/f7OTbAAAAGdktVp19OhRSdKwYcM0dOjQOvuvvfZazZs3TxMmTNDevXtVUlKit99+Ww8//HCzzv+jH/1IBQUFza6nR48ezS/eweLi4nTu3LlG9y9cuFAffPCB5s6dq/Lyci1fvlzvvfdeveMSExN17733ymq1auLEidq8ebP8/PzqHffQQw+pvLz8quvs3YxefOvWrbM/vvPOO5s8NjQ0tN7fk+6GQASAw5jc3BQxcaIiJk6U7YknlHv8uD0cuXjyZJPPzT16VLlHj+rrV1+VV2SkIuPiFBUXp9BRo2RsQaIOAADQnX3zzTcqLi6WpEZHLxiNRi1btkx79+6VJB07dqzZ53/11VdbX2QnZTKZrnjMnDlzNHDgQJ04cUKffvppg8c89NBDKisrU3BwsDZt2tRgGFLD1dW1xfU2xmq16q233pIkeXt765Zbbmnza3Q1BCIAOgWD0aigoUMVNHSovvfTn6owLa1qSd9PPlHm/v2yWSyNPrcoLU0n33xTJ998Uy4+PoqYOFGRcXGKiI2Vq69vB94FAABA51QzXUaqGiHSmF69etkfW5r4+Qv11UwhKS0trbfvxIkT2rFjhyTpwQcfVHBwcIfWJkk7duxQWlqaJGn+/Pny9PTs8Bo6GwIRAJ2Sd2SkBtxxhwbccYfK8/OV/tlnSouPV/quXapoYjhmRUGBvt26Vd9u3SqD2azQ0aMVNWWKIidPlncz58ACAAB0N7UDkcZGiEjShQsX7I+bMwUDVRITE+1/xgMHDqy3f8OGDfbHCxYssD/Oy8tTdna2AgMDFRQU1K41vvHGG/bHV5ou4yxYdhdAp+fq66uYm2/WhBde0C2ffqopr7+u/v/1X/KKiGjyeTaLRRf27tWBZ5/VP2+8UVvnztXXr76qnKNHm73SDQAAQHdQOxBpqi9E7ZVNZs+e3Y4VdX3FxcU6deqUXnrpJcXFxamyslKS9LOf/azesTXTkPz8/DRo0CC99dZb+t73vqfAwED1799fwcHB6tOnj5YvX67CwsI2r7WwsFDvv/++JKlnz57Nami7YcMGDRgwQB4eHvLx8dE111yjxYsXKz4+vs3rcxSW3W0hlt0FHM9ms+niyZP2JX1zqxuFNYdHaKgiJ09W1JQpCrv+epnc3NqxUgAAUONql9zMLm/5tA0vk1EepoY/A84pt6ilb4Q8TAZ5NdJXIq/CosqrOHGwa8cM2u/Ro4cuXLigmJgYnTlzpsFjPvjgA82bN09Wq1Xz58+vM6qhM2mLZvqrV6/WkiVLrvp5a9as0dKlSxvd//DDD+v555+vV2Pv3r119uxZfe9731NsbKz+/Oc/N3qOoUOH6t///rcirvDh39VYu3at/X5/+9vf6plnnmn02Ob8+c6ZM0dr1qxpsg9KY1h2FwDagMFgUMCAAQoYMEBD779fxRcuKK16Sd+MvXtlbaI7d0lmppLWr1fS+vUye3gofMKEqr4jkybJPSCgA+8CAAA0Zejnzf/A43LPXhOpu6JCGtw38ctE5VZUtui8v4oJ0yO9wxvcN/tgkk4W1+8h0ZiMuBEtquFqZGRk2KfCXN4/pKysTCdPntTq1av1pz/9SVarVbGxsVq1alW719WdjBgxQitXrtSYMWMa3J+bmyupqpfI4cOH5e/vr+eee0633HKLfH19deTIET355JPatm2bjh49qgULFmjXrl0yGttmUsfVTJfx9PTUrFmzNHXqVA0cOFDe3t7KyspSQkKCVq5cqZycHH3wwQeaPXu2Pv744xYtEdxZEIgA6DY8w8J0zcKFumbhQlUUFSlj926lxscrPSFBZRcvNvo8S0mJUrZvV8r27TIYjQoeObJqSd8pU+Rbq7EYAABAV3To0CH7482bNzc6AmDUqFG66667dO+998ps7rxvFY8cOdLqc7R0hMGcOXM0evRoSVJJSYlOnz6t9evX6/3339cdd9yhV155RTNnzqz3vKKiIklVAZTJZNK2bds0duxY+/7Ro0fro48+0syZM7Vt2zbt3r1bmzZt0vz581tUZ22pqanauXOnJGns2LHq379/k8enpaXJ39+/3vZp06bpoYce0vTp03Xo0CElJCRoxYoV+ulPf9rqGh2l8/4tB4BWcPHyUvS0aYqeNk3Wykplf/VV1dSaTz5RwbffNvo8m9WqrAMHlHXggA798Y/y7dOnampNXJyCvvc9GZux7BoAAEBnUrt/SFMKCws1ffr0Th2GSE33QGlv/v7+dcKC6667TrfddpvWrVunxYsXa/bs2Xr99dfrTcdxd3e3hyILFiyoE4bUMBqNeuGFF7Rt2zZJ0ttvv90mgcibb74pa3X/vMWLF1/x+IbCkBphYWHauHGjBg0apPLycr366qtdOhChqSqAbs9oMil01CiNfPhh/XDrVs386CON+OUvFTJypHSFOZL5yclKXLVKHy9apPcnT9bexx9Xyo4dshQXd1D1AAAArVM7ENm5c6eOHDmiI0eO6IsvvtC6des0cuRISdI333zTrDfMqG/RokVasGCBrFarHnzwQeXl5dXZ7+PjY388ffr0Rs8zZMgQRVavjLhv3742qW3dunWSJDc3N916662tPl+fPn00bdo0SVJSUpLS09NbfU5H6dzRHwC0A9/evTX47rs1+O67VZqTo7RPP1VafLzO796typKSRp9Xlpur5PffV/L778vk5qawsWOrptZMniyPkIbnJwMAgNY5OqHlowG8GmmoKkm7rh/Uqqaqjfnw2n5X1VS1I9QEIsHBwZo0aVKdfddff73mz5+v0aNH69ixY9q1a5cOHDigUaNGOaDS5jl6FY30GxMVFdXkSIiWmD17ttavX6+ioiJt27ZNt99+u31fdHS0MjIy7NduSnR0tNLS0pSZmdnqmvbv36/jx49LkmbOnKmANuqVN3jwYG3ZskVS1RSbtmwA25EIRAA4NfegIPWdO1d9586VpbRUF/buVWp8vNJ27lRpdnajz6ssK1N6QoLSExIkSUHDh1eFI3Fx8uvXr026nwMAgPZbhSWonc4b4NK53mIVFxcrKSlJkuwjQS7n7u6uxx9/XD/60Y8kVU2x6MyByOWNYVuipavMNCWk1gdk3142RXvIkCH2ER81y/M2pmZ/W0xdqt1MtS1H/3SXxWqZMgMA1czu7oqcPFljli/X3Ph43fj22xpy773ya8ZyYDlff63D//u/2jpnjv75gx/owHPP6cIXX8haUdEBlQMAADTs8OHD9v4RI0aMaPS42bNny9vbW5K0adOmjiit20lLS7M/rvmzrPH973/f/vj06dNNnic5OVmS7FNnWqqiokLvvPOOpKqwpqmpOlerZtSJpC47OkRihAgANMhgNCp4+HAFDx+u7/3sZypMSVHqzp1K++QTZR44IFsTyX5Raqq+WbdO36xbJxdfX0VMnKioKVMUPmGCXGvNHwUAAGhvtfuHNDZCRJI8PDx0ww036IMPPtC5c+f09ddfa/jw4R1Q4dXrrKMTNmzYYH98+SiWWbNmycXFRRUVFdq0aZPuv//+Bs+RkJCgnJwcSdLEiRNbVc+2bduUlZUlSbr99tvbrFlucnKyPv74Y0lV/URaG9w4EiNEAKAZvKOjNXDRIk1dvVrzdu3S+D/8QT2nT5fLZen/5Sry8/Xtli36/Fe/0qbYWH3y4x/rm7feUlEXbj4FAAC6jtqBSFMjRCRpxowZ9sebN29up4q6njVr1qi0tLTJY15++WVt3bpVkhQTE6PY2Ng6+4OCgnTPPfdIkj7++GP7yI3aCgoK9POf/9z+9X333dfgtQwGgwwGg2JiYpqsqfZ0mTvvvLPJY2ts3rxZFoul0f0XLlzQ/PnzVVE9CvonP/lJs87bWRlsnTVe6+RSU1MVHR0tSUpJSWnxOtYAurbK8nJl7t9vX9K3uLpZVnMEDByoyLg4RcXFKWDwYPqOAACcwqlTp2SxWGQ2m3VNM6alonXGjBmjL7/8Up6ensrPz5fJZGr02PT0dEVFRclms2ns2LHas2dPB1baecXExKigoEDz5s1TbGys+vbtK29vbxUUFOjIkSN666239Pnnn0uSXF1dtWXLFt1www31zpOVlaXRo0fr3LlzMpvNuv/++3XLLbfI19dXR44c0R/+8AedOHFCkrRs2TL95S9/abCemp8Ze/XqpbNnzzZ4TF5ensLDw1VWVqahQ4fqyJEjzb7XiooKzZs3T+PGjVNMTIw8PDyUnZ2tnTt3auXKlfYRLLGxsdq+fbvc3Nyade4aLfke0F7vvwlEWohABMDlbDabLp44odT4eKXGxyuv1tzKK/EIC1PU5MmKjItT2JgxMrm6tmOlAAA4DoFIx7FarfLx8VFxcbHGjBmjvXv3XvE5o0aN0sGDB2U0GnX+/HmFhoZ2QKWdW0xMTL0mqQ2JiorSqlWr7EvSNiQxMVGzZs2yN7ptyF133aWVK1fKxcWlwf3NCURWrlypZcuWSZKef/55PfLII1esX2r+vc6bN0+vvfZai1bq6UyBCD1EAKCNGAwGBQwapIBBgzTsgQdUnJGhtJ07lRoff8UGqyUXLujUu+/q1LvvyuzpqfDYWEXFxSni+9+XWxsvCQcAAJzDyZMnVVxcLOnK02VqzJgxQwcPHpTVatWWLVu0dOnSdqywa9ixY4e2b9+u+Ph4JSYm6sKFC8rJyZG7u7vCwsI0YsQIzZw5UwsXLpSnp2eT5xo0aJC++uorrVixQhs3btSpU6dUWFio0NBQTZgwQffdd5/i4uJaXfO6deskSSaTSXfccUezn7d27VolJCRoz549Sk5OVnZ2tvLz8+Xt7a3o6GiNHz9eixcv1rhx41pdY2fACJEWYoQIgKtRUVSk8599ptSdO5WekKDyS5ea9TyDyaSQkSMVHhurHmPHKmDwYBmbGOoKAEBnxwgRwLkxQgQAnIyLl5d63nSTet50k6wWi7IOHbL3HSlMSWn0ebbKSmXu36/M/ft1WJKrn5/CxoxRj3HjFD5unLyr/2MAAAAAcHUIRACggxnNZoVdd53CrrtOIx95RPmnTys1Pl5pO3cq+/BhqYmBe+WXLinlP/9Ryn/+I0nyiopS+Lhx6jFunMLGjGF6DQAAANBMBCIA4EAGg0F+/frJr18/Dfnxj1WSna30hASlxscrY88eVV5hibei1FQlbdigpA0bJINBgYMHq0d1QBJy7bU0ZwUAAAAaQSACAJ2IR3Cw+s6bp77z5slSUqKMvXt1/vPPdWHvXuWfOdP0k2025R47ptxjx3T8tddkcndXyLXXKnz8ePUYO1b+AwbIYDR2zI0AAAAAnRyBCAB0UmYPD0XFxSmqutN4UXq6Mr74Qhm7dytj716V5eY2+fzK0tKqY3fvliS5BQaqx9ix9hEkXuHh7X4PAAAAQGdFIAIAXYRXRIT6zp2rvnPnyma16uLJk8rYs0cZe/Yo88CBK06vKcvN1bdbt+rbrVslST4xMfZwJOz66+Xq49MRtwEAAAB0CgQiANAFGYxGBQwcqICBAzVo6VJVlpUp+6uvdL46IMk9dqzJ5qySVHD2rArOntWpt9+WwWRS0LBhVSNIxo9X0LBh9B8BAABAt0YgAgDdgMnNTWFjxihszBjp5z9X2cWLuvDFF8rYu1cZe/Y0ubSvVLW8b/ZXXyn7q690dOVKmT09FXrddfYRJH59+8pgMHTQ3QAAAADtj0AEALohN39/9bzpJvW86SZJUmFKijL27NH5PXt0Ye9elefnN/l8S3Gx0hMSlJ6QIEnyCAlR2Lhx9iV+PUJC2v0eAAAAgPZEIAIATsA7Olr9oqPVb+FCWSsrlZeYaO8/knXwoKwVFU0+vyQrS2f/+U+d/ec/JUl+/frZR4+Ejh4tFy+vjrgNAAAAoM0QiACAkzGaTAoaOlRBQ4dqyI9/LEtJibIOHrQHJHknTlzxHJeSknQpKUnfrFsno9ms4BEjFDZ2rMLHj1fgkCEymvnvBQAAAJ0bP7ECgJMze3gofMIEhU+YIEkqzcmp6j2yd68ydu9WcUZGk8+3WizK3L9fmfv368j//Z9cfHwUdv319hEkPr160X8EAAAAnQ6BCACgDvegIMXMmKGYGTNks9lU8O23yti9Wxl79+rCF1+oorCwyedXFBQodccOpe7YIUnyDA+3hyM9xo6Ve2BgR9wGAAAA0CQCEQBAowwGg3xjYuQbE6P+t98uq8WinKNH7dNrsg8fls1iafIcxefPK3nTJiVv2iRJChg40B6QhIwaJbO7e0fcCgAAAFAHgQgAoNmMZrNCRoxQyIgRGrZsmSqKipS5f799BMmlpKQrniPvxAnlnTihxNWrZXR1Vci116pHdf8R/4EDZTSZOuBOAAAA4OwIRAAALebi5aXISZMUOWmSJKk4M1MX9u6tWt53zx6VZGU1+Xxrebku7N2rC3v36vArr8jVz089xo6t+jV+vLyjojriNgAAAOCECEQAAG3GMzRUvWfNUu9Zs2Sz2XTp9Gn76JHML7+UpaSkyeeXX7qkc//+t879+9+SqpYLtvcfGTNGrn5+HXEbAAAAcAIEIgCAdmEwGOTfr5/8+/XTwDvvVGV5uXKOHLEHJDlHjshWWdnkOQpTUpSUkqKk9etlMBoVMHiwwq67TiHXXqvgESNo0AoAAIAWIxABAHQIk6urQkeNUuioURr+0EMqLyjQhS+/tDdoLTh7tsnn26xW5R49qtyjR5W4erUkyScmRiEjRypk5EgFjxwp3969WeIXAAAAzUIgAgBwCFcfH0VPnaroqVMlSUXp6crYu7dqBMkXX6gsN/eK5yg4e1YFZ88q+f33JUlu/v4KHjFCIddeq5CRIxU4ZIhMbm7teh8AAADomghEAACdgldEhPrecov63nKLbFarLn7zjTL27tX53buVdeCAKsvKrniOsosXlbZzp9J27pQkGV1cFDhkSNUoEqbZAAAAoBYCEQBAp2MwGhUwaJACBg3SoKVLVVlWpqxDh5S5b5+yDh1S9tdfq/IKDVolyVpRoeyvvlL2V1/Vn2ZTPYrEJyaGaTYAAKDD1fz88dRTT+npp592bDFOikAEANDpmdzc7MvxSpLVYtHFb75R5sGDyj50SFmHDqkkM7NZ56o3zSYgoGqaTXUvksChQ2VydW23ewEAAEDnQCACAOhyjGazAocMUeCQIdKiRbLZbCpKT68aPXLwoLIOHdLFU6ckm+2K5yrLy1NafLzS4uOrzn35NJuRI+UeENDetwQAAIAORiACAOjyDAaDvCMj5R0Zqd4zZ0qSygsKlH34cNUIkoMHlX3kSIun2fj27q3g6hEkTLMBAADoHoyOLgAAgPbg6uOjiNhYDX/oIU1dvVoL9uzRTe++q2sfe0w9b7pJHqGhzT5X/pkzSt60SV888YQ+mjlTmyZOVMKDD+r4668r6+BBVZaXt+OdAADQeunp6Xrsscd07bXXys/PT66ururRo4eGDRumH/3oR1qzZo3y8/MlSX/6059kMBhkMBj0xRdfXPHc8+bNk8FgkL+/v0pqffjw9NNP288jSfn5+Xr66ac1bNgweXt7KywsTDfffLN2795d53yZmZl6/PHHNWTIEHl5eSkoKEizZ8/WoUOHGq1hzZo19mudPXtW5eXleumllzR69Gj5+fkpMDBQkydP1pYtW+o8r6CgQM8//7xGjhwpX19f+fv7a9q0adqxY0ez/lxTU1P1m9/8Rtdee60CAgLk7u6unj176tZbb1V89ejTy8Vc9sHK8uXL7bXX/FqyZIl9/86dO+3bd+7cKavVqlWrVikuLk5hYWEyGo1asmSJvv76a/txf/jDH65Y+6uvvmo//vLXwFkwQgQA4BSMLi4KGjpUQUOHtss0m6ChQ+2jSJhmAwDoTHbt2qWZM2faA48aFy5c0IULF3T06FG98847Cg4O1syZM7Vo0SI9+uijKi0t1erVqzVmzJhGz52dna2PPvpIknTbbbfJw8OjweNSUlJ0ww036OTJk/ZtRUVF2rZtm/7zn//o7bff1oIFC/T111/r5ptvVlpamv244uJi/fOf/9S///1vbd26VVOmTGnyfvPz83XbbbfVC3MSEhKUkJCgF198Ub/85S917tw53XzzzTp27Fid47Zv364dO3bojTfe0H/91381ep3XX39dDz30UJ0QqOZeU1JStH79et19991auXKlzOa2eetdWlqqm266Sdu3b6+3b/jw4bruuuu0b98+rV69Wo8++miT51pdPRJ2wIABGj9+fJvU19UQiAAAnFKD02zy85V9+HBVSHLo0FVNs8mqbu6aWL2NaTYAgM6grKxMt912m/Lz8+Xj46Nly5YpLi5OoaGhqqio0Lfffqs9e/bovffesz8nICBAc+fO1dtvv6133nlHL7/8cqNBx1tvvaXy6pGSd911V6N1LFiwwD6a4gc/+IE8PT312Wef6amnnlJ+fr7uvvtujR49WjNnzlRJSYl+//vfa9KkSXJxcdG//vUv/f73v1dZWZmWLl2qU6dOybWJBuj33nuvDhw4oAceeEBz585VQECAvvrqKz3xxBM6f/68HnnkEd14441asmSJkpOT9dhjj+kHP/iBvLy89Pnnn+upp57SpUuX9MADD+jGG29UaAOjSletWqV77rlHkjR06FDdd999GjlypDw9PXXmzBm9/vrr2rp1q15//XX5+fnpxRdftD/3P//5j8rLyzVs2DBJ0rJly/TAAw/UOX9AIx+sPProo/r66681a9YsLVmyRL169dKFCxfsYdc999yjffv26ZtvvtGePXs0bty4Bs9z+PBh+4ibpl637s5gszXjozDUk5qaqujoaElVCWBUVJSDKwIAtDVrRYXyvvnGHpBkHTyokqysFp2rzmo2116rwCFDWM0GgFM6deqULBaLzGazrrnmmgaPsVqtysnJ6eDKHCsoKEhGY9t3NPjkk080depUSdLmzZs1s/pDgMtZLBYVFxfL19dXkhQfH28fifHWW2/p9ttvb/B5I0aM0OHDhzV06FAdOXKkzr6nn35ay5cvlyS5ubkpISGh3miTrVu3asaMGZKkkJAQ2Ww27d27V3379q1z3F/+8hf95Cc/kSRt2rRJc+fOrbN/zZo1Wrp0qaSqDz02bdqkOXPm1DnmyJEjGjlypCorKxUSEqL8/Pwr1vTSSy/pF7/4RZ39KSkpGjhwoIqLi7V48WK99tprDY4A+e1vf6tnn31WRqNRiYmJ6t+/f539zV12d+fOnYqLi7N//cQTT+h3v/tdg8cWFBQoPDxcRUVF+vGPf6y//e1vDR73s5/9TH/6059kNpuVkpKiHj16NHr9ttac7wGXa6/334wQAQCgEQ1Os0lLs48GyW7NNBtXVwUNGcI0GwBoQE5OToOfyndnmZmZCgkJafPzZmRk2B9///vfb/Q4s9lsD0MkafLkyerXr5+SkpK0evXqBgORgwcP6vDhw5KuPMrg5z//eYNTb26++Wb16tVL3377rbKysrRy5cp6YYgkLV26VL/61a9UWlqqXbt21QtEalu4cGG9MESShg0bptjYWCUkJCgrK0uPPfbYFWvatWtXvUDkf//3f1VcXKyIiIgmp8MsX75ca9euVVpamt544w0988wzjdbcXP3799dTTz3V6H4fHx/deuutWrVqld5991298sor8vT0rHNMeXm5/vGPf0iquteODEM6G5qqAgDQTAaDQd5RUer9wx/q+ief1M3vv6/5u3dr8sqVGnLffQq7/nqZGhlSfDlreXnVFJtVq/TpQw9pU2ysPpo5U3ufeEKnN21S/tmzYhAnAKC1wsPD7Y9rekY0h8FgsIccO3bs0Llz5+odU3M+FxeXJnttSFX9RRozfPhw+zUXLlzY4DEeHh720QTJycmtvpYk3XrrrVc8rqFrffjhh5KkH/7wh3J3d2/0HGaz2T5lZc+ePU3W3Fy33nqrTCZTk8fUTOXJz8/Xpk2b6u3fvHmzsrOzJTn3dBmJESIAALSKq6+vIiZOVMTEiZKqp9mcOFFnFElzp9nknzljX9FGktwCAxUyYoR9FAnTbAAAVys2NlZ9+vRRcnKyfv7zn+utt97S3LlzNWnSJI0ePbrJXhxLly7Vk08+KYvForVr1+qJJ56w7ysrK7OPMvjhD394xdEtl08Xqc3f31+SFBwc3GjvjNrHFRQUtPpazT3u8mtdunRJSUlJkqS//vWv+utf/9pkLTVqj9RpjdqBTmPGjRunIUOG6NixY1q9enW9sKomyAoLC7NPDXJWBCIAALQho4uLgoYNU9CwYRp4552tm2aTm6vUTz5R6iefVJ27ZprNiBEKGDxYgYMHy6dnTxnaYc45AKB7cHFx0ebNmzV//nwlJiZq37592rdvn6SqUReTJk3SokWLGhx50KNHD82YMUMffvih1qxZo8cff9ze9+LDDz9Ubm6uJOnuu+++Yh2XT9uoraZ3SlPH1D6usrKy1ddq7nGXXyszM7PJazemuLi4Rc+7XFOBUW333HOPfvGLXyg+Pl5nz55VTEyMJOn8+fP617/+JUm6884722z1m67Kue8eAIB2VjPNpmaqjVRrNZvq5X5zjhxRZWnpFc9VM80mq7orvCSZPT0VMGiQAgcNqvp98GD59ukjo5P/gAOgawsKCmrxG8+uKigoqN3OPXjwYB05ckSbN2/W5s2blZCQoNOnT6ukpET/+te/9K9//UsvvfSStm7dWq93yz333KMPP/xQycnJ+vTTTzVp0iRJ340yiIiI0E033dRutXc2tQOSn//8580KgyQ1ORLnalxpukyNRYsW6bHHHlNZWZnWrl1r7zvyxhtv2O/B2afLSAQiAAB0uLacZmMpLlbWgQPKOnDAvs3k5ib//v2/C0oGD5b/NdfI5ObWLvcDAG3NaDS2S4NRZ2YymTRnzhx7s9Hz589r27Zt+stf/qIDBw7owIEDuu+++/T+++/Xed706dMVGRmptLQ0rV69WpMmTVJaWpo+/vhjSdLixYub/Sa9O6gdXBUXF2vo0KEOrKZxQUFBmjNnjt59912tWbNGTz75pAwGg9asWSOpalrNwIEDHVtkJ0AgAgCAgzU6zaZ6BEnWoUO6lJTUrGk2klRZVqacI0eUU2v5Q4PZLL++fe0BSeCgQfIfMEAuXl7tdVsAgE4sPDxcd911lxYtWqSxY8fq4MGD+uijj1RSUiKPWg3CTSaTlixZot///vfauHGj/u///k9r1661jzKoWerWWYSEhNgDou3bt8tms9mnEXU299xzj959912dPXtWO3fulJubm06cOCGJ0SE1CEQAAOhk6kyzmTVLUq1pNocOKff4ceUdP67SnJxmn9NmsejiN9/o4jffSB98UHMh+cbE2Kfa1IwocfXza4e7AgB0Ri4uLpo0aZIOHjwoi8Wiixcv1glEpKoeIc8++6yKiorsIw6kqmV8a1Z+cSazZs3SihUrlJycrI0bN2rBggUtOo+7u7tKS0tVVlbWxhVWmTp1qr2h7urVq+VWPVLUy8uryRV2nAmBCAAAXcDl02wkqSQrS7nHj1cFJImJyj1+XMXnzzf/pDabfWWbb7dutW/2ioy0jySpCUk8GLoOAF3Srl27FB4ern79+jW4v7y8XAkJCZIkb2/vBqcq9e7dW1OnTtX27dv1+OOP21dMcdZRBo888ohWrVqlsrIy3X///erdu7dGjx7d6PFbt25VVFRUvRViwsPDdebMGZ0+fbpd6qxZOvnxxx/Xe++9Z5/atGDBAvn4+LTLNbsaAhEAALooj5AQRU6apMjqBneSVHbxoj0cyU1MVF5iogrOnr2q8xalpakoLU0p27fXuVbNVJuaESWe4eGddpgwAKDKjh079N///d+aOHGiZsyYoeHDhyskJEQlJSU6efKkVq5cqYMHD0qqmmLR2Koj99xzj7Zv324PQ3x8fFo8MqKr6927t1auXKmlS5cqNzdXEyZM0KJFizRz5kz17NlTFotFqamp+vLLL7Vx40adPn1amzdvrheIjB8/XmfOnNE///lP/fWvf9WECRPk7u4uSfL19a3X4LYlli5dqqeeeqrOKjfOGmQ1hEAEAIBuxM3fXz3GjVOPcePs2yoKC5X3zTf2qTZ5J07o0unTsl1h2cLaSrKyVJKQoPTqTxElydXPzz7VpiYkYRlgAOh8rFarEhIS7CNBGnLLLbfof/7nfxrdP3fuXAUHBys7O1uSdNttt11xmdzubMmSJfLw8NC9996r/Px8vf7663r99dcbPNZoNMqrgZ5dDz/8sDZu3GgfaVLb4sWL7VOTWiMiIkLTp0/XRx99JEnq37+/JtYabersCEQAAOjmXLy9FTpqlEJHjbJvs5SW6uLJk8qrHkWSe/y4Lp48KWtFRbPPW37pkjL27FHGnj32bTXLANdMtWEZYABwrF//+tcaM2aMPv74Y+3Zs0fp6en2JY179OihMWPG6M4779TNN9/c5HlcXV21YMECrVixQhKjDCTp1ltv1Y033qi//e1v+te//qXjx48rLy9PLi4u6tGjh4YMGaK4uDjNnz9f0dHR9Z4/YsQI7dmzRy+88II+//xzXbhwoV36iSxatMgeiDhbE9wrMdhszWxZjzpSU1Ptf6lTUlIUFRXl4IoAAGgda0WFLp0+XRWQJCbaR5NYSkpadV6Tm5v8rrlGgTVTblgGGHBqp06dksVikdlsdsqGnF3ZxIkT9dlnn2nQoEE6fvy4o8tBMz3xxBN65plnZDKZlJKSovDwcIfW05LvAe31/puPawAAgKSq5X8DBg5UwMCB6jN3riTJWlmpwnPn6jRuzU1MVEV+frPPW1lWptyjR5V79Kh9m8Fsll+fPlVTbgYPtl+XZYABoHM6efKkPvvsM0lVq86ga6isrNTatWslSdOnT3d4GNLZEIgAAIBGGU0m+fbuLd/evRUzY4YkyWazqSg9XXnVK9zUjCa56mWAT57UxZMnm1wGOGDgQLn5+7f9jQEArsof//hHSVVLxS5evNjB1aC53n33XaWkpEhSvT4lIBABAABXyWAwyDsyUt6RkYqeNs2+/fJlgPMSE1WUnt78E7MMMAB0GiUlJUpLS1NxcbE2b95sbxh6zz33KDg42MHVoSlJSUmyWCzav3+/fvGLX0iShg0bdsU+Mc6IQAQAALSJKy0DXNObpC2XAQ4YOFCBgwfL75pr5B0ZSfNWAGgjX3zxheLi4upsi4qK0vLlyx1UEZrr8r4cLi4uWrFihQwGg4Mq6rz4qQEAALSbppYBrh2UtMUywEYXF/nExMi3d2/59elTNdWnb1/59uolsxMvDQkArWEwGBQeHq4pU6bo97//vQIDAx1dEpopICBA1157rX73u99p/Pjxji6nUyIQAQAAHaqxZYAvnTpl70fSkmWArRUVunTqlC6dOqWUy/Z5RURUBSR9+lSFJdW/3AIC+MQMABowefJksSBp18Tr1nwEIgAAwOHM7u4KGjZMQcOG2bdZKyp0KTm5KiBp5TLARenpKkpP1/nPP6+z3dXPr05AUjO6xDMiQkaTqdX3BQAAOi8CEQAA0CkZXVwUMGCAAgYMaHwZ4MREXTxxQmUXL7boGuWXLinr0CFlHTpUZ7vJzU0+vXpVTbmpNQXHJyZGZnf31t4aAADoBAhEAABAl9HQMsCSVJqXp/zkZOUnJ+tScnLVajXJyVWr3LRg6HBlWdl3ywLXZjDIKzLyux4lNaNK+vZleWAAALoYAhEAANDluQcEyP2yviSSZCkpUcHZs3VCkvwzZ5R/9qys5eVXfyGbTUWpqSpKTVX6p5/W2eUWGFi3oWv1NByv8HAZjMbW3B4AAGgHBCIAAKDbMnt4KGDQIAUMGlRnu7WyUkVpafaA5FL16JL85GSV5+e36FplubnKys1V1oEDdbab3N3lGxNjD0hqepb49Oolk6tri+8NAAC0DoEIAABwOkaTST49e8qnZ09FTp5s326z2VSak/PdaJJaU3CKz59v0bUqS0uVd+KE8k6cqLPdYDTKKyrqu1EltQITV1/f1twe0KmZTCZZLBZVVlbKZrOx0hPgRGw2myorKyVJxk4wepJABAAAoJrBYJBHcLA8goMVdt11dfZVFBWp4Ntv64wmyT9zRgVnz8pqsVz1tWxWqwrPnVPhuXNKT0ios889KKjuiJLqKTiePXrw5hFdnqurq8rKymSz2VRcXCwvLy9HlwSgg9T825eqvhc4GoEIAABAM7h4eSlw8GAFDh5cZ7vVYlFhWpryT5+uNwWnorCwRdcqzclRaU6OMvftq7Pd7OFRb4lg39695d2zJ9Nv0GX4+vqqoKBAkpSbmytPT0+CPsBJ5NealtoZwlACEQAAgFYwms3y7dVLvr16SVOm2LfbbDaVZmfXW/km/8wZFWdktOhalpIS5R47ptxjx+psN5hM8o6OrtfQ1bd3b7n6+LTq/oC25u3tLYPBIJvNpsLCQqWmpiowMJBgBOjGKisrdfHiReXk5Ni3eXt7O7CiKgQiAAAA7cBgMMgjJEQeISEKGzOmzr6KoqK6o0mqw5KCc+dka8n0m8pKFZw9q4KzZ+vt8wgNtYckPtHR8oqMlFdEhLwiIuTq58cbUHQ4o9GoyMhIpaWl2UORwsJCGQwGmUwmR5cHoI3V7htSIyQkhCkzAAAAzsjFy0tBw4YpaNiwOtutFRUqSElpsKmrpaioRdcqycxUSWamLnzxRb19Zk/POgHJ5b/cg4IITNAufHx86oQiUtWbJksLAkEAXYufn5+CgoIcXYYkAhEAAIBOw+jiIr/qRqqaOtW+3WazqSQz87uApNaokpKsrBZfz1JcrEunTunSqVMN7je5u8srPFye4eHyvjw4iYyUR0iIDJ1glQB0TT4+Purfv78KCwuVn5+v8vLyep8iA+geTCaTPD095e/vL3d3d0eXY0cgAgAA0MkZDAZ5hoXJMyxMPcaNq7OvvKCgzoiSmmk4hSkpsrXyzWVlaWnVuc+caXC/0WyWZ3h4/dEl1eGJZ1iYjGZ+3ETjjEajfH195ctS0wAcgP+hAAAAujBXHx8FDx+u4OHD62yvLC9X4blz3/UoOXtWRWlpKkpLU0lmpmxWa6uvbbVYVJiSosKUlAb3G4xGeYSFfReS1Bpp4hkRIa/wcFbHAQA4DIEIAABAN2RydZVfv37y69ev3j5rRYWKL1xQUXp63V9paSo6f15F58+3qLnr5WxWq4rPn1fx+fPKOnCgwWM8QkLsYUlD/UzMHh6trgMAgIYQiAAAADgZo4uLvKOi5B0V1eB+a2WlSrOyVJSersL0dBWnp6swLa1OeGItL2+TWkqyslSSlaXsr75qcL9bYGCjYYl3ZKRcOsGyjQCArolABAAAAHUYTSZ59ughzx49FHLttfX222w2lebk1B1ZctlIE0tJSZvUUpabq7LcXOUeO9bgfhdfX3k3tEpOdYDC0sIAgMYQiAAAAOCqGAwGeQQHyyM4uF7vEqkqMCm/dKlOWFJnpMn586rIz2+TWiry85WXn6+8Eyca3G/29Gw0LGFpYQBwbl02EDl37py2bNminTt36quvvlJqaqoqKysVHBysUaNG6bbbbtOCBQtkprM5AABAhzIYDHLz95ebv78CBw9u8JjygoKGe5hUPy7Ly2uTWizFxbqUlKRLSUkN7je5udVZKcc7MlKeERH2USfuISEymkxtUgsAoHMx2Gw2m6OLuFpPPvmknnnmGV2p9NGjR+u9995Tz54927yG1NRURUdHS5JSUlIU1cgcXAAAAFw9S3FxVYPXy8KSmpEmJVlZHVKHfWnh6j4mnuHh8ggKkntQkNwCA+Ve/djF25uRJgDQTtrr/XeXHD6Rnp4um80mLy8vzZ07V1OnTtU111wjd3d3JSYm6k9/+pP27dun/fv364YbbtDBgwflTcMtAACALsPs6Sm/vn3l17dvg/sry8pUlJHRYMPXjlxauIbR1VXu1QGJW2CgPC4LTNxrPXYLCJCRUcwA4HBdcoTIo48+qqCgIC1btkw+Pj719ldWVur222/X+vXrJUm/+93v9MQTT7RpDYwQAQAA6LysFRUqzsxssOFrUfVSwNY2WFq4pdz8/esGJjWhSWCg3IOD64QqZk9PRp8AcGrt9f67SwYizZGTk6OIiAiVl5dr+PDhOnz4cJuen0AEAACg62pqaeHi6qk6lWVlji5TkmRyd68/yqTm8WWjUFz9/el5AqDbYcrMVQoKCtLw4cO1f/9+nT592tHlAAAAoBNp6dLCJZmZKs3NVWlOjkpzcmQpLm73WitLS6uun5Z2xWMNRqPcAgK+C00aGIXiFhgoj+pRKGZ393avHwA6q24biEhSWXWqbzQaHVwJAAAAupIrLS1cw1JSUicgKcvNrfo6O/u77bm59u1q58HZNqvVXktzmL286o0yubxhbM02V19fGfi5GkA30m0DkczMTCUmJkqSBg4ceNXPT01NbXL/+fPnW1QXAAAAug+zh4e8IyPlHRl5xWOtlZUqv3jRHpLUBBd1HteEKjk5HTJlx1JUpMKiois2jZUkg9ks99qjT4KDv+t70sAoFJOra7vXDwCt0W0DkRdeeEGW6kZZCxcuvOrn18xPAgAAANqC0WSyhwZXYrPZZCkurhOalOXkqKRWYFI7SCm/dKnd67dZLCrJymr2kscuvr7fhSW1GsY2NAqFZYsBOEK3bKr6xRdfKDY2VhaLRVFRUfrmm2/k6el5Vee4mm/INFUFAACAI1krKlSal6ey2kFJA6NQyqqn8zhyhZ2GNLRssaufn1y8vWX29JSLl1fVYy+vqsfVv8ze3nLx8mI0CtDN0VS1mS5cuKD58+fLYrHIYDBo7dq1Vx2GSFV/yE05f/68rr/++paWCQAAALQZo4uLPEND5RkaesVjbTabKgoK6vU+KcnJqQpUagKU6v0VBQXtXr+1vFzFGRkqzsho0fONLi5VAUkDYUmd7d7ecvH0rLPPvr96m9HVldEqgJNo10DEYrHIxcWl1edZvXq1lixZcsXjCgoKNGPGDHv/j2effVZTpkxp0TUZ8QEAAIDuyGAwyNXXV66+vvKNibni8ZXl5U02jL28oaytsrL9b+Iy1ooKlV28qLKLF1t9LoPZ/F1Y0tQIlZqvPT2/e1wTuFQ/Nrm5Ea4AnVi3GSFSWlqq2bNn68CBA5KkX/7yl3rsscccXBUAAADQtZlcXeUVHi6v8PArHmuzWlWen99gw9iGep90xLLFV8tmsaj80qU26ctiMJnqjVAxVwcol49oaXRKUPXxJnd3whWgjbVrIGI2m+0rvbRG+BW++VosFi1cuFDx8fGSpHvuuUcvvvhiq68LAAAAoPkMRqPc/P3l5u8vv759r3h8U8sWlxcUyFJUpIriYlUUFlY9rvlVWNjuSxi3BVtlpcrz81Wen9/qcxmMxoanBNUeodLAFKDLvzZ7esrs6Um4AqgDRoi0ZMnbq2G1WrVo0SJt3rxZknTrrbfqr3/9a7teEwAAAEDrXc2yxbXZbDZVlpTYAxJLdUhS5+uabcXFstTaV+f46n02q7Wd7rDt2KxWVRQUtElPF4PRaB+p0tiUoMZGrxhdXKp+mUwymM1Vv1d/bTSbZTCZZHRxqfq99tcEMOiEuvyUmfvuu0/vvPOOJGnmzJlat26djEajg6sCAAAA0F4MBoN9pINHSEirzmWz2VRZWtqscMVyeajSwD5H9FC5WjarteoeCws77JoGo7HRAMVgNstYs6/6cc2x9sc14UqtrxsKZRo9ppFzNHV8k/saqo/3oV1Olw5EfvnLX+q1116TJE2dOlUbN25skyauAAAAAJyDwWCQ2cNDZg8PeQQHt+pcNptNlWVldUagNBikNBa4VB9fs8/WyZZHbg2b1SpbebmsklRS4uhy2ofBcOVw5WpDloa+bmwUTvXXdQKimnM2drzJJJ+ePeXq5+foPz2H6LKByNNPP62XX35ZkjR+/Hh9+OGHcnNzc3BVAAAAAJyVwWCQ2d1dZnd3uQcFtepcNptN1vLyBkenVBQVVU0DqhWgWC7fd1kAY+1G4UqnZbPJWlEhVVSo848T+s6EF19Urx/8wNFlOESXDEReffVVLV++XJIUGRmp559/XmfOnGnyOQMGDGD0CAAAAIAuwWAwyOTmJpObm9wDA1t9vsrqcKXRfioN9VdpYJ+1okLWykrZKioIWboJo7lLxgJtokve+XvvvWd/nJaWptjY2Cs+58yZM4ppxjrrAAAAANDdmFxdZXJ1lQIC2vS8NqtVVotFNotFVoulKiypfmyr/rr2flvtr5vaV+vrOvsqK2WtqPhuX004U3PdllyvoXPWOqYr9IVpDYPJ5OgSHKZLBiIAAAAAAMczGI1VQYurq6NLaTc2q7VueNJI4NPQPntQ1Fjgc1kYc3k4U/N17cCnwcCoqevVPmcDxxideCZFlwxEdu7c6egSAAAAAABOwGA0ymA0OnVw0F2xLhAAAAAAAHA6BCIAAAAAAMDpEIgAAAAAAACnQyACAAAAAACcDoEIAAAAAABwOgQiAAAAAADA6RCIAAAAAAAAp0MgAgAAAAAAnA6BCAAAAAAAcDoEIgAAAAAAwOkQiAAAAAAAAKdDIAIAAAAAAJwOgQgAAAAAAHA6BCIAAAAAAMDpEIgAAAAAAACnQyACAAAAAACcDoEIAAAAAABwOgQiAAAAAADA6RCIAAAAAAAAp0MgAgAAAAAAnA6BCAAAAAAAcDoEIgAAAAAAwOkQiAAAAAAAAKdDIAIAAAAAAJwOgQgAAAAAAHA6BCIAAAAAAMDpEIgAAAAAAACnQyACAAAAAACcDoEIAAAAAABwOgQiAAAAAADA6RCIAAAAAAAAp0MgAgAAAAAAnA6BCAAAAAAAcDoEIgAAAAAAwOkQiAAAAAAAAKdDIAIAAAAAAJwOgQgAAAAAAHA6BCIAAAAAAMDpEIgAAAAAAACnQyACAAAAAACcDoEIAAAAAABwOgQiAAAAAADA6RCIAAAAAAAAp0MgAgAAAAAAnA6BCAAAAAAAcDoEIgAAAAAAwOkQiAAAAAAAAKdDIAIAAAAAAJwOgQgAAAAAAHA6BCIAAAAAAMDpEIgAAAAAAACnQyACAAAAAACcDoEIAAAAAABwOgQiAAAAAADA6RCIAAAAAAAAp0MgAgAAAAAAnA6BCAAAAAAAcDoEIgAAAAAAwOkQiAAAAAAAAKdDIAIAAAAAAJwOgQgAAAAAAHA6BCIAAAAAAMDpEIgAAAAAAACnQyACAAAAAACcDoEIAAAAAABwOgQiAAAAAADA6RCIAAAAAAAAp0MgAgAAAAAAnA6BCAAAAAAAcDoEIgAAAAAAwOkQiAAAAAAAAKdDIAIAAAAAAJwOgQgAAAAAAHA6BCIAAAAAAMDpEIgAAAAAAACnQyACAAAAAACcDoEIAAAAAABwOgQiAAAAAADA6RCIAAAAAAAAp0MgAgAAAAAAnA6BCAAAAAAAcDoEIgAAAAAAwOkQiAAAAAAAAKdDIAIAAAAAAJwOgQgAAAAAAHA6BCIAAAAAAMDpEIgAAAAAAACnQyACAAAAAACcDoEIAAAAAABwOgQiAAAAAADA6RCIAAAAAAAAp0MgAgAAAAAAnA6BCAAAAAAAcDoEIgAAAAAAwOkQiAAAAAAAAKdDIAIAAAAAAJwOgQgAAAAAAHA6BCIAAAAAAMDpEIgAAAAAAACnQyACAAAAAACcDoEIAAAAAABwOgQiAAAAAADA6RCIAAAAAAAAp2N2dAFdlcVisT8+f/68AysBAAAAAKD7qv2eu/Z78dYiEGmhrKws++Prr7/egZUAAAAAAOAcsrKyFBMT0ybnYsoMAAAAAABwOgabzWZzdBFdUWlpqY4cOSJJCgkJkdnc+QfbnD9/3j6a5csvv1R4eLiDK0JH4bV3TrzuzonX3TnxujsvXnvnxOvunJz5dbdYLPZZGsOGDZO7u3ubnLfzv4vvpNzd3XXdddc5uowWCw8PV1RUlKPLgAPw2jsnXnfnxOvunHjdnRevvXPidXdOzvi6t9U0mdqYMgMAAAAAAJwOgQgAAAAAAHA6BCIAAAAAAMDpEIgAAAAAAACnQyACAAAAAACcDoEIAAAAAABwOgQiAAAAAADA6RhsNpvN0UUAAAAAAAB0JEaIAAAAAAAAp0MgAgAAAAAAnA6BCAAAAAAAcDoEIgAAAAAAwOkQiAAAAAAAAKdDIAIAAAAAAJwOgQgAAAAAAHA6BCIAAAAAAMDpEIgAAAAAAACnQyACAAAAAACcDoGIkzh37pwefvhhDRo0SF5eXgoMDNT111+vP/7xjyouLnZ0eWhjmZmZ+uijj/Tkk09q+vTpCg4OlsFgkMFg0JIlSxxdHtrJwYMH9eyzz2r69OmKjo6Wm5ubvL291b9/fy1ZskS7du1ydIloY/n5+XrnnXf0q1/9SpMmTVK/fv3k5+cnV1dXhYaGavLkyXr++eeVk5Pj6FLRgX7961/bv+cbDAbt3LnT0SWhDdV+bZv6NXnyZEeXinaSnZ2t559/XhMmTFCPHj3k5uamiIgIjRkzRo888oj27Nnj6BLRBiZPntzsf+98v285g81mszm6CLSvLVu26I477tClS5ca3D9gwABt3bpVffr06eDK0F4MBkOj+xYvXqw1a9Z0XDHoEJMmTdKnn356xeMWLVqk1157Ta6urh1QFdrb9u3bNW3atCseFxwcrDfffFM33XRTB1QFRzp8+LBGjx4ti8Vi3xYfH8+b426kqf/ja5s0aRJvjrqhDRs2aNmyZU0G3bNnz9YHH3zQcUWhXUyePFkJCQnNPt5oNOrcuXOKjIxsx6q6H7OjC0D7Onz4sBYuXKji4mJ5e3vrN7/5jeLi4lRSUqJ33nlHf//73/XNN99oxowZ2rdvn7y9vR1dMtpYdHS0Bg0apP/85z+OLgXtKC0tTZIUERGhBQsWaOLEierZs6cqKyu1Z88evfjii0pLS9O6detksVj0j3/8w8EVo61ER0crLi5Oo0aNUnR0tMLDw2W1WpWamqqNGzdq06ZNys7O1qxZs7Rv3z4NHz7c0SWjnVitVv34xz+WxWJRaGioMjMzHV0S2tGyZcv0wAMPNLrfy8urA6tBR3jjjTe0dOlSWa1WhYaGatmyZYqNjVVgYKAyMjJ0+vRpbd68WS4uLo4uFW1g9erVKioqavKY48eP69Zbb5UkTZ06lTCkJWzo1iZPnmyTZDObzbbdu3fX2//888/bJNkk2ZYvX+6ACtEennzySdvmzZttGRkZNpvNZjtz5oz9dV68eLFji0O7mDFjhu3dd9+1WSyWBvdnZWXZ+vfvb/978Omnn3ZwhWgPjb3etb3//vv21/2WW27pgKrgKC+//LJNkm3gwIG23/zmN/bXPT4+3tGloQ3VvK5PPfWUo0tBBzp+/LjNzc3NJsk2ceJE28WLFxs9tqysrAMrgyP9+te/tn9PWLdunaPL6ZLoIdKN7du3zz5U8u6779a4cePqHfOrX/1KgwYNkiS98sorqqio6MgS0U6WL1+umTNnKiwszNGloIN89NFHWrhwoUwmU4P7g4OD9eKLL9q/3rhxY0eVhnbU2Otd25w5czRw4EBJata0KnRNKSkpeuKJJyRJK1asYFoc0M089NBDKisrU3BwsDZt2iQ/P79Gj+Xfv3OwWq166623JEne3t665ZZbHFxR10Qg0o3Vnju4dOnSBo8xGo268847JUl5eXnMNQW6sdo9BE6fPu24QtDhaobOl5aWOrgStJcHHnhAhYWFWrx4Mf1CgG7mxIkT2rFjhyTpwQcfVHBwsIMrQmewY8cO+5Tp+fPny9PT08EVdU0EIt1YzYoSXl5eGjVqVKPHTZo0yf74s88+a/e6ADhGeXm5/bHRyLd/Z5GYmKivvvpKkuwjRdC9rF+/Xh999JECAwP1wgsvOLocAG1sw4YN9scLFiywP87Ly9OpU6dYScxJvfHGG/bHNR9w4+rxE3E3lpiYKEnq16+fzObG++fW/gG55jkAup/ancp5Y9y9FRcX69SpU3rppZcUFxenyspKSdLPfvYzB1eGtnbx4kX76/qHP/xBISEhDq4IHWXDhg0aMGCAPDw85OPjo2uuuUaLFy9WfHy8o0tDG9u7d68kyc/PT4MGDdJbb72l733vewoMDFT//v0VHBysPn36aPny5SosLHRwtegIhYWFev/99yVJPXv2ZGRgK7DKTDdVWlqq7OxsSVJUVFSTxwYEBMjLy0tFRUVKSUnpiPIAdDCr1arnnnvO/vXChQsdWA3aw5o1axqdHilJDz/8sO64444OrAgd4de//rUyMjI0fvx43X333Y4uBx3o+PHjdb5OSkpSUlKS3njjDc2ZM0dr1qxpss8Euo6a1zomJkYPPfSQ/vznP9c75syZM3r66ae1ceNG/fvf/1ZERERHl4kO9N5779lXoFm0aFGzl+NGfYwQ6aYKCgrsj5uzlG7N/HJSZaB7evnll/Xll19KkubOnavRo0c7uCJ0lBEjRmjv3r164YUX+IGpm/nss8/02muvyWw2a+XKlby+TsLT01O33Xab/v73v2vXrl06dOiQ/vOf/+i3v/2tgoKCJFX1kZs9ezbN8ruJ3NxcSVW9RP785z/L399fK1euVGZmpkpLS7Vv3z5Nnz5dknT06FEtWLBAVqvVkSWjnTFdpu0wQqSbqt04rzmdpt3c3CRJJSUl7VYTAMdISEjQY489JkkKDQ3VihUrHFwR2sOcOXPsQVdJSYlOnz6t9evX6/3339cdd9yhV155RTNnznRwlWgr5eXluvfee2Wz2fSLX/xCw4YNc3RJ6CBpaWny9/evt33atGl66KGHNH36dB06dEgJCQlasWKFfvrTn3Z8kWhTNSMBysrKZDKZtG3bNo0dO9a+f/To0froo480c+ZMbdu2Tbt379amTZs0f/58R5WMdpSammpfCGPs2LHq37+/Ywvq4hgh0k25u7vbH9dupNiYsrIySZKHh0e71QSg4x07dkxz586VxWKRm5ub1q9fz3LM3ZS/v7+GDh2qoUOH6rrrrtNtt92mTZs26Y033lBycrJmz56tNWvWOLpMtJFnn31WiYmJ6tmzp5566ilHl4MO1FAYUiMsLEwbN260fxj26quvdlBVaE+1f65fsGBBnTCkhtForNNU+e233+6Q2tDx3nzzTfsIoMWLFzu4mq6PQKSb8vHxsT9uzjSYmuS5OdNrAHQNZ86c0Y033qi8vDyZTCa9/fbbdVaVgnNYtGiRffj0gw8+qLy8PEeXhFY6ceKE/ud//kdS1RvemmmvgCT16dNH06ZNk1TVVyQ9Pd3BFaG1av9cXzM1piFDhgxRZGSkJGnfvn3tXhccY926dZKqRvjfeuutDq6m62PKTDfl7u6u4OBgZWdnKzU1tclj8/Ly7IFIdHR0R5QHoJ2lp6frhhtuUHp6ugwGg1atWqW5c+c6uiw4yOzZs7V+/XoVFRVp27Ztuv322x1dElrh5ZdfVnl5ufr06aPi4mK988479Y45evSo/fEnn3yijIwMSdIPf/hDAhQnMHjwYG3ZskVS1RQbGmx2bdHR0fZ/w1daLCE6OlppaWnKzMzsiNLQwfbv329vsjtz5kwFBAQ4uKKuj0CkGxs0aJB27dqlpKQkWSyWRpfePXHiRJ3nAOjasrOzNW3aNCUnJ0uq+gSZhlvOrfZSrN9++60DK0FbqJnmmpycrB/96EdXPP6///u/7Y/PnDlDIOIEbDabo0tAGxoyZIh9xEfNMuqNqdnf2M/96NpqN1NlukzbYMpMNxYbGyupajrMgQMHGj0uISHB/njChAntXheA9nPp0iXddNNN9k8PnnvuOf3kJz9xcFVwtLS0NPtjpkYC3V/tJXkZHdL1ff/737c/Pn36dJPH1nwYUjN1Bt1HRUWFfURgSEhIk9On0HwEIt3YnDlz7I9Xr17d4DFWq9WeNPr7+ysuLq4jSgPQDoqLizVjxgwdPHhQkvTb3/5Wjz76qIOrQmewYcMG+2NWI+n61qxZI5vN1uSv2o1W4+Pj7dtjYmIcVzg6RHJysj7++GNJVf1EeGPc9c2aNUsuLi6SpE2bNjV6XEJCgnJyciRJEydO7JDa0HG2bdumrKwsSdLtt9/OKKA2QiDSjV1//fX2b4avv/669uzZU++YF198UYmJiZKkn/3sZ/ZvtgC6lvLycs2dO1eff/65pKp/z88884yDq0J7W7NmTZ1l1hvy8ssva+vWrZKkmJgY++hBAF3P5s2bZbFYGt1/4cIFzZ8/XxUVFZLECMFuIigoSPfcc48k6eOPP26wb1BBQYF+/vOf27++7777Oqo8dJDa02WYCt12DDYmGXZrhw4d0oQJE1RSUiJvb2/9v//3/xQXF6eSkhK98847+tvf/iZJ6t+/v/bv31+nizW6rs8++0xJSUn2r7Ozs/XII49IqpoWVfOfao0lS5Z0ZHloB/PmzbN/ajRlyhS98sorMhgMjR7v6urKuvXdQExMjAoKCjRv3jzFxsaqb9++8vb2VkFBgY4cOaK33nrLHpK5urpqy5YtuuGGGxxcNTrC008/reXLl0uqGiEyefJkxxaENhETE6OKigrNmzdP48aNU0xMjDw8PJSdna2dO3dq5cqV9hECsbGx2r59u9zc3BxcNdpCVlaWRo8erXPnzslsNuv+++/XLbfcIl9fXx05ckR/+MMf7H0Bly1bpr/85S8OrhhtKS8vT+Hh4SorK9PQoUN15MgRR5fUbRCIOIHNmzfrv/7rv5Sfn9/g/v79+2vLli3q169fB1eG9rJkyRKtXbu22cfzbaDrayr8aEivXr109uzZ9ikGHSYmJqZZTVKjoqK0atUq+1Kc6P4IRLqn5v6bnzdvnl577TX5+/u3f1HoMImJiZo1a1adD70ud9ddd2nlypWM+u5mVq5cqWXLlkmSnn/+efsHnWg9Jh45gR/+8If6+uuv9b//+7/asmWLUlNT5erqqn79+mnBggV68MEH5enp6egyAQBXaceOHdq+fbvi4+OVmJioCxcuKCcnR+7u7goLC9OIESM0c+ZMLVy4kO/zQDewdu1aJSQkaM+ePUpOTlZ2drby8/Pl7e2t6OhojR8/XosXL9a4ceMcXSrawaBBg/TVV19pxYoV2rhxo06dOqXCwkKFhoZqwoQJuu++++gH2E2tW7dOkmQymXTHHXc4uJruhREiAAAAAADA6dBUFQAAAAAAOB0CEQAAAAAA4HQIRAAAAAAAgNMhEAEAAAAAAE6HQAQAAAAAADgdAhEAAAAAAOB0CEQAAAAAAIDTIRABAAAAAABOh0AEAAAAAAA4HQIRAAAAAADgdAhEAAAAAACA0yEQAQAAAAAATodABAAAAAAAOB0CEQAAAAAA4HQIRAAAAAAAgNMhEAEAAAAAAE6HQAQAAAAAADgdAhEAAAAAAOB0CEQAAAAAAIDTIRABAAAAAABOh0AEAAAAAAA4HQIRAAAAAADgdAhEAAAAAACA0yEQAQAAAAAATuf/A/gXjYsFShD7AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 413, "width": 546 } }, "output_type": "display_data" } ], "source": [ "starts = iter(alphabet[:num_lines])\n", "for line in reflected_lines:\n", " line_x = []\n", " line_y = []\n", " line.insert(0, next(starts))\n", " for point in line:\n", " line_x.append(table.loc[point]['x'])\n", " line_y.append(table.loc[point]['y'])\n", " \n", " plt.plot(line_x, line_y, label = fr\"$R^-= {table.loc[line[0]]['R-']:.2f}$\", linestyle = \"--\")\n", " \n", "plt.plot([table.loc[i]['x'] for i in walls], [table.loc[i]['y'] for i in walls], color = \"brown\")\n", "plt.plot([table.loc[i]['x'] for i in walls], [-table.loc[i]['y'] for i in walls], color = \"brown\")\n", "plt.plot([0, 4.8], [0, 0], label = \"symmetry\", color=\"black\")\n", "plt.axis('equal')\n", "#plt.savefig('highres')\n", "plt.legend()" ] }, { "cell_type": "code", "execution_count": 21, "id": "0f48b12b-0f22-42be-9be8-3c0b7d58f424", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\\begin{tabular}{lrrrrrrrrrr}\n", "\\toprule\n", " & R+ & R- & theta & nu & M & mu & theta + mu & theta - mu & x & y \\\\\n", "name & & & & & & & & & & \\\\\n", "\\midrule\n", "a & 0.0000 & 0.7460 & 0.3730 & 0.3730 & 1.0417 & 73.7362 & 74.1092 & -73.3632 & 0.0000 & 1.0000 \\\\\n", "b & 0.0000 & 4.7461 & 2.3730 & 2.3730 & 1.1496 & 60.4396 & 62.8126 & -58.0666 & 0.0000 & 1.0000 \\\\\n", "c & 0.0000 & 8.7461 & 4.3731 & 4.3731 & 1.2324 & 54.2360 & 58.6090 & -49.8629 & 0.0000 & 1.0000 \\\\\n", "d & 0.0000 & 12.7462 & 6.3731 & 6.3731 & 1.3074 & 49.8964 & 56.2695 & -43.5233 & 0.0000 & 1.0000 \\\\\n", "e & 0.0000 & 16.7462 & 8.3731 & 8.3731 & 1.3786 & 46.4997 & 54.8728 & -38.1266 & 0.0000 & 1.0000 \\\\\n", "f & 0.0000 & 20.7463 & 10.3731 & 10.3731 & 1.4478 & 43.6867 & 54.0599 & -33.3136 & 0.0000 & 1.0000 \\\\\n", "g & 0.0000 & 24.7464 & 12.3732 & 12.3732 & 1.5159 & 41.2758 & 53.6490 & -28.9027 & 0.0000 & 1.0000 \\\\\n", "h & 0.0000 & 28.7464 & 14.3732 & 14.3732 & 1.5835 & 39.1608 & 53.5340 & -24.7876 & 0.0000 & 1.0000 \\\\\n", "i & 0.0000 & 32.7465 & 16.3732 & 16.3732 & 1.6512 & 37.2735 & 53.6468 & -20.9003 & 0.0000 & 1.0000 \\\\\n", "j & 0.0000 & 36.7465 & 18.3733 & 18.3733 & 1.7192 & 35.5676 & 53.9408 & -17.1943 & 0.0000 & 1.0000 \\\\\n", "1 & 0.7460 & 0.7460 & 0.0000 & 0.7460 & 1.0669 & 69.6054 & 69.6054 & -69.6054 & 0.3349 & 0.0000 \\\\\n", "2 & 0.7460 & 4.7461 & 2.0000 & 2.7460 & 1.1660 & 59.0499 & 61.0500 & -57.0499 & 0.4611 & 0.2746 \\\\\n", "3 & 0.7460 & 8.7461 & 4.0001 & 4.7461 & 1.2468 & 53.3270 & 57.3270 & -49.3269 & 0.5255 & 0.3827 \\\\\n", "4 & 0.7460 & 12.7462 & 6.0001 & 6.7461 & 1.3209 & 49.2060 & 55.2061 & -43.2060 & 0.5750 & 0.4569 \\\\\n", "5 & 0.7460 & 16.7462 & 8.0001 & 8.7461 & 1.3916 & 45.9377 & 53.9378 & -37.9376 & 0.6177 & 0.5168 \\\\\n", "6 & 0.7460 & 20.7463 & 10.0001 & 10.7461 & 1.4605 & 43.2105 & 53.2107 & -33.2104 & 0.6565 & 0.5694 \\\\\n", "7 & 0.7460 & 24.7464 & 12.0002 & 12.7462 & 1.5285 & 40.8614 & 52.8616 & -28.8612 & 0.6929 & 0.6178 \\\\\n", "8 & 0.7460 & 28.7464 & 14.0002 & 14.7462 & 1.5961 & 38.7932 & 52.7934 & -24.7930 & 0.7278 & 0.6638 \\\\\n", "9 & 0.7460 & 32.7465 & 16.0002 & 16.7462 & 1.6638 & 36.9428 & 52.9430 & -20.9425 & 0.7618 & 0.7088 \\\\\n", "10 & 0.7460 & 36.7465 & 18.0003 & 18.7463 & 1.7320 & 35.2666 & 53.2669 & -17.2664 & 0.7953 & 0.7534 \\\\\n", "11 & 0.7460 & NaN & 18.0003 & 18.7463 & 1.7320 & 35.2666 & 53.2669 & -17.2664 & 1.1138 & 1.1801 \\\\\n", "12 & 4.7461 & 4.7461 & 0.0000 & 4.7461 & 1.2468 & 53.3270 & 53.3270 & -53.3270 & 0.6822 & 0.0000 \\\\\n", "13 & 4.7461 & 8.7461 & 2.0000 & 6.7461 & 1.3209 & 49.2060 & 51.2061 & -47.2060 & 0.7680 & 0.1108 \\\\\n", "14 & 4.7461 & 12.7462 & 4.0001 & 8.7461 & 1.3916 & 45.9377 & 49.9378 & -41.9377 & 0.8471 & 0.2070 \\\\\n", "15 & 4.7461 & 16.7462 & 6.0001 & 10.7461 & 1.4605 & 43.2105 & 49.2106 & -37.2104 & 0.9157 & 0.2876 \\\\\n", "16 & 4.7461 & 20.7463 & 8.0001 & 12.7462 & 1.5285 & 40.8614 & 48.8615 & -32.8613 & 0.9786 & 0.3600 \\\\\n", "17 & 4.7461 & 24.7464 & 10.0001 & 14.7462 & 1.5961 & 38.7932 & 48.7933 & -28.7930 & 1.0380 & 0.4279 \\\\\n", "18 & 4.7461 & 28.7464 & 12.0002 & 16.7462 & 1.6638 & 36.9428 & 48.9429 & -24.9426 & 1.0953 & 0.4935 \\\\\n", "19 & 4.7461 & 32.7465 & 14.0002 & 18.7463 & 1.7320 & 35.2666 & 49.2668 & -21.2664 & 1.1515 & 0.5584 \\\\\n", "20 & 4.7461 & 36.7465 & 16.0002 & 20.7463 & 1.8007 & 33.7334 & 49.7336 & -17.7331 & 1.2071 & 0.6235 \\\\\n", "21 & 4.7461 & NaN & 16.0002 & 20.7463 & 1.8007 & 33.7334 & 49.7336 & -17.7331 & 1.8759 & 1.4131 \\\\\n", "22 & 8.7461 & 8.7461 & 0.0000 & 8.7461 & 1.3916 & 45.9377 & 45.9377 & -45.9377 & 0.9036 & 0.0000 \\\\\n", "23 & 8.7461 & 12.7462 & 2.0000 & 10.7461 & 1.4605 & 43.2105 & 45.2105 & -41.2105 & 0.9858 & 0.0839 \\\\\n", "24 & 8.7461 & 16.7462 & 4.0001 & 12.7462 & 1.5285 & 40.8614 & 44.8614 & -36.8613 & 1.0717 & 0.1699 \\\\\n", "25 & 8.7461 & 20.7463 & 6.0001 & 14.7462 & 1.5961 & 38.7932 & 44.7933 & -32.7931 & 1.1510 & 0.2487 \\\\\n", "26 & 8.7461 & 24.7464 & 8.0001 & 16.7462 & 1.6638 & 36.9428 & 44.9429 & -28.9426 & 1.2265 & 0.3239 \\\\\n", "27 & 8.7461 & 28.7464 & 10.0001 & 18.7463 & 1.7320 & 35.2666 & 45.2668 & -25.2665 & 1.3000 & 0.3976 \\\\\n", "28 & 8.7461 & 32.7465 & 12.0002 & 20.7463 & 1.8007 & 33.7334 & 45.7336 & -21.7332 & 1.3724 & 0.4713 \\\\\n", "29 & 8.7461 & 36.7465 & 14.0002 & 22.7463 & 1.8704 & 32.3195 & 46.3197 & -18.3193 & 1.4446 & 0.5462 \\\\\n", "30 & 8.7461 & NaN & 14.0002 & 22.7463 & 1.8704 & 32.3195 & 46.3197 & -18.3193 & 2.4089 & 1.5560 \\\\\n", "31 & 12.7462 & 12.7462 & 0.0000 & 12.7462 & 1.5285 & 40.8614 & 40.8614 & -40.8614 & 1.1031 & 0.0000 \\\\\n", "32 & 12.7462 & 16.7462 & 2.0000 & 14.7462 & 1.5961 & 38.7932 & 40.7932 & -36.7931 & 1.1939 & 0.0784 \\\\\n", "33 & 12.7462 & 20.7463 & 4.0001 & 16.7462 & 1.6638 & 36.9428 & 40.9428 & -32.9427 & 1.2882 & 0.1600 \\\\\n", "34 & 12.7462 & 24.7464 & 6.0001 & 18.7463 & 1.7320 & 35.2666 & 41.2667 & -29.2666 & 1.3789 & 0.2391 \\\\\n", "35 & 12.7462 & 28.7464 & 8.0001 & 20.7463 & 1.8007 & 33.7334 & 41.7335 & -25.7333 & 1.4676 & 0.3177 \\\\\n", "36 & 12.7462 & 32.7465 & 10.0001 & 22.7463 & 1.8704 & 32.3195 & 42.3196 & -22.3193 & 1.5558 & 0.3971 \\\\\n", "37 & 12.7462 & 36.7465 & 12.0002 & 24.7464 & 1.9412 & 31.0069 & 43.0070 & -19.0067 & 1.6444 & 0.4787 \\\\\n", "38 & 12.7462 & NaN & 12.0002 & 24.7464 & 1.9412 & 31.0069 & 43.0070 & -19.0067 & 2.9277 & 1.6757 \\\\\n", "39 & 16.7462 & 16.7462 & 0.0000 & 16.7462 & 1.6638 & 36.9428 & 36.9428 & -36.9428 & 1.3016 & 0.0000 \\\\\n", "40 & 16.7462 & 20.7463 & 2.0000 & 18.7463 & 1.7320 & 35.2666 & 37.2667 & -33.2666 & 1.4090 & 0.0813 \\\\\n", "41 & 16.7462 & 24.7464 & 4.0001 & 20.7463 & 1.8007 & 33.7334 & 37.7334 & -29.7333 & 1.5146 & 0.1623 \\\\\n", "42 & 16.7462 & 28.7464 & 6.0001 & 22.7463 & 1.8704 & 32.3195 & 38.3196 & -26.3194 & 1.6189 & 0.2438 \\\\\n", "43 & 16.7462 & 32.7465 & 8.0001 & 24.7464 & 1.9412 & 31.0069 & 39.0070 & -23.0067 & 1.7232 & 0.3273 \\\\\n", "44 & 16.7462 & 36.7465 & 10.0001 & 26.7464 & 2.0133 & 29.7813 & 39.7815 & -19.7812 & 1.8286 & 0.4139 \\\\\n", "45 & 16.7462 & NaN & 10.0001 & 26.7464 & 2.0133 & 29.7813 & 39.7815 & -19.7812 & 3.4710 & 1.7813 \\\\\n", "46 & 20.7463 & 20.7463 & 0.0000 & 20.7463 & 1.8007 & 33.7334 & 33.7334 & -33.7334 & 1.5095 & 0.0000 \\\\\n", "47 & 20.7463 & 24.7464 & 2.0000 & 22.7463 & 1.8704 & 32.3195 & 34.3195 & -30.3194 & 1.6414 & 0.0890 \\\\\n", "48 & 20.7463 & 28.7464 & 4.0001 & 24.7464 & 1.9412 & 31.0069 & 35.0069 & -27.0068 & 1.7616 & 0.1722 \\\\\n", "49 & 20.7463 & 32.7465 & 6.0001 & 26.7464 & 2.0133 & 29.7813 & 35.7814 & -23.7812 & 1.8827 & 0.2582 \\\\\n", "50 & 20.7463 & 36.7465 & 8.0001 & 28.7464 & 2.0869 & 28.6314 & 36.6315 & -20.6313 & 2.0061 & 0.3486 \\\\\n", "51 & 20.7463 & NaN & 8.0001 & 28.7464 & 2.0869 & 28.6314 & 36.6315 & -20.6313 & 4.0582 & 1.8743 \\\\\n", "52 & 24.7464 & 24.7464 & 0.0000 & 24.7464 & 1.9412 & 31.0069 & 31.0069 & -31.0069 & 1.7352 & 0.0000 \\\\\n", "53 & 24.7464 & 28.7464 & 2.0000 & 26.7464 & 2.0133 & 29.7813 & 31.7813 & -27.7813 & 1.8999 & 0.1005 \\\\\n", "54 & 24.7464 & 32.7465 & 4.0001 & 28.7464 & 2.0869 & 28.6314 & 32.6315 & -24.6314 & 2.0389 & 0.1880 \\\\\n", "55 & 24.7464 & 36.7465 & 6.0001 & 30.7464 & 2.1622 & 27.5479 & 33.5480 & -21.5478 & 2.1814 & 0.2809 \\\\\n", "56 & 24.7464 & NaN & 6.0001 & 30.7464 & 2.1622 & 27.5479 & 33.5480 & -21.5478 & 4.7040 & 1.9536 \\\\\n", "57 & 28.7464 & 28.7464 & 0.0000 & 28.7464 & 2.0869 & 28.6314 & 28.6314 & -28.6314 & 1.9875 & 0.0000 \\\\\n", "58 & 28.7464 & 32.7465 & 2.0000 & 30.7464 & 2.1622 & 27.5479 & 29.5479 & -25.5479 & 2.1945 & 0.1152 \\\\\n", "59 & 28.7464 & 36.7465 & 4.0001 & 32.7465 & 2.2394 & 26.5230 & 30.5230 & -22.5229 & 2.3578 & 0.2096 \\\\\n", "60 & 28.7464 & NaN & 4.0001 & 32.7465 & 2.2394 & 26.5230 & 30.5230 & -22.5229 & 5.4225 & 2.0165 \\\\\n", "61 & 32.7465 & 32.7465 & 0.0000 & 32.7465 & 2.2394 & 26.5230 & 26.5230 & -26.5230 & 2.2768 & 0.0000 \\\\\n", "62 & 32.7465 & 36.7465 & 2.0000 & 34.7465 & 2.3186 & 25.5503 & 27.5503 & -23.5503 & 2.5376 & 0.1331 \\\\\n", "63 & 32.7465 & NaN & 2.0000 & 34.7465 & 2.3186 & 25.5503 & 27.5503 & -23.5503 & 6.2288 & 2.0588 \\\\\n", "64 & 36.7465 & 36.7465 & 0.0000 & 36.7465 & 2.4000 & 24.6243 & 24.6243 & -24.6243 & 2.6175 & 0.0000 \\\\\n", "65 & 36.7465 & NaN & 0.0000 & 36.7465 & 2.4000 & 24.6243 & 24.6243 & -24.6243 & 7.1440 & 2.0747 \\\\\n", "\\bottomrule\n", "\\end{tabular}\n", "\n" ] } ], "source": [ "print(table.to_latex(float_format=\"%.4f\"))" ] }, { "cell_type": "code", "execution_count": 22, "id": "74c821fe-9fd8-4086-9741-fd28a70b11cf", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
R+R-thetanuMmutheta + mutheta - muxy
name
a0.0000000.7460000.3730000.3730001.04168673.73622974.109229-73.3632290.0000001.000000
b0.0000004.7460592.3730302.3730301.14964260.43960962.812639-58.0665800.0000001.000000
c0.0000008.7461184.3730594.3730591.23239154.23595058.609009-49.8628910.0000001.000000
d0.00000012.7461776.3730896.3730891.30739249.89643856.269527-43.5233490.0000001.000000
e0.00000016.7462368.3731188.3731181.37860646.49966954.872787-38.1265510.0000001.000000
.................................
6132.74647232.7464720.00000032.7464722.23935626.52299126.522991-26.5229912.2768060.000000
6232.74647236.7465312.00003034.7465022.31855525.55028727.550317-23.5502582.5376180.133100
6332.746472NaN2.00003034.7465022.31855525.55028727.550317-23.5502586.2288492.058755
6436.74653136.7465310.00000036.7465312.40000024.62431824.624318-24.6243182.6174640.000000
6536.746531NaN0.00000036.7465312.40000024.62431824.624318-24.6243187.1439892.074730
\n", "

75 rows × 10 columns

\n", "
" ], "text/plain": [ " R+ R- theta nu M mu \\\n", "name \n", "a 0.000000 0.746000 0.373000 0.373000 1.041686 73.736229 \n", "b 0.000000 4.746059 2.373030 2.373030 1.149642 60.439609 \n", "c 0.000000 8.746118 4.373059 4.373059 1.232391 54.235950 \n", "d 0.000000 12.746177 6.373089 6.373089 1.307392 49.896438 \n", "e 0.000000 16.746236 8.373118 8.373118 1.378606 46.499669 \n", "... ... ... ... ... ... ... \n", "61 32.746472 32.746472 0.000000 32.746472 2.239356 26.522991 \n", "62 32.746472 36.746531 2.000030 34.746502 2.318555 25.550287 \n", "63 32.746472 NaN 2.000030 34.746502 2.318555 25.550287 \n", "64 36.746531 36.746531 0.000000 36.746531 2.400000 24.624318 \n", "65 36.746531 NaN 0.000000 36.746531 2.400000 24.624318 \n", "\n", " theta + mu theta - mu x y \n", "name \n", "a 74.109229 -73.363229 0.000000 1.000000 \n", "b 62.812639 -58.066580 0.000000 1.000000 \n", "c 58.609009 -49.862891 0.000000 1.000000 \n", "d 56.269527 -43.523349 0.000000 1.000000 \n", "e 54.872787 -38.126551 0.000000 1.000000 \n", "... ... ... ... ... \n", "61 26.522991 -26.522991 2.276806 0.000000 \n", "62 27.550317 -23.550258 2.537618 0.133100 \n", "63 27.550317 -23.550258 6.228849 2.058755 \n", "64 24.624318 -24.624318 2.617464 0.000000 \n", "65 24.624318 -24.624318 7.143989 2.074730 \n", "\n", "[75 rows x 10 columns]" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "table" ] }, { "cell_type": "code", "execution_count": 1, "id": "aca8b278-b37e-4a3c-b5ed-b077a24e20d3", "metadata": {}, "outputs": [ { "name": "stdin", "output_type": "stream", "text": [ "give me your first word\n", " garden\n", "give me your first word\n", " danger\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "theyre anagrams\n" ] } ], "source": [ "word1 = input(\"give me your first word\\n\")\n", "word2 = input(\"give me your first word\\n\")\n", "if sorted(word1) == sorted(word2):\n", " print(\"theyre anagrams\")\n", "else:\n", " print(\"theyre not\")" ] }, { "cell_type": "code", "execution_count": null, "id": "2dab146d-1a56-4a39-80e2-3c22ca9ee9a6", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 5 }