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0.125 ppp could be processed. For noise-free images, the 
attained accuracy is very high. The addition of synthetic 
noise reduces usable particle image density (NI ≤ 0.075 
ppp for highly noisy images) and accuracy (still being 
significantly higher compared to tomographic reconstruc-
tion). The solutions remain virtually free of ghost particles. 
Processing an experimental data set on a transitional jet in 
water demonstrates the benefits of advanced Lagrangian 
evaluation in describing flow details—both on small scales 
(by the individual tracks) and on larger structures (using an 
interpolation onto an Eulerian grid). Comparisons to stand-
ard TOMO-PIV processing for synthetic and experimental 
evaluations show distinct benefits in local accuracy, com-
pleteness of the solution, ghost particle occurrence, spatial 
resolution, temporal coherence and computational effort.

1  Introduction and motivation

Lagrangian particle tracking (LPT) signifies the tracking 
of individual tracer particles in a three-dimensional vol-
ume, typically following a flow which is being sampled by 
the seeding particles. Depending on the methods used for 
extraction of the particle tracks, it is often referred to as 3D 
particle tracking velocimetry (3D PTV) or, more recently, 
tomographic PTV.

The Shake-The-Box (STB) method represents an 
advanced particle tracking scheme that incorporates the 
recent advancements of both 3D PTV and tomographic par-
ticle image velocimetry (TOMO-PIV, Elsinga et al. 2006a; 
Scarano 2013) and complements these methods with an 
extensive use of the temporal information contained in 
time-resolved data sets. STB was first introduced in 2013 
(Schanz et al. 2013b) and gradually improved in perfor-
mance since then. It features a considerable improvement 
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the subsequent time-step as a mean to seize the temporal 
domain. Errors introduced by the prediction process are 
corrected by an image matching technique (‘shaking’ the 
particle in space), followed by an iterative triangulation 
of particles newly entering the measurement domain. The 
scheme was termed ‘Shake-The-Box’ and previously char-
acterized as ‘4D-PTV’ due to the strong interaction with 
the temporal dimension. Trajectories of tracer particles are 
identified at high spatial accuracy due to a nearly complete 
suppression of ghost particles; a temporal filtering scheme 
further improves on accuracy and allows for the extrac-
tion of local velocity and acceleration as derivatives of a 
continuous function. Exploiting the temporal information 
enables the processing of densely seeded flows (beyond 0.1 
particles per pixel, ppp), which were previously reserved 
for tomographic PIV evaluations. While TOMO-PIV uses 
statistical means to evaluate the flow (building an ‘anony-
mous’ voxel space with subsequent spatial averaging of the 
velocity information using correlation), the Shake-The-Box 
approach is able to identify and track individual particles at 
numbers of tens or even hundreds of thousands per time-
step. The method is outlined in detail, followed by descrip-
tions of applications to synthetic and experimental data. 
The synthetic data evaluation reveals that STB is able to 
capture virtually all true particles, while effectively sup-
pressing the formation of ghost particles. For the exam-
ined four-camera set-up particle image densities NI up to 

 * Daniel Schanz 
 daniel.schanz@dlr.de

1 German Aerospace Center (DLR), Institute of Aerodynamics 
and Flow Technology, Göttingen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00348-016-2157-1&domain=pdf


 Exp Fluids (2016) 57:70

1 3

70 Page 2 of 27

compared to previous methods in both accuracy (in relation 
to both 3D PTV and TOMO-PIV) and the applicable parti-
cle image densities NI (especially in relation to 3D PTV). 
In order to classify the methods used in STB, both TOMO-
PIV and 3D PTV will be briefly introduced in this section; 
their advantages and drawbacks are discussed, followed by 
an overview of the methods adapted by STB.

1.1  Tomographic PIV

Since its introduction by Elsinga et al. (2006a), TOMO-
PIV has been rapidly accepted as a reliable tool for 3D 
flow measurements. Applications range from (often spa-
tially highly resolved) two-pulse measurements in water 
(e.g. Hain et al. 2008; Scarano and Poelma 2009) and air 
(e.g. Elsinga et al. 2006a; Schanz et al. 2012; Hennings-
son et al. 2015) to time-resolved measurements in water 
(e.g. Schröder et al. 2011; Violato et al. 2011; Schröder 
et al. 2015a) and air (e.g. Schröder et al. 2008; Ghaemi and 
Scarano 2011), just naming a few. Like nearly all three-
dimensional measurement techniques, TOMO-PIV deducts 
the spatial position of particle tracers from projections on 
multiple two-dimensional camera images. An iterative 
approach to the reconstruction allows for relatively high 
particle image densities (typically around 0.05 particles 
per pixel, ppp), using algorithms like MART (Herman and 
Lent 1976) or SMART (Atkinson and Soria 2009). Parti-
cles are reconstructed as intensity peaks in a voxel space. 
3D cross-correlation is applied after the reconstruction pro-
cess of subsequent time-steps, ensuring a robust deduction 
of velocity information. Performing a particle-based cor-
rection of the calibration function (volume self-calibration, 
Wieneke 2007) reduces calibration errors from typically 
1–2 pixels (px) down to below 0.1 px. Improved particle 
reconstruction and accuracy are attained and higher seeding 
concentrations can be processed. Calibrating the 3D posi-
tion-dependent particle image shape (optical transfer func-
tion, OTF, Schanz et al. 2013a) further increases accuracy 
and reduces the occurrence of ghost particles (ambiguities 
in the reconstruction problem).

1.2  TOMO‑PIV and temporal information

When dealing with time-resolved data, information within 
the temporal domain can be used in order to improve the 
quality of each single time-step by seizing the different 
views on the (virtually) identical flow, provided by succes-
sive time-steps (Elsinga and Tokgoz 2014). Motion tracking 
enhanced MART (MTE-MART, Novara et al. 2010) applies 
such a concept in the reconstruction step by combing 
reconstruction results from multiple time-steps, using the 
velocity field to deform the particle fields, i.e. voxel spaces; 
fluid trajectory correlation (FTC, Lynch and Scarano 2013) 

employs advanced nonlinear multi-frame window defor-
mation in combination with a scheme to extract pseudo-
Lagrangian trajectories of fluid parcels. Both methods work 
successfully in enhancing the quality of the reconstruction 
(MTE) and the correlation (FTC)—albeit each at a high 
computational cost due to the need of repeatedly process-
ing each time-step within several iterations.

Very recently, an extension to the MTE method was 
introduced, termed sequential MTE (SMTE, Lynch and 
Scarano 2015). This method adapts the general ideas of 
MTE and combines it with an STB like approach of pre-
dicting particle positions in a future time-step (by comput-
ing an enhanced guess of the voxel intensity distribution 
for the subsequent time-step, followed by some iterations 
of MART to refine this guess). The authors demonstrate an 
effective suppression of ghost particles and a reduction in 
computation time compared to MTE as no iterative feed-
back between reconstruction and correlation is needed. 
Reconstruction speed and memory requirements are com-
parable to normal TOMO-PIV processing.

1.3  Limitations of TOMO‑PIV

Processing robustness, along with the developed measures 
to increase calibration accuracy, explains the huge success 
of TOMO-PIV since its introduction; however, some draw-
backs are associated with the technique: ghost particles 
have an influence on the velocity vector result, especially 
when using high particle image densities. Cross-correla-
tion applies spatial averages over interrogation volumes 
and therefore smooths out velocity gradients and fine flow 
structures. As an extreme example, Atkinson et al. (2011) 
investigated a turbulent boundary layer and found average 
velocity errors of up to 1.5 px/time-step within the region 
of high shear close to the wall. This effect can be slightly 
lessened by the use of Gaussian (Discetti and Astarita 
2012) or adaptive (Novara et al. 2013) weighting in the cor-
relation process, but cannot be fully compensated.

The discretization of the particle representation using a 
voxel space introduces unavoidable errors in the particle 
position accuracy, which are found to be in the order of 
0.15–0.2 px even for perfect synthetic data (e.g. Wieneke 
2013). Under experimental circumstances, other factors—
such as image noise, illuminations problems or unfavour-
able optical access, can influence the error in particle posi-
tioning. The correlation process reduces random errors to a 
certain degree (by averaging over multiple particles). From 
various experimental investigations, average velocity errors 
ranging from 0.2 to 0.5 px (Elsinga et al. 2006b; Atkinson 
et al. 2011; Lynch and Scarano 2014) have been reported. 
With a typical maximum particle displacement of 10–20 
px, the dynamic velocity range (DVR, Adrian 1997) gets 
reduced to 20–40 for a typical experiment. Other, more 
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general, downsides are the computational time and the 
large amounts of data that need to be kept in main memory 
and (at least temporarily) saved to hard disk.

1.4  Lagrangian particle tracking

The limitations in accuracy, as well as the computational 
considerations of TOMO-PIV, show that it is desirable to 
gain direct knowledge of particle positions in space. Track-
ing such particles in time and applying a temporal filter ena-
bles locally precise velocity and acceleration determination 
without the need of spatial averaging. Lagrangian particle 
statistics, such as pair dispersion studies (e.g. Bourgoin 
et al. 2006), become possible. As the number of variables 
is dramatically reduced (number of particles vs. number of 
voxels), the computational cost and memory requirements 
decreases. Three-dimensional particle tracking velocimetry 
(3D PTV, Nishino et al. 1989; Maas et al. 1993; Malik et al. 
1993) has been applied for over 25 years. Particle positions 
are deducted from projections on few images by triangu-
lation (typically using epipolar lines) for each time-step; 
matching particles in successive time-steps are searched 
either in image or on world space. This technique has been 
successfully used for fundamental research, e.g. to inves-
tigate acceleration statistics (La Porta et al. 2001), veloc-
ity statistics (Xu et al. 2006) or vorticity dynamics (Lüthi 
et al. 2005) by examining (few) particle tracks over very 
long examination times. The downside of the approach is 
the limitation of the triangulation process in particle image 
density. Only particle numbers an order of magnitude lower 
compared to TOMO-PIV can be processed (around 0.005 
ppp), as for higher seeding concentrations the occurrence 
of ghost particles becomes dominant. These are interfering 
with particle position accuracy and the following tracking 
process. Overlapping particle images (for 0.05 ppp and a 
particle image diameter of 2.5 px approximately twenty per 
cent of the particles are overlapping, Cierpka et al. 2013) 
tend to shift the 2D peak identification, resulting in high 
positional errors.

1.5  Alternative particle detection methods

The seeding concentration limitations of the 3D PTV tech-
nique led to attempts of extracting particle tracks from 
tomographic reconstructions, using a 3D Gaussian peak fit-
ter (Schröder et al. 2011; Novara and Scarano 2013) and 
very recently the introduction of hybrid algorithms (Cor-
nic et al. 2015), relying on an initial tomographic recon-
struction and a subsequent particle discretization using 
heuristical considerations (such as the number of expected 
particles).

The method of ‘Iterative reconstruction of Volumetric 
Particle Distribution’ (IPR), introduced by Wieneke (2013) 

was the first purely particle position-based method to alle-
viate the problem of limited particle image density (up to 
0.05 ppp). An iterative approach of particle triangulation 
is applied, combined with an image matching technique 
to enhance accuracy (realized by moving—‘shaking’—the 
particle around in 3D space until the local residual is mini-
mized. Wieneke (2013) demonstrates increased position 
accuracy compared to TOMO-PIV, but still the problem of 
ghost particles remains—whose number is rapidly increas-
ing as soon as the particle image density approaches 0.05 
ppp.

Another approach of directly determining particle dis-
tributions, using a marked point process (Ben-Salah et al. 
2015), recently surfaced and shows promising first results.

1.6  Shake‑The‑Box (STB)

Most mentioned methods of reconstructing 3D particle 
distributions rely on an individual treatment of every sin-
gle snapshot of the particle distribution (with the exception 
of SMTE and, to a lesser extent, MTE). For TOMO-PIV, 
a tomographic reconstruction of every time-step is per-
formed, with a subsequent correlation of two consecutive 
voxel spaces. The 3D PTV and IPR methods compute par-
ticle distributions from scratch for every snapshot, with IPR 
requiring many iterations until converging to the solution. 
If the data at hand are sufficiently time resolved though, 
such approaches neglect the possibility of utilizing already 
processed data to extract a priori knowledge on the cur-
rently processed step.

