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mechanics. It is a desirable aim, as the fine scales are 
responsible for (amongst other things) the dissipation of 
kinetic energy and chemical mixing (Tsinober 2009) and 
have an important role in phenomena such as cloud for-
mation (Bodenschatz et  al. 2010) and flame extinction 
(Sreenivasan 2004). The challenge stems from the fact that 
as the Reynolds number increases, the smallest length- and 
timescales become smaller and faster, requiring significant 
measurement or computational capability to capture even 
low Reynolds number flows.

For laboratory investigations of turbulence, it would be 
valuable to have an accurate, three-dimensional, three-com-
ponent (3D–3C) velocimetry technique with good space 
and time resolution. Of particular importance is access to 
the full velocity gradient tensor (VGT), as it embodies the 
fine scales of turbulence and provides direct access to the 
turbulent kinetic energy dissipation rate (Wallace 2009). 
Because of the wide range of lengthscales involved, a large 
spatial dynamic range (SDR, the ratio of the smallest meas-
ureable lengthscale to the largest) is also valuable.

Hot wire probes with nine, twelve or even twenty wires 
(Wallace 2009) offer access to the full VGT with good tem-
poral resolution, but are invasive, complicated to calibrate 
and only offer pointwise measurements. Dual plane PIV 
can offer a 3D–3C measurement with good accuracy, time 
and spatial resolution (Mullin and Dahm 2006), but the set-
up is complex: it requires four cameras and some means of 
differentiating between planes, usually chromatically by 
using two different wavelength laser sources. Furthermore, 
the depth of the measurement volume is very limited (i.e. 
between two planes), and the full VGT is only available in 
one plane. Cinematographic stereo PIV can be used to yield 
snapshots of 3D–3C velocity fields (Ganapathisubramani 
et al. 2007), but is only applicable to convective flows as it 
relies upon Taylor’s frozen turbulence hypothesis.

Abstract  A hybrid technique is presented that com-
bines scanning PIV with tomographic reconstruction to 
make spatially and temporally resolved measurements of 
the fine-scale motions in turbulent flows. The technique 
uses one or two high-speed cameras to record particle 
images as a laser sheet is rapidly traversed across a meas-
urement volume. This is combined with a fast method for 
tomographic reconstruction of the particle field for use in 
conjunction with PIV cross-correlation. The method was 
tested numerically using DNS data and with experiments 
in a large mixing tank that produces axisymmetric homo-
geneous turbulence at R� ≃ 219. A parametric investigation 
identifies the important parameters for a scanning PIV set-
up and provides guidance to the interested experimental-
ist in achieving the best accuracy. Optimal sheet spacings 
and thicknesses are reported, and it was found that accurate 
results could be obtained at quite low scanning speeds. The 
two-camera method is the most robust to noise, permitting 
accurate measurements of the velocity gradients and direct 
determination of the dissipation rate.

1  Introduction

Making measurements of the smallest scales of turbu-
lent motion has been a long standing challenge in fluid 
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Scanning PIV and tomographic PIV/PTV are the only 
non-invasive measurement techniques which can offer 
practical, time-resolved, 3D–3C turbulence measurements. 
Tomographic PIV has been applied to numerous experi-
mental investigations of turbulent flows (Worth and Nick-
els 2011; Elsinga et al. 2006; Schröder et al. 2008). Whilst 
the technique offers ready experimental access to the full 
3D–3C velocity field, it suffers from some unfortunate dis-
advantages, particularly when accurate turbulence meas-
urements are needed. For adequate tomographic reconstruc-
tion, constraints upon seeding density confer a restriction 
upon the spatial resolution which can be achieved (Scarano 
2013) as the correlation volumes must contain a sufficient 
number of particles. Because the reconstruction problem 
is under-constrained, “ghost particles” are reconstructed, 
which introduce significant bias error and degrade spatial 
resolution (Elsinga et al. 2011).

Numerous variations on a technique broadly labelled 
scanning PIV, first introduced by Brücker (1995), have 
been developed over the past two decades. Whilst specific 
implementations differ, the overall concept is similar: one 
or more cameras capture particle images as a laser sheet is 
quickly moved across the measurement volume. The most 
common approach has been to perform stereoscopic PIV 
cross-correlations of images at different depths through 
the volume, which are then “stacked” together to recover 
the velocity field (Brücker 1996; Hori and Sakakibara 
2004; Diez et al. 2011; Soodt et al. 2011). However, this 
suffers from the same disadvantages as stereo PIV: error 
in the out-of-plane component is greater than the in-plane 
components and resolution is constrained by the finite 
thickness of the laser sheet, with the added complexity of 
scanning.

To get around the limitations of conventional tomo-
graphic PIV, a number of authors have turned to laser 
scanning methods (Casey et  al. 2013; Ponitz et  al. 2012; 
Brücker et  al. 2013). The approach is to perform tomo-
graphic reconstructions of the 3D particle field as the first 
step, then use 3D reconstructions (discretised into cubic 
voxels) to perform a velocimetry. Brücker et  al. (2013) 
solve a tomographic reconstruction problem (although it is 
not expressed in such terms) for just one camera with many 
images taken at different laser sheet positions. Ponitz et al. 
(2012) and Casey et  al. (2013) combine multiple-camera 
tomographic reconstructions independently calculated for 
each position of the (thin) laser sheet. Both techniques 
reduce the incidence of ghost particles