Shake-The-Box was specifically designed to incorpo-
rate as much temporal and spatial information as possible. 
It combines the progresses in the different fields—taking 
the calibration methods (volume self-calibration and OTF 
calibration) of TOMO-PIV development and the iterative 
triangulation, as well as the image matching (shaking), 
introduced by IPR. As an additional key step, the temporal 
domain is exploited by predicting the particle distribution 
in each subsequent time-step via extrapolation of known 
trajectories. This predicted particle distribution is used as 
an initialization to an extended IPR process, which first 
corrects for errors in the prediction and only in a second 
step identifies new particles that are not tracked as of now. 
The result is a method, which allows fast processing of 
three-dimensional data with high particle concentrations, 
while capturing the vast majority of true particles and cre-
ating virtually no ghost particles.

STB basically reverses the typical process of evaluation: 
the tracking process precedes the reconstruction process. 
Instead of first determining particle distributions, followed 
by a deduction of the velocity (by means of correlation or 
pair identification), STB uses the available velocity infor-
mation to create an (estimated) particle distribution. The 
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errors introduced by the estimation are small enough to be 
easily corrected using image matching; no further partner 
search is required for known particles. By this, the flow 
physics itself is supporting the reconstruction process of 
particle trajectories.

Extrapolation of known trajectories has been applied in 
2D PTV (e.g. Dalziel 1992; Bastiaans et al. 2002) and 3D 
PTV (e.g. Willneff 2003) before, however, mainly to reduce 
the search radius for finding connected particles either in 
image or in object space. Willneff (2003) demonstrated 
the potential of prediction of particle positions to improve 
tracking results in terms of completeness of the found 
tracks. However, this implementation still showed severe 
limitations in particle concentration (NI ≤ 0.005 ppp for 
experimental data).

1.7  Features of STB

The prediction step allows for a severe reduction in itera-
tions and therefore processing time, as well as significant 
gains in accuracy due to an efficient suppression of ghost 
particles. As soon as a sufficient percentage of tracks can 
be identified, the process is self-stabilizing; an advance in 
one reconstruction property (position accuracy, ghost par-
ticle ratio, percentage of found tracks) induces advances in 
the others.

The dense particle trajectory fields obtained by STB can 
be evaluated in different ways, producing, e.g. accurate 
Lagrangian velocity and acceleration statistics (similar to 
3D PTV, but at much higher particle image densities, see, 
for example, Schröder et al. 2015a) or highly resolved pro-
files by slicing the measurement volume into small bins 
and averaging over all particles of the data set located 
within such a bin (Kasagi and Nishino 1990; Schröder 
et al. 2015b, Discetti et al. 2015). The superiority of this 
approach to correlation-based techniques has been shown 
in detail for the 2D case (Kähler et al. 2012a, b). To allow 
for the evaluation of spatial derivatives, a B-spline-based 
interpolation method (‘FlowFit’) is introduced in Sect. 4.3. 
This scheme allows for the interpolation of velocity (and 
acceleration) values given at discrete particle positions on 
arbitrary Eulerian grids under several physical constraints. 
The FlowFit method is designed to translate a maximum of 
information from the locally very accurate particle data to 
the interpolated volumes.

1.8  Outline of the manuscript

The general working principle of STB is laid out in Sect. 2, 
while supplementary topics are given in Sect. 4, where the 
application to experimental data is illustrated. Section 3 
gives quantitative values of the achievable accuracy at dif-
ferent particle image densities and noise levels, extracted 

from the results of applying STB on synthetic particle 
image data.

2  The Shake‑The‑Box method

The basic concept of the STB method relies on two 
assumptions: (1) particles within the measurement volume 
do not disappear, and (2) the knowledge of a particle trajec-
tory enables a fairly accurate estimation of the particles 3D 
position in the next time-step. The latter can be experimen-
tally ensured by balancing the sampling rate with the Kol-
mogorov timescale, or the maximum expected acceleration 
values.

Assuming that the trajectories of (nearly) all particles 
within the system are known for a certain number of time-
steps tn, the STB scheme for the single time-step tn+1 is as 
follows:

1. Perform a Fit to the last k positions of tracked particles 
using an optimal Wiener filter—see Sect. 2.2.1.

2. Predict the position of the particle in tn+1 by evaluating 
the Wiener filter coefficients—see Sect. 2.2.1.

3. Shake the particles to their correct position and inten-
sity, eliminating the prediction error—see Sects. 2.2.2 
and 2.2.3.

4. Find new particles, entering the measurement domain, 
on the residual images—see Sect. 2.2.5.

5. Shake all particles again to correct for residual errors.
6. Remove particles if leaving the volume or if intensity 

falls below a certain threshold—see Sect. 2.2.4.
7. Iterate steps 4, 5 and 6, if necessary.
8. Add new tracks for all new particles identified within 

four consecutive time-steps—see Sect. 2.2.6.

After such a processing of a single time-step, the known 
particle tracks have been accurately extended to the current 
time-step and new particle tracks have been added, cap-
turing particles entering the volume. The entirety of these 
tracks can now be predicted for tn+2 and the process starts 
anew. This way, STB can work its way through an entire 
time series, consisting of possibly thousands of images. 
The effort needed for every single time-step is low, as the 
system is largely presolved after the prediction step and 
only minor deviations have to be corrected.

However, as the knowledge of a vast majority of particle 
tracks is not a given (at the beginning the method has to 
start from scratch), the evaluation of a data set has to con-
verge to such a stable solution. The progress of the algo-
rithm can be described in three main phases: Initialization 
(trying to find as many particle tracks as possible within a 
few time-steps), Convergence (the complexity of the recon-
struction problem is gradually reduced by identifying more 
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and more true tracks) and Converged State (all true tracks 
are known, and the number of newly found particles is bal-
anced by the number of particles leaving the volume). The 
three phases will be discussed in detail, while simultane-
ously describing the main elements of the STB algorithm 
within the appropriate context.

2.1  Initialization phase

For the first images of every data set, no track information 
is known a priori. Therefore, a system has to be established 
that is able to identify enough correct particle tracks within 
these first images in order to allow the method to reach the 
convergence phase.

To this end, two measures are conducted for the first 
nInit time-steps: (1) the effort in identifying particles within 
these initialization time-steps is extended, and (2) option-
ally, a predictor field is used to limit the amount of falsely 
detected tracks. Particle identification is typically tackled 
using iterative triangulation (extended IPR—see Sect. 2.2 
for a basic description of the method). Other approaches 
such as normal triangulation (for low particle image den-
sity) or peak determination in tomographic reconstructions 
(for high particle image density, Schröder et al. 2011) are 
also feasible.

The identified particle positions will be called parti-
cle candidates, based on the idea that only such particles 
for which a track can be identified are considered as true, 
reconstructed particles. All other—currently untracked—
particle candidates are potential ghost particles. Typically, 
the initialization is applied to the first four time-steps 
(nInit = 4); this number was chosen by experience and may 
be varied.

Following the particle identification, coherent trajec-
tories need to be extracted from the distributions of parti-
cle candidates for the first nInit time-steps. A wide variety 
of methods can be applied for this purpose. The approach 
used in the current implementation is a relatively simple 
system, suitable for the identification of short tracks (as 
only tracks of length 4 need to be identified). It relies on 
finding matches in consecutive frames by applying a search 
radius around either the particle position or a predictor 
location. The details of this method will not be discussed 
further in this context.

If the flow at the investigated time-steps is—at least 
roughly—known, a predictor can be constructed, helping 
with the tracking process. An obvious way to gain a priori 
knowledge of the flow is to perform a TOMO-PIV evalu-
ation of the first time-step(s). These results can be used 
to create a predictor for every point in space—allowing 
for a much smaller search radius, significantly reducing 
the number of falsely detected tracks. In case the flow is 
at least partly predictable (e.g. a turbulent boundary layer 

with a roughly known velocity profile), an averaged result 
of previous measurements or even CFD results can be 
used to derive predictors for the search of particle tracks. 
In this case, even the search radius could be parameterized, 
using, for example, the rms value gained from a previous 
evaluation.

All tracks of length nInit that are found by the tracking 
system are checked for sanity (velocity and acceleration 
below certain thresholds) and the ones that pass are added 
to the system of tracked particles.

2.2  Convergence phase

Following the initialization, the gained tracks are used to 
predict particle positions for the next time-step. Errors 
induced by the prediction are compensated using image 
matching techniques, facilitating the reconstruction prob-
lem for the yet untracked particles. This way, additional 
tracks can be found with every time-step, until convergence 
is reached.

2.2.1  Predicting next position of a tracked particle

The NT particles being tracked at time-step tn are extended 
to time-step tn+1 by applying a Wiener filter (Wiener 1949) 
for extrapolation. The filter parameters are determined 
based on an estimation of the signal and noise spectra of 
the particle location signals. That way, the sensitivity of 
the filter can be adjusted to the experimental conditions, 
i.e. the influence of noise on the position accuracy. The 
filter parameters are optimized independently for different 
track lengths, thereby considering the increased accuracy 
when more information is available. The found filter coef-
ficients are evaluated at tn+1, and the new (temporary) posi-
tions of all tracked particles are set to these extrapolated 
coordinates.

In earlier versions of the code, producing the results 
presented in (Schanz et al. 2013b, 2014), polynomials of 
different length, determined by means of a Savitzky–Golay 
filter (Savitzky and Golay 1964), were used to fit the data 
points and extrapolated for the prediction. While this 
approach works well if the data quality is suited for the 
chosen polynomial order and length, an adaptation to vary-
ing data quality was difficult. Therefore, the Wiener filter 
approach provides more flexibility, easier application and, 
in general, a better reliability of the prediction.

2.2.2  Position refinement (‘shaking’)

The predicted particle positions will be close to the real 
ones—not more than one or two pixels off, typically only 
a fraction of a pixel (depending on the flow, the noise 
level and the temporal sampling). A mean to correct this 
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error in particle position is to use image matching tech-
niques, which try to (locally) minimize the residual image 
IR. One such method was introduced by Wieneke (2013) 
and relies on moving (‘shaking’) the particle around in 
space in small steps, while simultaneously determining 
the local residual. A brief outline of the (slightly altered) 
method follows, for a detailed description see (Wieneke 
2013).

2.2.2.1 Normal shake The shake-method treats all 
particles independently and successively. Every parti-
cle is moved in small steps in all directions of space, 
starting from its initial position 

[

xI , yI , zI
]

. The parti-
cle is first moved in x-direction to the three positions 
x′1 = xI − δS , x

′
2 = xI and x′3 = xI − δS, with a typical 

shake width δS = 0.1 px. For all positions, the local 
residual R is calculated using the recorded image Irec, the 
projected image Iproj and the projection of the currently 
treated particle IPart[x,y,z,IP], being localized at position 
[x, y, z] with intensity IP:

R is calculated as the sum over all cameras and in a win-
dow of selectable size around the projection points. Ires+p 
expresses the local residual without projecting the currently 
investigated particle; therefore, R

[

x′, y′, z′, IP
]

 describes the 
residual resulting from repositioning the current particle to 
[

x′, y′, z′
]

. Optimized particle reprojection by application of 
a calibrated optical transfer function (OTF, Schanz et al. 
2013a) is recommended to achieve high accuracy.

The size of the evaluation window can be varied. Using 
a small window (e.g. 4 × 4 px) in combination with a cen-
tral sampling of the OTF (e.g. 2 × 2 px) for the particle 
projection yields the most stable shaking results, as noise 
effects on the low intensity particle image tails are avoided. 
For large particle images, these values could be increased.

Evaluating R at the positions x1′, x2′ and x3′ yields three 
residual values, which are fitted using a polynomial of sec-
ond order. The extremum xR,ex of this parabola is deter-
mined, and the new particle position xI,new is set to:

This process is repeated for y- and z-direction, using 
[

xI,new, yI, zI
]

 and 
[

xI,new, yI,new, zI
]

 as initial positions, 
respectively. If good image data are available, it is possi-
ble to reduce δS in order to gain even more accuracy (e.g. 
δS = 0.025 px for the last three shake iterations).

(1)
R
[

x′, y′, z′, IP
]

=
(

Ires+p − IPart[x′,y′,z′,IP]

)2

, where

Ires+p = Ires + IPart[x,y,z,IP] and Ires = Irec − Iproj.

(2)

xI,new =



















xI − δS if
�

�xR,ex
�

� > δS and R
�

x′1, y, z, IP
�

> R
�

x′3, y, z, IP
�

x
R,min if xI − δS < xR,min < xI + δS

xI + δS if
�

�xR,ex
�

� > δS and R
�

x′1, y, z, IP
�

< R
�

x′3, y, z, IP
�

2.2.2.2 Initial shake Depending on the temporal resolu-
tion of the data sets, the distance covered by the particles 
can become relatively far. For large separations in the range 
of 10–30 px, the relative error introduced by the prediction 
scheme can be 1–2 px (depending on accelerations). In such 
a case, the normal shake process might converge to a local 
minimum of the residual that does not coincide with the true 
particle position. To prevent such a situation, an additional 
step to roughly place the particle within the neighbourhood 
of the particle-based ‘global’ minimum of the residuum is 
introduced: The particle is moved on a coarse grid (with 
0.4–0.8 px separation between the grid points) around the 
predicted point. The particle is finally put to the point where 
the smallest residual was found.

2.2.3  Intensity correction

Following each shake iteration, the particle intensity IP is 
updated by applying

with both sums running over all pixels of the considered 
cameras within the chosen window around the projection 
point.

Taking the root of the intensity ratio proved to dampen 
intensity oscillations, as does capping the intensity ratio 
at 3/2 and 2/3, respectively. By omitting the camera show-
ing the highest (local) intensity for the current particle, the 
occurrence of ghost particles (and, especially, ghost tracks) 
can be reduced: ghost particles often take their energy 
mainly from a particle peak on one single camera, while 
the other cameras only show residual peaks or noise. By 
excluding the (locally) brightest camera from the intensity 
correction, the intensity of such ghost particles is reduced 
considerably, leading to a rapid deletion due to the intensity 
threshold (see next paragraph).

2.2.4  Deleting particles

In case the intensity falls below a specified threshold (e.g. 
5 % of the average particle intensity), it is assumed that the 
particle was lost and the shake process is not converging to 
the true particle position. In that case, the particle is deleted 
and the track ends.

Using the steps described above, the positions of all 
tracked particles are predicted, then roughly repositioned 
using initial shake and finally iteratively shifted in all 
directions of space, while constantly updating IP. Apply-
ing an initial shake, followed by five to ten normal shake 
iterations, is typically sufficient to correct for the prediction 
errors.

IP,new = IP ∗

√

√

√

√

∑

px(Ires+p)

∑

px

(

IPart[xI,new,yI,new,zI,new,IP]

) ,
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2.2.5  Identifying new particle candidates

Following the prediction and correction of tracked parti-
cles, new particles are identified on the residual images 
of the currently investigated time-step. During the conver-
gence phase, not all particle tracks have been found yet; 
therefore, the residual images will still show a significant 
amount of particle images. However, the perceived parti-
cle image density will be lower compared to the original 
image, as particles that are already correctly tracked are 
removed. The complexity of the reconstruction problem is 
reduced in relation to the initialization phase, allowing for a 
reduction in the applied IPR iterations.

New particle candidates are triangulated from the resid-
ual images using a low allowed triangulation error (0.5–1.5 
px, depending on image quality and seeding concentra-
tion). All such that are located within a radius of one pixel 
around existing particles are discarded. Both the new parti-
cle candidates and the tracked particles are then treated by 
a few iterations of shaking in order to optimize the relative 
positioning and intensity. New residual images with even 
less particle images are created. These can be used to start 
another iteration of triangulation and shaking.

With every iteration, new particle candidates are 
detected; false particle candidates (ghosts) are taken out 
by the intensity threshold and the residual is reduced, until 
the process settles at a stable number of particle candidates 
for the current image. At this point, it can be beneficial—
depending on the particle image density and the number of 
cameras—to introduce triangulations using a reduced set of 
cameras. This way particles can be identified whose image 
is shifted on one camera, e.g. by an overlap situation.

When calculating the residual image before a triangula-
tion iteration, as many traces as possible of the known parti-
cle should be subtracted. Therefore, a wide sampling of the 
calibrated OTF (Schanz et al. 2013a) is applied (opposed to 
the shake step, where a tight central sampling of the OTF 
increases stability); a 6 × 6 to 10 × 10 pixel grid has proven 
effective. As laid out in Sects. 2.3 and 4.1, it can be of ben-
efit to multiply the particle intensity with a constant factor 
fPt > 1 in order to ensure a sufficient reduction in the resid-
ual on all cameras prior to triangulation iterations.

2.2.6  Adding and deleting tracks

After the complete processing of time-step tn, a mixture of 
particle candidates and tracked particles is available. The 
particle candidates may still contain a significant amount of 
ghost particles, while the tracked particles should represent 
true particles. Using the particle candidates of time-steps 
tn−3 to tn, additional tracks of length 4 are searched. One 
difference to the initialization phase is the origin of the pre-
dictor for the track searching. Here, no predictor field from 

cross-correlation is available, but a predictor can be con-
structed from neighbouring tracked particles. If at least two 
tracked particles are found within a neighbourhood (e.g. 
three times the average particle distance), the predictor is 
calculated as a Gaussian-weighted average of the velocities 
of these particles. If not enough neighbouring particles are 
found, a general, larger search radius (e.g. corresponding to 
the largest expected particle shift) is applied to the position 
of the particle.

Approved tracks of length 4 are spotted, and the corre-
sponding particles are added to the list of tracked and pre-
dicted particles. Tracks leaving the measurement domain 
are terminated.

The algorithm continues with time-step tn+2, which 
will again be easier to reconstruct. This process of find-
ing tracks, which in turn facilitate the identification of 
new ones, will continue until (nearly) all true particles are 
tracked. At this point, convergence is reached.

2.3  Converged phase

As seen in the previous paragraph, the algorithm needs 
some time-steps to converge to a stable state, where the 
number of tracked particles does not change significantly. 
In this stage, the vast majority of the particles is known and 
tracked. From there on, most tracks end only when the cor-
responding particles leave the measurement volume and 
new tracks are found when particles are entering the inter-
rogation volume. The general processing remains the same 
as in the convergence phase.

Figure 1 illustrates the main steps of Shake-The-Box for 
a single time-step in the converged state and their impact 
on the residual image of a selected camera. At the begin-
ning of the processing of this time-step, the residual image 
matches the recorded camera image. After predicting the 
positions of the tracked particles, residuals reflecting the 
errors of the prediction are visible. New particles, enter-
ing the measurement domain from the left and the bottom, 
appear unaltered in the residual images. After performing 
some iterations of shaking, the residuals of the tracked par-
ticles vanish (nearly) completely—only the new particles 
remain. These are then tackled by the triangulation/IPR 
process. Due to the low effective particle image density at 
this point, only particles with overlapping images remain 
undetected by the triangulation. Most of these situations 
can be resolved by successively leaving out single cameras 
during the triangulation. The end result is a nearly com-
pletely blank residual image.

Following the example given in Fig. 1, it can be seen how 
much the prediction step—thus the inclusion of the tempo-
ral information—simplifies the problem of particle position 
detection. At the point where the first triangulations are per-
formed, the perceived particle image density has drastically 
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decreased, enabling a fast and reliable determination of the 
previously undetected particles. In the converged state, these 
are mostly new particles that have entered the measurement 
domain within the last four time-steps. However, it can also 
happen the track of a particle is lost. Such events are usu-
ally caused by overlapping particle images in more than one 
camera. The involved particles can be pulled to wrong loca-
tions during the shaking process. In this case, the prediction 
for the next time-step will be compromised and the particle 
will likely get deleted due to low intensity. Such particles 
will show up on the residual images of the next time-steps, 
and the track of the particle has to be picked up again.

A complete elimination of residual will only be seen when 
using synthetic data. With experimental data, the intensities 
of the images of a single particle on the different cameras 
will not be as balanced as in a synthetic case. Even a thor-
ough calibration of the OTF will not be able to fully com-
pensate such effects, as particles do not behave equal: poly-
disperse particles have different scattering properties, which 
will lead to varying intensities in the different cameras; the 
same is true for ‘potato’-shaped particles (e.g. polyamide 
seeding particles, which rotate and, depending on orienta-
tion, scatter differently). However, even if the residuals of 
such particles do not vanish within all cameras, they will do 
so for at least some cameras—as the particle intensity is an 
average over the image intensities—therefore preventing the 
particle from being picked up again by the next triangulation.

To counteract the effects of non-vanishing residual, it 
can be useful to multiply the particle intensity by a constant 
factor fPt when projecting the particles (only for the trian-
gulations, not for the shaking). By that measure, residual 
peaks in cameras in which the current particle is imaged 
brighter than average can be avoided; especially for experi-
mental data, a clear reduction in triangulation effort and 
ghost particle creation can be achieved, while only slightly 
reducing convergence speed (see Sect. 4.1.1 for an exam-
ple). Values of up to fPt = 2.0 have been used.

2.4  Outlier removal

It can happen that tracked particles get lost during the 
tracking process (the reconstructed particle deviates from 

the true particle trajectory due to, for example, overlap-
ping particle images and/or noise), but still survive with-
out being deleted due to low intensity (caused, for example, 
by image noise). However, these particles will most likely 
show velocities that deviate significantly from the sur-
rounding particles. Hence, an outlier validation of the parti-
cle velocity with its neighbours can be carried out: particles 
are searched within a radius (e.g. four times the average 
particle distance) around each tracked particle. The 10–50 
closest ones are chosen, their velocities averaged (vavg), and 
the root mean square of the velocities difference in relation 
to vavg is computed (rmsv), giving a coarse measure of the 
velocity gradients present. The velocity difference �v of the 
current particle to vavg is determined, and if �v > To · rmsv , 
the particle is deleted. The outlier threshold factor To can 
be chosen according to the flow and the spatial sampling of 
the scales. Typical values are 5–15. If not enough particles 
are found in the vicinity, the particle is left as is.

Another sign of a lost particle can be an erratic trajec-
tory. To detect such behaviour of a particle, a linear fit is 
applied to the last four time-steps. If the particle shows an 
average deviation �f  above a certain threshold T�f , the par-
ticle is deleted. T�f  should depend on the temporal sam-
pling of the flow scales and the noise present on the images. 
Typical values for experimental data are 0.7–1.5 px.

2.5  Multi‑pass processing

Even though the tracking process of STB is rather robust 
compared to traditional 3D PTV methods, interrupted or 
incomplete tracks occur; especially, the first time-steps, 
when not all particle tracks have been identified yet, exhibit 
a lot of missing particles. One easy method to improve 
on this situation is to perform a second pass of STB, run-
ning temporally backward through the data set. By this, 
track fragments might be connected and particle tracks are 
extended backwards to the time-step when the particle first 
occurred within the measurement volume. To this end, the 
tracks identified by the first pass are temporally filtered (see 
Sect. 4.2). For each time-step, the filtered particles from the 
previous pass are taken as a predefined particle distribu-
tion. In addition, new particle candidates are triangulated, 

Fig. 1  Schematic description of 
the Shake-The-Box procedure 
for one time-step in the con-
verged state by illustrating the 
effects of the different computa-
tion steps on the residual image 
of one single camera (out of 
multiple)
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enabling the search for new tracks. If a track ends (i.e. 
its starting point in the first pass is reached), the track is 
extended backwards in time by the usual prediction scheme 
as long as the particle stays within the measurement 
domain or it is lost due to either the intensity threshold or 
the other validations discussed above. Section 4.1 demon-
strates the effects of a second pass on an experimental data 
set; more passes can be performed, if necessary.

3  Synthetic data validation

In order to quantify the features of the STB algorithm, the 
concept is applied to synthetic data sets of varying particle 
image density and noise level. The current section will first 
describe the creation of the synthetic data, followed by the 
results of STB reconstructions and a comparison to tomo-
graphic PIV.

3.1  Creation of synthetic tracks

A process to extract synthetic tracks from a known veloc-
ity volume was designed. For the first image, particles are 
randomly distributed in the selected domain; the velocity of 
the particles is calculated as the Gaussian-weighted aver-
age of the eight neighbouring velocity vectors of the source 
vector volume. In the next step, the particles are moved, 
using a simple Euler scheme, according to the deter-
mined velocity and the chosen time separation. To ensure 
smooth acceleration along the trajectory, a temporal filter 
was applied to the tracks. Thus, smooth particle tracks fol-
lowing the source vectors with first-order accuracy can be 
created.

To serve as source vector volume, a result of an experi-
mental data set of the flow behind a series of periodic 
hills (Schröder et al. 2015a) was used. A sub-volume of 
1000 × 1000 × 400 voxels was taken from the middle 
of the volume and the vector results originating from this 
volume were used as source for the track creation. For the 
placement of reinserted particles, a buffer of 30 non-imaged 

voxels was left at each interface of the volume, so that an 
imaged volume of 940 × 940 × 340 voxels remained.

As time separation, the original sampling rate was cho-
sen, resulting in a mean 3D particle displacement of around 
6 px and a maximum displacement of around 11 px. The 
particle positions determined from the track creation 
scheme are projected (parallel projection) onto four virtual 
cameras in pyramidal configuration (with a square basis 
and an angle of ±30° in x- and y-direction, 1200 × 1200 
pixels each, 16-bit integer). For particle imaging (OTF), 
a two-dimensional Gaussian peak is used with a particle 
diameter of around 2.4 px (intensity fall-off to e−2). The 
average peak height is 6500 counts. Particle image densities 
ranging from NI = 0.01–0.125 ppp (calculated with respect 
to the imaged volume—in this case NI = Np/(940 × 940) 
with Np: number of particles) were realized. Figure 2 shows 
excerpts of a virtual camera image for three particle image 
densities.

3.2  Application of STB to synthetic images

The Shake-The-Box scheme was applied to the cre-
ated image time series. The used parameters are given in 
Table 1. Time series of 50 images were processed for each 
particle image density. Figure 3, 4, 5 and 6 illustrate the 
temporal development over these images of four parame-
ters, describing the quality of the reconstructions:

Fu, the fraction of undetected true particles; the recon-
structed tracks are compared to the original ones by searching 
for reconstructed particles in a radius of 1 px around every 
true particle. If no reconstructed particle is found within this 
radius, the particle is registered as undetected (see Fig. 3).

Fg(tr), the fraction of tracked ghost particles, calculated 
by searching around all reconstructed particles that are part 
of a track in a radius of 1 px within the source volumes; if 
no true particle is found, the reconstructed one is counted 
as a ghost particle (see Fig. 4).

Fg(tot), the fraction of total ghost particles, calculated 
by searching around all reconstructed particles (tracked 
ones, as well as all particle candidates, reconstructed by 

Fig. 2  Details of virtual 
camera image for ppp = 0.01, 
ppp = 0.05 and ppp = 0.125 
(from left to right)
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triangulation/IPR) in a radius of 1 px within the source vol-
umes; if no true particle is found, the reconstructed one is 
counted as a ghost particle (see Fig. 5).

�p, the arithmetic mean error of the detected true par-
ticles; the magnitude of deviation of the position of the 
reconstructed particles �xR to the original position �xS is deter-
mined in pixel units and averaged: �p =

1
N

∑N
1 |�xR − �xS| 

(see Fig. 6).
All four plots document the temporal convergence of the 

STB method (especially for high particle image densities). 
A strong reduction in undetected particles, tracked and 
untracked ghost particles and positional error with progres-
sion of time can be seen. In order to document the three 
main stages of the STB method—introduced in Sect. 2—
the plots are first examined for the initialization phase 

Table 1  STB parameters applied to synthetic image data from time-
step 5 onwards

Values for time-step 1–4 (initialization phase) are given in brackets

Triangulation iterations using Ncam m = 3 (6)

Triangulation iterations using N−1
cam n = 2 (4)

Number of shake iterations k = 8

Shake width δS = 0.1–0.025 px

Number of Initial shake iterations 1

Allowed triangulation error [px] ɛ = 0.5 px

Search radius without predictor [px] 12 px

Search radius with predictor [px] 4 px

Particle intensity threshold Tint = 0.1 · Iavg

Smoothness threshold T∆f = 0.4 px (0.8 px)

Outlier detection threshold (TO) –

Projection factor prior to triangulation fPt = 1.0

Predictor for initialization TOMO-PIV result

Number of passes 1
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(time-steps one to four), followed by a description of the 
convergence phase and finally the converged state. Table 2 
summarizes the results for the converged state.

Please note that the results for the initialization can be 
identified by looking at the very first data point of each plot 
(t1). The following data points (t2, t3) already contain addi-
tional tracks that were found at t5 and t6, respectively, as 
the track identification always reaches four time-steps in 
the past.

Looking at the fraction of undetected particles (Fig. 3), 
it can be seen that for lower particle image densities 
(NI ≤ 0.05 ppp), the track initialization is very effective 
in finding nearly all true particles: For 0.05 ppp, only 2 % 
of the true particles are not found after the first four time-
steps. When using higher particle image densities, this 
value quickly rises (19 % for 0.075 ppp; 69 % for 0.125 
ppp). More and more particle images overlap, preventing 
an accurate determination of the peak position on the 2D 
images. Therefore, many particles cannot be successfully 
triangulated due to the small allowed triangulation error of 
ε = 0.5 px. As an additional constraint, only those particles 
that were successfully triangulated in all four time-steps of 
the initialization can be successfully tracked.

The fraction of ghost particles within the tracked parti-
cles Fg(tr) (Fig. 4) is very low already immediately after the 
initialization, even for the higher particle image densities 
(around 3–5 % for 0.125 ppp). However, the absolute num-
ber of ghost particles (see Fig. 5) is high for the initiali-
zation time-steps and particle image densities above 0.075 
ppp (around four out of five particle candidates are ghost 
particles at 0.125 ppp within the initialization, albeit most 
of low intensity). These post-initialization results basically 
constitute pure IPR results and coincide well with the find-
ings of Wieneke (2013).

The ratio of tracked versus total ghost particles clearly 
shows that (for the investigated case) the occurrence of 
ghost particles is quickly decorrelating with time. As 
shown by Novara et al. (2010) and Elsinga et al. (2011), 

the decorrelation of ghost particles is strongly dependent 
on the flow situation. For uniform flow, ghost particles do 
not decorrelate at all. For a given experiment, the flow can 
be assessed beforehand using the formulas given in (Els-
inga et al. 2011) to what extent a pairing of ghost particle is 
expected. However, in general the temporal domain allows 
an efficient separation of real and ghost particles, even for 
short time series of four images. For NI ≤ 0.05 ppp, ghost 
particles are virtually non-existent (<0.1 % tracked ghosts, 
6.3 % absolute ghosts after the initialization). At these par-
ticle image densities, four time-steps are sufficient to elimi-
nate virtually all ambiguities.

For low particle image densities (NI ≤ 0.05 ppp), the 
positional error �p (see Fig. 6) is very low already after 
the initialization (�p ≈ 0.0035 px for 0.05 ppp), while for 
higher particle image densities much higher errors are seen 
(�p ≈ 0.3 px for 0.125 ppp). These values document the 
effect of ghost particles on the accuracy of the true parti-
cles. Ghost particles draw energy from the particle images, 
making the projected image a sum of the projections of 
real and ghost particles—which causes the true particle to 
shift in space to better fit the deformed image. For these 
accuracy considerations, the total number of ghost parti-
cles Fg(tot) is crucial. In case of low particle image densities, 
ghost particles are rare—consequently, the accuracy of the 
true particles is high. When looking at the curve of �p for 
NI = 0.075 ppp, this effect is plainly visible as the sharp 
increase in accuracy after time-step 4. For the initialization 
steps, the temporal information is not yet used in the recon-
struction; therefore, the results resemble those of non-time-
resolved evaluations (around 33 % of the triangulated parti-
cles are ghost particles at NI = 0.075 ppp, see Fig. 5). After 
the fourth time-step, the identified tracks (around 81 % of 
the real particles) are extracted and predicted to the next 
time-step. After shaking these to their correct positions, 
the system is largely presolved. The remaining undetected 
particles can be triangulated from the residuals without 

Table 2  Comparison of 
tomographic reconstruction 
(MLOS-SMART) and 
subsequent particle peak 
identification to tracking results 
of STB

Values averaged over images 40–44 of the time series discussed in Sect. 3.1

Particle image density NI [ppp] 0.125 0.1 0.075 0.05 0.025 0.01

Real particles 110,868 88,584 66,439 44,233 22,060 8904

Undetected particles SMART 9387
8.48 %

3400
3.83 %

1119
1.68 %

405
0.91 %

135
0.61 %

47
0.53 %

STB 483
0.43 %

268
0.30 %

104
0.16 %

63
0.14 %

18
0.06 %

9
0.10 %

Ghost particles SMART 282,090
254.8 %

206,990
233.7 %

121,680
183.1 %

42,229
95.5 %

3721
16.8 %

134
1.5 %

STB 36.5
0.033 %

16.1
0.018 %

5.8
0.008 %

3.5
0.008 %

1
0.005 %

0
0.0 %

Avg. position error ∆p [px] SMART 0.308 0.278 0.243 0.201 0.155 0.135

STB 0.0177 0.0076 0.0023 0.0008 0.0005 0.0002
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occurrence of ghost particles. The accuracy of the true par-
ticles subsequently increases significantly.

When going to higher particle image densities, this pro-
cess requires more time-steps, as the total number of ghost 
particles present in the initialization rapidly increases (up 
to a fraction of 4.3 for NI = 0.125 ppp). The less accurate 
placement of the true particles leads to a reduced identifica-
tion of particle tracks. The following time-steps, represent-
ing the convergence phase, gradually identify more tracks, 
as the ones that are already known help to reduce the 
complexity of the reconstruction problem. Falsely or inac-
curately detected tracks from the initialization are thrown 
out of the tracking system. This explains the notable rise 
in tracked ghost particles during the first images after the 
initialization (see Fig. 4). Both Fg(tot) and Fg(tr) sink rapidly.

The lower particle image densities converge instantane-
ously after the initialization; convergence takes two time-
steps for NI = 0.075 ppp, 7 time-steps for 0.1 ppp and 24 
time-steps for 0.125 ppp. It has to be noted that for the 
0.125 ppp case, the number of normal triangulation itera-
tions was increased to 4, followed by 3 iterations with 
reduced camera numbers. Each triangulation is followed by 
10 shake iterations. Using the iteration numbers applied to 
the other cases leads to a slower convergence (around 60 
images). Above 0.125 ppp, the algorithm fails to converge 
with the chosen (simple) initialization: The IPR reconstruc-
tion of the first images is highly erroneous with respect to 
found true particles, number of ghost particles and particle 
accuracy, such that the algorithm is not able to compensate 
for these errors in the following steps. For such high par-
ticle image densities, different approaches to the initiali-
zation have to be attempted—for instance taking the par-
ticle peaks from tomographic reconstruction (ideally from 
advanced methods like SMTE) and/or increasing the num-
ber of initialization time-steps.

By time-step 30, all evaluations have reached the con-
verged phase. The insets in Fig. 3, 4, 5 and 6 show an 
enlarged view of the results within this phase. It can be 
seen that, except for minor oscillations, the values remain 
on a constant level, with very low numbers of undetected 
particles and tracked ghost particles (0.4 and 0.03 %, 
respectively, for NI = 0.125 ppp). Also the untracked ghost 
particles introduced by the IPR process are reduced to 
a minimum, as documented by the total number of ghost 
particles (0.4 % at 0.125 ppp). Particle peak accuracy 
is very high, with �p < 0.003 px for NI ≤ 0.075 ppp and 
�p ≈ 0.016 px for NI = 0.125 ppp.

The results presented here are slightly different to the 
ones shown in Schanz et al. (2014), mainly due to some 
added processing steps: excluding the brightest camera in 
the intensity update led to a more effective suppression of 
ghost particles; reducing the shake width to δS = 0.025 px 

for the last iterations led to a noticeable increase in position 
accuracy.

3.3  Comparison to tomographic reconstruction

In order to compare the results to the technique com-
monly used for processing three-dimensional data at high 
particle concentrations, tomographic reconstructions of 
the synthetic images were performed. An MLOS-SMART 
algorithm (Atkinson and Soria 2009) with a 2D B-spline 
weighting function (OTF) (Schanz et al. 2013a) was 
applied. As this technique does not utilize temporal infor-
mation, only five volumes (time-steps 40–44, enabling a 
direct comparison to STB data in converged state) per seed-
ing concentration were reconstructed. Following the MLOS 
initialization, five iterations of SMART, each with subse-
quent volume smoothing (Discetti et al. 2013) and contrast 
elevation to accelerate convergence, were performed. The 
used voxel-to-pixel ratio was 1.0, resulting in voxel spaces 
of dimensions 1000 × 1000 × 400.

In order to compare position accuracy, as well as the 
fraction of undetected and ghost particles, a 3D Gaussian 
peak finder from LaVision Davis 8 was used to identify 
particle positions within the reconstructed volume. The 
accuracy determination and particle/ghost identification 
from the original track data were conducted analogous 
to the STB data. For both MLOS-SMART and STB, the 
results from steps 40–44 were averaged and are given in 
Fig. 7 and Table 2, respectively.

Looking at the MLOS-SMART tomographic reconstruc-
tions, most true particles are correctly reconstructed (>99 % 
for low NI, 92 % for 0.125 ppp) with a positional error 
that rises from �p = 0.13 px for 0.01 ppp to �p = 0.31 px 
for 0.125 ppp. The fraction of the summed ghost particle 
intensity to the summed true particle intensity is low for 
NI ≤ 0.025 ppp, but rises quickly with increasing NI. For 
0.125 ppp, the ghost particles contain more energy than the 
reconstructed true particles. As given in Table 2, the num-
ber of detected ghost particles surpasses the number of true 
particles at 0.075 ppp; however, the average intensity of a 
ghost particle is lower than for a true particle; therefore, the 
intensity fraction is lower (around 0.5 at 0.075 ppp). For 
0.125 ppp, over 280.000 ghost particles are found—a factor 
of 2.5 to the true particle number of around 110.000.

The peak accuracy results for MLOS-SMART are in 
good agreement with the values given for MART by Wie-
neke (2013). However, for high NI both the number of 
true particles and the number of ghost particles are signifi-
cantly higher for the MLOS-SMART case. As MART and 
SMART should produce comparable results, this difference 
is most likely explained by different thresholds used for 
the 3D peak detection: A higher value leads to a reduction 
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in detected ghost particles, but also reduces the number of 
correctly found real particles.

Comparing to the results gained by Shake-The-Box, it 
becomes obvious the inclusion of the temporal informa-
tion opens a door to results of much higher quality. As 
discussed in the previous paragraph, the number of cor-
rectly identified particles remains above 99.5 %, even for 
0.125 ppp. The ghost particle problem is nearly completely 
resolved—for 0.125 ppp, a ghost particle proportion of 
0.03 % is detected. At particle image densities below 0.1 
ppp, ghost levels of <0.01 % can be reached. For low parti-
cle image densities, the positional error is practically zero, 
and for 0.075 ppp, it is still below 0.003 px. The error rises 
for higher particle image densities, but remains below 0.02 
px for 0.125 ppp—being an order of magnitude lower com-
pared to SMART (0.31 px).

Wieneke already demonstrated the very high accuracy 
achievable by the image matching process used in IPR—
however in case of single images, this holds only for very 
low particle image densities (Wieneke 2013). Starting 
at 0.005 ppp, the error rises and reaches �p = 0.1 px by 
around 0.03 ppp. For 0.1 ppp, Wieneke finds average errors 
of around 0.6 px for single-image IPR. He writes: ‘Conver-
gence starts to fail above 0.05 ppp when the solution is no 
longer unique’. This problem is solved by the inclusion of 
the temporal domain, as each snapshot provides a new view 
on the system—essentially adding a new system of cam-
eras, as argued by Novara et al. (2010)—leaving the whole 
spatio-temporal system only one solution—the real one—
to converge to.

The fact that for STB the system is already close to 
the real solution after the prediction step allows for a low 
number of used triangulation iterations. Each of these 
is fast, as the residual images are sparse. This combined 
effect leads to the computational efficiency documented 
in Fig. 7d. Reconstruction times for a single snapshot on 
an eight-core Xeon server (2× Xeon E5520 quad-core 
CPUs, 24 GB Ram) are compared for the different seeding 

concentrations. It can be seen that STB is 4–6 times faster 
compared to MLOS-SMART. Computation time rises with 
NI because of the increasing number of peaks detected on 
the images (leading to a more complex triangulation pro-
cess) and the increase in tracked (and shaken) particles. The 
rise for 0.125 ppp is caused by the increase of used triangu-
lation iterations. For SMART, the percentage on nonzero 
voxels increases, leading to rising computational effort. 
Additionally, the reconstructed voxel spaces still need to be 
processed further (3D cross-correlation or particle peak fit-
ting and partner search), while STB directly yields velocity 
(and acceleration) data.

Comparing the results to conventional 3D PTV evalu-
ations of synthetic, noise-free data, Ouellette et al. (2006) 
report position accuracies of around 0.025 px for particle 
image densities NI ≤ 0.01 ppp (STB: 0.0002 px), reflecting 
the accuracy of the shake process supported by the use of 
a calibrated optical transfer function. The ability to retain 
particle tracks quickly diminishes with particle image den-
sity for standard PTV approaches. At 0.01 ppp, the differ-
ent algorithms already show between 6 and 25 % of unde-
tected particles (Ouellette et al. 2006), clearly documenting 
the limits in seeding concentration for this technique.

3.4  Influence of image noise

As shown in the previous paragraphs, the STB concept 
yields very accurate results for a wide range of particle 
image densities when looking at perfect imaging condi-
tions. However, image noise will have an influence on sev-
eral parts of the algorithm. The triangulation process for 
identifying new particles will be affected, as noise tends to 
shift 2D particle position identification. This will directly 
influence the triangulation error—therefore, the allowed 
value ε has to be altered in order to find a sufficient number 
of particles. A higher value of ε will lead to a higher prob-
ability of ghost particle formation. Secondly, the image 
matching process will not be able to find a perfect match 
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Fig. 7  Comparison of results gained by tomographic reconstruction with subsequent particle peak identification to tracking results by STB for 
varying particle image densities. Values averaged over images 40–44 of the time series discussed in Sect. 3.1
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for the particle position, as the particle image is altered by 
the noise in relation to the calibrated OTF used for residual 
determination.

Data sets have been created for three different noise 
levels. The noise was introduced after imaging the syn-
thetic particle distribution by adding a randomized inten-
sity to every pixel, taken from a normal distribution with 
variance σ, derived from the average peak intensity of 
a particle image Ip,avg (σ = 0.03·Ip,avg, σ = 0.1·Ip,avg and 
σ = 0.2·Ip,avg). Figure 8 shows exemplary excerpts of one 
camera image for 0.01 ppp. The first two cases can be seen 
as representative for good to normal experimental circum-
stances (considering noise levels), while the high-noise 
case is approaching experiments with poorly controlled 
conditions (sparse illumination, small tracer particles). 
Application of any kind of image preprocessing was omit-
ted in order to not introduce further parameters. For the 
sake of clarity, only two particle image densities (0.01 and 
0.05 ppp) were considered, for which all STB runs con-
verged within a time series of 50 images. At the lowest 
noise level, convergence is still reached up to 0.125 ppp, 
for σ = 0.1·Ip,avg until 0.1 ppp and for the highest noise 
level until 0.075 ppp (not within the 50 images though).

The created image time series were reconstructed 
both by STB and by MLOS-SMART. Concerning STB, 

the allowed triangulation error was set ε = 0.85 px for 
the two cases with lower noise and ε = 1.1 px for the 
high-noise case. Results of the STB track reconstruction 
are shown in Fig. 9. It can be seen that the convergence 
time of the algorithm rises with the noise level; espe-
cially, the high-noise case with 0.05 ppp illustrates that 
the system has to work much harder in order to iden-
tify true particles and to get rid of ghost particle tracks. 
For this case, convergence is reached around 20 time-
steps after the initialization, with a then constant ratio 
of undetected particles of around 1.5 %. The 0.05 ppp 
case with medium noise level converges much quicker (5 
time-steps after initialization), while the low-noise case 
converges instantly. For 0.01 ppp, the lower noise levels 
converge instantly, but around 5 iterations are needed for 
the high noise level.

Looking at the mean displacement of the particles, it 
is obvious that the very high accuracies seen for perfect 
imaging cannot be reached. For σ = 0.03·Ip,avg, displace-
ment errors of around 0.03 px are found. The error rises to 
0.1 and 0.24 px for the higher noise cases. As soon as the 
system is converged, the error is largely dependent on the 
noise level and less on the particle image density—clearly 
indicating the reduced accuracy of the image matching pro-
cess as source for the position error.

Fig. 8  Detail view from camera 
image for NI = 0.01 ppp for 
different levels of artificially 
added noise: σ = 0.03·Ip,avg, 
σ = 0.1·Ip,avg, σ = 0.2·Ip,avg 
(from left to right). σ is the 
variance of the normal distribu-
tion used for the random noise 
generation; Ip,avg denotes the 
average peak intensity of a 
particle image
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Fig. 9  Temporal development of STB runs for 0.01 and 0.05 ppp at different image noise (parameterized by σ in units of Ip,avg). a Fraction of 
non-detected particles; b particle position accuracy; and c fraction of ghost particles within the tracked particles
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The level of tracked ghost particles (Fig. 9c) stays 
very low for the two low-noise cases. For the high-noise 
case, the ghost level rises slightly in the non-converged 
state. At this noise level, single noise peaks can be of the 
same intensity as the particle images. These false particle 
peaks can lead to random ghost particles in the pure IPR 
reconstructions, which is plainly visible when looking at 
the total number (tracked + untracked) of ghost particles, 
given in Fig. 10. For the high-noise case, fractions of 0.2 
(at 0.01 ppp) and around 1.4 (at 0.05 ppp) are seen. The 
necessity of using a larger search radius of ε = 1.1 px (due 
to peaks being shifted by the noise), combined with the 
occurrence of high-intensity noise peaks, causes the sig-
nificant rise in registered ghost particles. While the num-
ber of ghost particles is high in the set of particle candi-
dates, it is still unlikely that they are incorporated into a 

track, which is demonstrated by the still very low tracked 
ghost particle fraction—even in the first time-steps of the 
evaluation. When the tracking system is converging, also 
the occurrence of triangulated ghost particles is signifi-
cantly reduced; however, a fraction of 0.08 remains for the 
0.05 ppp case, which is notably up from the no-noise case 
(<0.002). The triangulated (untracked) ghost particles will 
have no influence on the final result, as they are discarded. 
However, they can induce inaccuracies in the positioning of 
the true particles.

Figure 11 compares the converged STB results to recon-
structions using MLOS-SMART and a subsequent particle 
peak identification. The fraction of undetected particles is 
largely similar between the two techniques for the lower 
noise cases, while STB shows better results for high-noise 
images.

Comparing the total ghost particle intensity FIg(tot) 
shows—as before—distinct advantages for the STB tech-
nique. Maximum values of FIg(tot) = 0.08 for STB are 
opposed by values of around 2.2 for SMART. For the 
SMART case, the fraction of ghost particles is actually 
higher for the low particle image density, as the number of 
noise peaks does not change, while the number of true par-
ticles is reduced.

The mean positional error (Fig. 11b) rises for both STB 
and SMART at approximately the same rate, when not fil-
tering the STB results (black curves, empty circles). As 
already discussed, STB does not reach the very high accu-
racy seen in the previous paragraph, but always holds the 
accuracy advantage compared to tomographic reconstruc-
tion. SMART exhibits an error of around �p = 0.39 px for 
the high-noise case, while STB shows around 0.24 px.

In order to improve the positional accuracy and to extract 
velocity and acceleration information from the tracks, tem-
poral filtering is applied. To this end, a third-order B-spline 
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function (see Sect. 4.2) is fitted to the particle positions. 
A basic outlier filter is applied to remove obviously devi-
ating values of velocity and acceleration (occurring either 
at the end/beginning of tracks or induced by false pairings 
of source/reconstructed particles; around 0.5 % removal 
rate). Average positional errors between �p = 0.018 px 
for σ = 0.03·Ip,avg and �p = 0.117 px for σ = 0.2·Ip,avg are 
attained for the filtered tracks at 0.05 ppp (black curves, 
filled circles).

Table 3 summarizes the results on position accuracy 
and gives additional values for the accuracy of veloc-
ity and acceleration. The velocity error, determined as 
the arithmetic mean of the difference between recon-
structed and original velocity for each particle, is 
between �v = 0.014 px/time-step for σ = 0.03·Ip,avg and 
�v = 0.052 px/time-step for σ = 0.2·Ip,avg. Knowing the 
velocity error allows determining the dynamic velocity 
range (DVR), as introduced by Adrian (1997). To this end, 
the errors are expressed by means of root mean square, 

rmsv = sqrt
(

1/N
∑N

1 (�vR − �vS)
2
)

 and set in relation to the 

maximum velocity present in the data set (~11 px). DVR 
values ranging between 680 and 170 are found for the dif-
ferent noise levels at 0.05 ppp, while the noise-free case 
shows DVR in excess of 10,000.

Comparing accuracy and DVR to planar PIV, it can be 
stated that STB delivers average velocity accuracies that 
are at least on par with the ones gained by planar PIV (a 
typical velocity error of 0.1 px was repeatedly found for 
planar PIV, see, for example, Nobach and Bodenschatz 
2009; Sciacchitano et al. 2013; Wieneke 2015). However, 
planar PIV suffers from much higher errors in regions of 
shear or turbulence. Sciacchitano et al. (2013) investigate a 
transitional jet in water and report errors of around 0.3 px 
in the shear layer (caused by shear within the correlation 
windows that even window deformation techniques cannot 
fully compensate) and up to 0.5 px in the turbulent regions 
(caused by severe out-of-plane motion inducing loss of 
pairs). STB does not suffer from both of the observed 
problems, being a volumetric, particle-based method and 
therefore yields an increased depiction of highly dynamic 
regions.

The temporal fit to the particle trajectory additionally 
yields values for Lagrangian acceleration (material deriva-
tive). The accuracy of the gained results was assessed simi-
larly to velocity by computing the root mean square of the 
acceleration error (rmsa). The different noise levels show 
values of rmsa between 0.021 and 0.039 px/time-step2. Fol-
lowing Adrians definition of DVR (1997), a dynamic accel-
eration range (DAR) is calculated as the ratio of rmsa and 
the maximum value of acceleration (~0.9 px/time-step2, 
taken from the ground truth tracks). This yields values for 
DAR between 43 and 23 for the different noise cases (see 
Table 3).

As observed in the previous paragraph, the data reported 
for STB show improvements over the values given in 
(Schanz et al. 2014) due to improved processing.

4  Application to experimental data

The STB evaluation scheme has been applied to a time-
resolved data set of a transitional jet in a water tank. This 
set of images originates from a time-resolved TOMO-PIV 
experiment, which was carried out in 2010 at the water 
jet facility at TU Delft. The same set-up was used for a 
number of different analysis, both on the flow phenomena 
(e.g. Violato et al. 2011, 2012) and on the characterization 
of methods and tools for 3D measurements (e.g. Novara 
et al. 2010; Lynch and Scarano 2013). The data set dis-
cussed here was recorded within the scope of the work on 
calibrating and applying the optical transfer function (OTF) 
on 3D reconstruction problems (Schanz et al. 2013a). For 
a detailed description of the experimental apparatus, see 
(Violato et al. 2011).

Figure 12a shows the experimental set-up, which con-
sists of a water jet created by a nozzle with a diameter of 
d = 10 mm and an exit velocity of vs = 0.43 m/s. The jet 

Table 3  Arithmetic mean (∆) and root mean square (rms) of mag-
nitude of position error (in px), velocity error (in px/time-step) and 
acceleration error (in px/time-step2) for STB and SMART—recon-
structions at 0.05 ppp for different noise levels

Dynamic velocity range (DVR) and dynamic acceleration range 
(DAR) calculated as ratio of the maximum flow velocity (~11 px/
time-step) and acceleration (~0.9 px/time-step) to the respective rms

Noise level σ 0 0.03 Ip,avg 0.1 Ip,avg 0.2 Ip,avg

SMART pos.

 ∆p 0.201 0.234 0.290 0.387

 rmsp 0.229 0.261 0.322 0.429

STB pos.

 ∆p 0.0008 0.029 0.103 0.239

 rmsp 0.0012 0.033 0.116 0.271

STB filter

 ∆p 0.0004 0.018 0.054 0.117

 rmsp 0.0007 0.020 0.061 0.133

STB vel.

 ∆v 0.0003 0.014 0.030 0.052

 rmsv 0.0006 0.016 0.034 0.065

 DVR 17,900 684 319 170

STB acc.

 ∆a 0.0004 0.019 0.024 0.031

 rmsa 0.0008 0.021 0.027 0.039

 DAR 1060 43 33 23
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is illuminated from above using a light volume of cylindri-
cal shape. As light source, a Quantronix Darwin-Duo Nd-
YLF high-speed laser with a repetition rate of 1 kHz and a 
light output of 2·25 mJ is used. The water is seeded using 
polyamide particles with an average diameter of 56 μm. 
Imaging is realized by three LaVision Imager pro HS high-
speed cameras, observing an interrogation volume extend-
ing from y = 1.4–54 mm above the nozzle. The illuminated 
diameter is approximately 28 mm (at the top) to 22 mm (at 
the bottom). The octagonal shape of the water tank allows 
all cameras to image the volume perpendicular to the air/
glass/water interfaces. The cameras are equipped with 
105 mm Nikon lenses, using f# = 22. A cropped resolution 
of 672 × 1024 pixels is used. Figure 12b, c shows particle 
images, as seen by one camera.

The recorded time series consist of 500 images per run, 
one of which was reconstructed by the STB algorithm. The 
active image area is approximately 0.43 MPix per camera, 
and the particle image density averaged over the whole 
image is around 0.035 ppp. Due to the cylindrical illumina-
tion, the central part of the images shows significantly more 
particles, compared to the borders. The perceived particle 
image density varies between around 0.01 and 0.05 ppp 
within the camera images.

4.1  Algorithm parameters and tracking evaluation

The parameters for STB were chosen as given in Table 4. 
In this case, no triangulations using a reduced set of cam-
eras were performed, as only three cameras are available. 
Two passes were conducted, going once forwards and 
backwards through the time series.

Figure 13a shows the number of tracked particles and 
the total number of particles (tracked + particle candi-
dates) for the 500 images and both passes. It can be seen 
that for the first few images, when the algorithm is not yet 
converged, over 30,000 particle candidates per time-step 
are triangulated. Out of those, around 6000 4-step tracks 
are found after the initialization phase. In the following, 
the algorithm quickly converges: after 11 time-steps around 
10,000 tracks are found, and finally, from time-step 30 on, 
around 11,300 particles are tracked in the first pass. When 
time is reversed at the end of the data set, the number of 
tracked particles climbs to around 12,600. These additional 

Fig. 12  a Set-up of the TOMO-PIV experiment at the water jet facility at TU Delft, the Netherlands. Three high-speed cameras image a water 
jet, using circular laser illumination; b full image of one exemplary camera; and c camera image detail

Table 4  STB parameters as applied to experimental image data from 
a transitional jet from time-step 5 onwards

Values for time-step 1–4 (initialization phase) are given in brackets

Triangulation iterations using Ncam m = 3 (6)

Triangulation iterations using N−1
cam n = 0 (0)

Number of shake iterations k = 7

Shake width δS = 0.1–0.025 px

Initial shake iterations 0

Allowed triangulation error [px] ɛ = 1.0 px

Search radius without predictor [px] 18 px

Search radius with predictor [px] 4 px

Particle intensity threshold Tint = 0.05 · Iavg

Smoothness threshold T∆f = 0.8 px (1.6 px)

Outlier detection threshold (TO) –

Projection factor prior to triangulation fPt = 2.0 (1.1)

Predictor for initialization TOMO-PIV result

Number of passes 2
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particles originate mostly from tracks that were not identi-
fied immediately when entering the measurement domain 
in pass 1 and are now extended to the edge of the volume 
by walking backwards along the track in pass 2. The num-
ber of additionally triangulated particle candidates quickly 
falls after the initialization and levels around 1000 for pass 
1 and around 450 for pass 2. These numbers document how 
effective the prediction system reduces the complexity of 
the system: in the converged state, the number of newly 
triangulated particle candidates is <5 % of the number 
of tracked particles in pass 2. The reconstruction process 
is very effective, and high accuracy is attained due to the 
(nearly) completely solved positioning problem. Most of 
the triangulated particle candidates are ghost particles, as 
only around 100 new 4-step tracks per time-step are iden-
tified for pass 1 (particles entering the domain, balanced 
with the number of particles leaving the domain) and only 
around 10 for pass 2 (tracks that were previously missed).

4.1.1  Remarks on residual images

The reason for the occurrence of ghost particle candidates 
becomes apparent by looking at the residual images (see 
Fig. 14). When using a reprojection factor before each tri-
angulation fPt = 1.0 (Fig. 14, left side), the residual image 
is still populated by a significant amount of peaks. Judging 
only by the residual image it appears as if many particles 
are yet undetected. Comparing the reprojected image with 
the original camera image reveals, however, that virtually 
all particles are present in the reconstruction. The residual 
peaks are caused by a discrepancy in particle intensity 
from original to reconstruction. One reason for this phe-
nomenon is the fact that the camera showing the brightest 
image is left out for the intensity update (in order to avoid 
ghost tracks, see Sect. 2.2.3), which reduces average par-
ticle intensity relative to the recording. Another reason is 
the scattering behaviour of the particles, of which only the 
average can be calibrated by the OTF. Individual particles 
can show very different scattering—depending on their 
size and shape—giving rise to intensity ratios between 
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the images of a particle on the various cameras that differ 
significantly to the ones as calibrated by the OTF. There-
fore, one particle, having a certain reconstructed intensity, 
can be brighter than the recording on one camera, while 
it is considerably less bright on other cameras. On each 
of these other cameras, a residual peak will remain when 
subtracting the reprojected image from the original image. 
These residual peaks are often high enough to be picked 
up by the next triangulation iteration, causing superfluous 
calculation effort and, possibly, the occurrence of ghost 
particles.

As reasoned in Sect. 2.3, a method to counteract these 
effects is to apply a reprojection factor fPt > 1. The intensity 
of the particles is multiplicated by fPt prior to each triangu-
lation iteration (it is not applied prior to shake iterations). 
Figure 14 shows camera image, reprojected image and 
residual image for one time-step for a small region of one 
camera for two STB runs—one using fPt = 1.0, the other 
fPt = 2.0. It can be seen that virtually the same particle dis-
tribution was reconstructed, matching well to the camera 
image. The effect on the residual is easily visible, with a sig-
nificant reduction in remaining peaks. The number of addi-
tional particle candidates triangulated in each step decreases 
from around 4200 for fPt = 1.0 to around 450 for fPt = 2.0. 
Due to the increased efficiency and reliability of the track-
ing system, fPt = 2.0 was used for the processing in the jet 
case and all presented plots originate from this version. This 
value for fPt is quite high—in most experimental cases, a 
value of 1.2–1.4 was found to be sufficient. The reason for 
the high value used here is most possibly the used seeding 
material, which produced particle images of quite different 
intensities and sizes (as seen in Figs. 12c, 14).

The thoughts on the residual image show that STB 
is—in contrast to tomographic reconstruction algorithms 
like MART or SMART—not a technique that minimizes 
the residual at all cost. As a matter of fact, in a situation 
where single particles do not scatter the light as given by 
the calibration it is not possible to realize a disappearing 
residual on all cameras without adding additional particles 
(which are ghost particles). This is exactly what MART 
and SMART do when encountering imaging situations 
as described: as it is not possible to completely solve the 
reconstruction problem by giving intensity to voxels that 
represent the true particle, additional voxels have to be 
used to further reduce the residual. These voxels either 
deform the 3D particle shape or are not connected to the 
true particle at all (and are therefore ghost particles/ghost 
energy). Therefore, by not claiming a completely disap-
pearing residual, STB (and all particle-based methods) 
actually operates closer to reality, as the reconstruction 
problem is not completely solvable due to inconsistent par-
ticle imaging.

4.1.2  Track length statistics

The circa 12,600 particles that are tracked for every time-
step in pass 2 are part of tracks with very different lengths: 
some particles are tracked over the whole sequence of 500 
images (these are slow particles in the outer limits of the 
measurement volume that are not swallowed by the jet at 
some point), while many other tracks are much shorter. 
Figure 13b shows the distribution of track lengths for 
both passes. The insert zooms into the region of very short 
tracks. Such short tracks originate either from (small) par-
ticles with very weak intensity, which are lost and found 
multiple times during their stay in the volume or are made 
up by false tracks that might occur during and briefly after 
the initialization phase. For both passes, a maximum in the 
track length is seen at 6 time-steps; however, this maximum 
is clearly reduced for the second pass. Another peak can be 
seen at track lengths of around 125 time-steps. This peak 
originates from the fast particles in the centre of the jet that 
move around 8 pixels per time-step and remain visible on 
the cameras for around for 120–130 time-steps. The track 
length distribution slowly decreases, reaching a last maxi-
mum at exactly 500 time-steps. For the first pass, 777 par-
ticles are tracked over all 500 images, and for pass 2, this 
number is 1261. The average track length rises from 75.3 
time-steps in pass 1 to 82.1 time-steps for pass 2.

4.2  Track filtering

STB identifies long tracks, comprised of particle positions. 
Compared to two-frame recordings, which are limited to 
velocity estimations up to second-order accuracy (Wereley 
and Meinhart 2001), the use of multiple frames allows for 
higher-order accuracy in the velocity determination (Cier-
pka et al. 2013). In order to accurately extract velocity (and 
acceleration) information from the data, a suitable fitting 
function needs to be applied to the time series of coordi-
nates. A first version of the code used third-order polynomi-
als of predefined length being gradually moved through the 
track, thus filtering each time-step in relation to its temporal 
neighbours (Savitzky and Golay 1964). In order to utilize a 
fit that is more adapted to the source data, this method was 
exchanged for a third-order B-spline fit, which approximates 
the optimal Wiener filter for our model of particle motion. 
This filter is a low-pass filter with a selectable cut-off fre-
quency, which is determined using the spectral distribution 
of the unfitted tracks (much like the Wiener filter used for 
particle position prediction). As a further measure, the filter 
could be adapted to local areas of the measurement volume, 
taking specific imaging or flow conditions into account. 
More details on the method, which is based on (Eilers and 
Marx 1996), can be found in (Gesemann 2015).
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For the jet case, a cut-off frequency of 0.25 times the 
Nyquist frequency was chosen and all tracks were fitted, 
relocating the particles to a new—corrected—position on 
the trajectory as given by the continuous B-spline function. 
Velocity and acceleration are extracted as the first and sec-
ond derivative of that function. On average, the particles 
are moved by 0.061 px in x-direction, 0.050 px in y-direc-
tion and 0.081 px in z-direction, making for a total average 
correction of 0.113 px. For both passes, the corrections are 
very similar. These numbers reflect the positioning of the 
cameras (x: only middle camera views perpendicular; y: 
all cameras are viewing perpendicular; z: no camera views 
perpendicular, middle camera views directly from top). The 
correction of the particle position may be used as a rough 
measure of the particle position accuracy. However, care 
has to be taken in order to use a filtering scheme attuned to 
the expected noise level.

Figure 15 shows results from the track reconstruction, as 
given by STB with subsequent B-spline fitting; (a) and (b) 
display the tracks of 100 successive time-steps out of 500, 
colour coded by streamwise velocity (v). It can be seen how 

the fast particles coming from the nozzle are surrounded by 
a field of low-velocity particles that describe a slow circu-
lar motion around the jet. The detail plot in Fig. 15b shows 
how the particles are excited to curling trajectories by pass-
ing vortex rings that originate from Kelvin–Helmholtz 
(KH) instabilities at the shear layer (Violato et al. 2011). 
When using window methods like correlation, such details 
are lost. The shear layer is thin near the nozzle, but quickly 
widens with increasing distance. Figure 16 gives a better 
impression of the steepness of the velocity drop-off, by dis-
playing radial bin-averaged (ensemble-averaged) profiles 
of streamwise velocity v at different heights. To create this 
plot, the velocity of all particles from the 500 time-steps 
located in a height interval of ±2 mm of the given y-value 
(e.g. for y = 1.0 d, all particles within y = 8–12 mm) were 
averaged in bins, according to their distance to the jet 
axis. The bins have similar volume; therefore, the spacing 
is closer in the outer regions of the jet. 100 bins are dis-
tributed over r = 0–15 mm, leading to particle numbers 
of around 5000–10,000 per bin in each of the six heights. 
Very close to the nozzle (y = 0.2 d), a steep velocity falloff 

Fig. 15  a Particle tracks of water jet, reconstructed by STB. Overlay 
of 100 time-steps, colour coded by streamwise velocity; b detail of 
(a), showing the entrainment of particles; and c tracked particles for 

single time-step (tn, given by dots) with a tail of 15 time-steps (reach-
ing back to tn−14)
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can be seen; moving upstream, the profiles flatten, as the 
shear layer breaks down gradually and turbulent structures 
begin to spread the high-velocity fluid over a larger area. 
Comparing these profiles to the ones given in (Violato et al. 
2011)—which were created from averaging 4000 images of 
a Stereo-PIV measurement using ensemble-averaged 6 × 6 
px correlation windows—it can be seen that, even for the 
relatively low number of images used here (500), the bin-
averaging approach allows for the generation of reasonably 
converged, high-resolution profiles from three-dimensional 
track data. Opposed to correlation-based methods—which 
are limited to a certain window size—the resolution of the 
bin-averaging approach is solely dependent on the total 
number of samples within each volume unit. This num-
ber can easily be increased via the number of images, 
thereby allowing the use of smaller bins. See, for example, 
(Schröder et al. 2015b) for an application of the concept on 
a turbulent boundary layer, yielding profiles with a resolu-
tion below 1/10 of a viscous unit. 

As a by-product of the track filtering process, probabil-
ity density functions (PDFs) of velocity and acceleration 
(see Schröder et al. 2015a for an example) or other flow 
properties, like wall-shear stress fluctuations (see Schröder 
et al. 2015b), can efficiently be created on a particle basis.

Moving on from averaged flow properties, Fig. 15c visu-
alizes a more instant flow situation by plotting the particles 
of one time-step as dots, followed by a tail of 15 time-steps 
extending in the past.

4.3  Interpolation to Eulerian grid (‘FlowFit’)

To allow for a better identification of flow structures by 
known variables—such as vorticity, Q-criterion or λ2 swirl-
ing strength—an accurate interpolation of the discrete 

particle-based information onto an Eulerian grid is desir-
able. A scheme to interpolate the reconstructed tracks on 
such a grid, while maintaining as much of the high local 
accuracy by avoiding spatial smoothing, was developed 
and termed ‘FlowFit’ (Gesemann 2015): Each component 
of the flow field is modelled as a weighted sum of three-
dimensional and evenly spaced quadratic B-splines. In 
order to evaluate this flow field on arbitrary coordinates, the 
weights have to be determined according to the known flow 
velocities at certain locations (being the particles with their 
velocity and acceleration). This results in a system of lin-
ear equations, where for each known flow velocity at some 
particular position, three equations are created. In addition 
to these equations based on the measurements, other equa-
tions are used to regularize the equation system by penal-
izing nonzero curvatures and optionally (when the flow can 
be regarded as incompressible) by penalizing nonzero diver-
gencies on a regular grid. This results in an overdetermined 
system where measurements and different kinds of regulari-
zations can be weighted differently. This equation system is 
solved iteratively via the conjugate-gradient algorithm. The 
resulting flow field is then sampled on a regular grid includ-
ing its spatial derivatives so that the derived values, such as 
vorticity or Q-criterion, can be computed without numeri-
cal differentiation. In order to retain accuracy at the particle 
positions, the underlying B-spline systems oversamples the 
particle field (the number of B-spline cells is typically cho-
sen to be 5–20 times the number of particles). The splines 
within empty cells have to only fulfil smoothness and diver-
gence criteria, whereas the ones in non-empty cells addi-
tionally have to describe the velocity data of the contained 
particle(s), thereby defining the shape of the whole system.

A related approach to reconstructing a velocity field 
from LPT/PTV data was very recently introduced by 
Schneiders et al. (2015), using the vortex-in-cell method 
(VIC+). While the methods are differing quite substan-
tially (VIC+ operates on a fixed grid, in which it computes 
vorticity as the only variable and derives all other quanti-
ties from there), the basic concepts are comparable. VIC+ 
adds the inclusion of the acceleration field into the regu-
larization, improving upon results only using the incom-
pressibility constraint. Schneiders et al. (2015) demonstrate 
the general superiority of flow field reconstructions from 
Lagrangian tracks over correlation-like methods.

Evaluating the jet case, the measurement domain was 
divided into a cell system of quadratic B-splines, such that 
on average every eighth cell contains a particle (0.125 ppc, 
‘particles per cell’). The pitch of the resulting cell system is 
0.62 mm; each cell represents a volume of approximately. 
0.25 mm3; each particle represents approximately 2.0 mm3. 
For reference, a 363 px correlation volume applied for 
TOMO-PIV processing comprises approximately 8.4 mm3. 
The solution of the resulting equation system is sampled 
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Fig. 16  Radial profiles of streamwise velocity (v) at different heights 
of the jet. The size of a 36-pixel wide correlation window is given as 
a reference
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on a 3D grid with 0.25 mm pitch—thus oversampling the 
cell system by a factor of 2.4—resulting in volumes of 
124 × 240 × 124 vectors.

Figure 17a displays the result of FlowFit applied to the 
particle field shown in Fig. 15c. Isosurfaces of vorticity are 
complemented by the particle tracks, enabling a joint visu-
alization of the data on an Eulerian grid with the underly-
ing discrete Lagrangian information. Vortices can now be 
easily identified as ring-shaped Kelvin–Helmholtz insta-
bilities, originating from a circular shear layer around the 
laminar flow emanating from the nozzle. The vorticity iso-
surfaces show a spatially consistent depiction of both the 
large-scale vortices and smaller structures occurring after 
the breakdown of the KH instabilities, as well as an even 
representation of the shear layer close to the nozzle.

4.4  Lagrangian accelerations

Applying a temporal fit to the particle tracks not only yields 
Lagrangian velocities, but also accelerations. These values 

are of special interest, as it has proven to be difficult to 
extract accurate acceleration data from spatially smoothed 
velocity fields gained from TOMO-PIV. Shake-The-Box 
allows for the accurate extraction of Lagrangian accelera-
tions, while remaining spatially well resolved. Figure 17b 
displays the acceleration in streamwise direction for the 
same time-steps as given in Fig. 15c, visualizing how the 
particles are accelerated when drawn into one of the large 
ring vortices and decelerated when they are ejected again. 
The same effect is visible for the larger vortices that occur 
after the KH breakdown.

One application of acceleration (or material deriva-
tive) data is the extraction of pressure distribution, which 
is actively been worked on recently. While some meth-
ods directly work on discrete particle tracks (Neeteson 
and Rival 2015), most of the developed methods require 
acceleration data on an Eulerian grid (Violato et al. 2011; 
Novara et al. 2013; Huhn et al. 2015). The FlowFit inter-
polation scheme can be used to create Eulerian gridded 
data from the discrete acceleration values. The same basic 

Fig. 17  a Isosurfaces of vorticity (ω = 175/s) as calculated by Flow-
Fit at single time-step (tn) with superimposed particle tracks, extend-
ing 5 time-steps back in forth in time; b tracked particles for single 
time-step (tn, given by spheres) with a tail of ten time-steps, colour 

coded by streamwise acceleration; and c isosurfaces of streamwise 
acceleration (ay = 4 m/s2 and ay = −4 m/s2) at single time-step tn as 
calculated by FlowFit with penalization of rotation
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principle as with velocity is applied, only the penalization 
of divergence is substituted by a penalization of rotation 
(the acceleration field should be rotation-free in incom-
pressible flows when neglecting viscosity). Figure 17c 
shows the result of interpolating the particle acceleration 
values via FlowFit onto a grid with 0.25 mm pitch. A value 
of 0.2 ppc was used. Isosurfaces of streamwise accelera-
tion are displayed, colour coded by negative and positive 
orientation. Surrounding the KH-type ring vortices, clearly 
defined rings of uniform positive and negative streamwise 
acceleration are identified; the vortex is located in-between 
these rings, with the acceleration vectors pointing towards 
the vortex centre axis.

4.5  Comparison to TOMO‑PIV

In order to judge the quality of the STB results, the par-
ticle images were used to perform a tomographic recon-
struction using five iterations of the SMART algorithm 
(Atkinson and Soria 2009), including volume smoothing 
(Discetti et al. 2013) and contrast enhancement after each 
iteration in order to reduce ghost particles and accelerate 
convergence. The resulting voxel spaces were correlated 
using 3D direct correlation (Discetti and Astarita 2012), 
as implemented in LaVision Davis 8.2. A window size of 
363 voxels with 75 % overlap was applied; using smaller 
windows resulted in a notable increase in noise. Figure 18 
compares isosurfaces of vorticity for TOMO-PIV and 
STB + FlowFit. The spatial sampling of the FlowFit 
B-spline system was reduced to 0.5 mm to match the 
resolution of the 3D Correlation. The time instant is the 
same as in Fig. 17, albeit rotated by 180 degree for better 
visualization. The results look quite different, with a more 
uneven representation of large structures for TOMO-PIV, 
combined with a lack of many small structures that are 
rendered by STB + FlowFit. The first ring vortex clearly 
shows secondary vortices in streamwise orientation, reach-
ing out to the second ring vortex, that are visible in the 
STB calculation, but are missing for TOMO-PIV. The 
shear layer displays a lot of patches when using standard 
TOMO-PIV processing, but is represented evenly by the 
FlowFit interpolation of STB tracks.

The improvements on spatial coherence observed for 
the STB + FlowFit evaluation stem from a combination of 
ghost-free reconstructions, position accuracy, a lack of spa-
tial filtering induced by a correlation window and the pos-
sibilities of pouring physical constraints, like divergence 
penalization, into the cost function of the interpolation. 
These features are the effect of STB being purely based on 
the reconstruction of fluid element trajectories (which is 
true for low Stokes number tracers) and FlowFit being able 
to translate the local accuracy into a volumetric representa-
tion. Similar results were found in (Schneiders et al. 2015).

Temporal coherence is a strong point of tracking tech-
niques, as accurate temporal fitting is intrinsic to the meth-
ods. This is supplemented by Fig. 19, which shows the flow 
field at three different time instances, each separated by ten 
time-steps (10 ms). For better clarity, the vorticity threshold 
has been increased compared to previous images. While 
TOMO-PIV shows severe variations in the flow structure 
representation—even for the largest of these—STB retains 
a high temporal consistency even for smaller structures. 
The shapes and distortions of the ring vortices are retained 
over long periods of time, clearly separating the influence 
of noise from the structure development. Post-processing 
TOMO-PIV results, doing, for example, spatio-temporal 
filtering like polynomial least squares regression—which 
was applied in (Violato and Scarano 2011) to a very similar 
data set—would presumably improve the temporal coher-
ence; however, the influences of spatial filtering would still 
persist. Applying more advanced TOMO-PIV methods, like 
SMTE (Lynch and Scarano 2015), would most likely result 
in a much higher similarity of the results between STB 
and TOMO, as both methods heavily incorporate temporal 
information. Upcoming investigations shall give in-depth 
comparisons of the two techniques.

4.6  Computational effort

Looking at the calculation time for the different meth-
ods, the rapid processing by STB becomes apparent: the 

Fig. 18  a Isosurfaces of vorticity (ω = 175/s), colour coded by 
streamwise velocity, gained by TOMO-PIV processing; b result 
gained from STB and grid interpolation using FlowFit at the same 
spatial resolution
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tomographic reconstruction of 500 images, using SMART 
with a 568 × 1064 × 568 voxel space, takes around 
510 min on a state-of-the-art high-end server (dual Intel 
Xeon E5-2680 ten-core processors at 2.8 GHz each). 
The direct correlation adds another 470 min, for a total 
of 980 min. On the same machine, STB needs 69 min for 
the first pass and 63 min for the second pass, for a total of 
131 min. What is more, due to the relatively low number 
of particles the server is not working to full capacity: it is 
possible to start three to five STB processes simultaneously 
without any noticeable increase in calculation time. Alter-
natively, keeping it at one process, the same reconstruc-
tion times are achievable using a modern laptop instead of 
a server. The (optional) calculation of Eulerian data using 
FlowFit requires between 23 min (using moderate quality 
settings) and 265 min (using highest quality settings) for 
the processing of all 500 images.

An interesting view on the development of evaluation 
codes for 3D flow experiments gives the numbers provided 
in (Violato and Scarano 2011), where a very similar case 
(same jet, 4 cameras, 600 × 1000 × 600 voxels) is dis-
cussed. The algorithms available at that time needed around 
20 min for reconstruction and 60 min for 3D cross-correla-
tion per time-step, making for a total of 40,000 min for 500 
time-steps. These details explain why at that time only 500 
images were recorded. In the circa 5 years, the evaluation 
time for such a time series has dropped from over 650 h on 
a double quad-core server to around 2 h on a good laptop.

5  Conclusions

A novel method to extract Lagrangian particle tracks from 
time-resolved series of images with high particle image 
density has been introduced and termed ‘Shake-The-
Box’. By effectively seizing, the temporal domain parti-
cle tracking at particle image densities typically reserved 
for TOMO-PIV becomes feasible. The claim for temporal 
coherence successfully reduces ghost particle problems to 
a negligible extent. Combining this approach with methods 
from both TOMO-PIV development (volume Self-calibra-
tion, OTF calibration) and advanced 3D PTV (iterative par-
ticle reconstruction) results in highly accurate determina-
tion of position, velocity and acceleration.

By applying the Shake-The-Box method to time series 
of synthetic images, the ability to solve the tempo-spatial 
reconstruction problem for a broad range of seeding con-
centrations and imaging conditions was demonstrated. 
Noise-free images with a particle image density of 0.125 ppp 
could be successfully evaluated. After a convergence phase, 
nearly full completeness (>99.5 % of identified particles at 
0.125 ppp), virtually no ghost particles (<0.04 % false parti-
cles) and high accuracy (average position error of 0.018 px) 
were attained. Using lower particle image densities further 
improved on these numbers. Compared to conventional 3D 
PTV techniques, the applicable seeding concentration was 
enhanced by at least an order of magnitude. Tomographic 
reconstruction on the other hand is able to process such high 
particle image densities, albeit at much higher ghost particle 
occurrence (>250 % false particles at 0.125 ppp) and a sig-
nificantly lower accuracy (average position error of 0.3 px).

Adding noise to the particle images showed a reduc-
tion in accuracy for both STB and tomographic recon-
struction. Noise interferes with the convergence behaviour 
of STB; for highly noisy images, convergence could only 
be reached until 0.075 ppp. Operating below this particle 
concentration is advised when dealing with low-quality 
images. While the position error grows, STB retains a 
nearly ghost-free status even with increased noise. Apply-
ing a temporal filter to the reconstructed tracks (realized by 
a third-order smoothing B-spline) increases the accuracy of 
particle placement (an average position error of 0.018–0.12 
px was found for the different noise levels at 0.05 ppp). 
Lagrangian velocity and acceleration are extracted using 
the derivations of the continuous B-spline curve. A track-
based dynamic velocity range (DVR) of 300–670 was 
found for average to low noise levels; even for highly noisy 
images, the DVR remained above 150. The dynamic accel-
eration range (DAR) varied between 23 and 43, depend-
ing on the noise level, proving that STB is able to generate 
acceleration data with accuracy suitable for, for example, 
the extraction of 3D pressure distributions (Neeteson et al. 
2015; Huhn et al. 2015).

Fig. 19  a Isosurfaces of vorticity (ω = 280/s), colour coded by 
streamwise velocity for three snapshots spaced by 10 time-steps, 
gained by TOMO-PIV; b result from STB + grid interpolation using 
FlowFit at same spatial resolution
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Time-resolved images from a volumetric three-camera 
measurement on a transitional jet in water were used to 
demonstrate the application of STB to experimental data. 
A two-pass approach of STB was realized, going once for-
wards and backwards through the time series. The extracted 
particle tracks reveal flow details that are lost in correla-
tion-based evaluations. Applying a third-order smoothing 
B-spline to the reconstructed tracks yields accurate veloc-
ity and acceleration values, as demonstrated by the extrac-
tion of highly resolved axial velocity profiles using a bin-
averaging technique. While the particle number (12,600) is 
rather low for the presented case (due to only three cam-
eras being used at an effective resolution below 0.5 MP per 
camera), STB has been shown to be able to process particle 
numbers at least an order of magnitude higher (Schröder 
et al. 2015a).

In order to interpolate the locally highly accurate infor-
mation of particle tracks onto an Eulerian grid, the ‘Flow-
Fit’ algorithm was introduced. The resulting 3D veloc-
ity volumes show detailed flow structures, surpassing the 
results of TOMO-PIV processing both in spatial resolution 
and in temporal consistence. Applying the FlowFit scheme 
to discrete particle accelerations allows for the extraction of 
Eulerian gridded acceleration fields.

The computational effort of Shake-The-Box was shown 
to be low due to the mostly presolved status of the recon-
struction problem after the prediction step. Reconstruction 
time is mainly depending on the number of particles and 
was found to be a factor of 5–8 lower compared to TOMO-
PIV processing. Overnight processing of extended time 
series becomes possible using standard PC hardware.

The results from both the synthetic test cases and the 
experimental time series demonstrate that the precise 
knowledge of trajectories of tracer particles—which can 
be regarded as fluid elements—allows for optimal exploita-
tion of data. All ways of data extraction, e.g. bin averaging, 
determination of derivations or interpolation to a regular 
grid, can be performed as post-processing on the extracted 
track data. These steps can be specifically designed to 
retain as much of the available information as possible.

The details of the STB algorithm are still under develop-
ment. Recently, an updated version of the code—featuring 
a more effective 4-step track identification scheme—was 
applied to the synthetic data presented Sect. 3. Using this 
code, noise-free images with particle image densities up to 
0.2 ppp and up to 0.1 ppp at the highest noise level were 
successfully processed.

The algorithm may be improved in several ways: single-
image volume self-calibration (Michaelis and Wolf 2011; 
Earl et al. 2015), a global approach to the particle cor-
rection scheme (complementing the local shake scheme, 
Cornic et al. 2014) or an advanced system of connecting 

track fragments (see, for example, Willneff 2003; Xu 2008) 
come to mind.

An ongoing process is the adaptation of the ideas of 
STB on the processing of short time series (4 or even only 
2 pulses). As demonstrated by Schröder et al. (2013), the 
use of a dual-volume-set-up facilitates the task of separat-
ing true particles from ghost particles using the temporal 
domain. Novara et al. (2015) carried this idea forward by 
extracting four-step tracks from experimental data on a 
turbulent boundary layer using an iterative STB approach. 
Though the temporal information is limited in such set-ups, 
the technique translates the advantages of particle tracking 
methods to flow regimes of much higher Reynolds numbers 
by overcoming the limitations of camera repetition rate and 
laser power for time-resolved measurements.
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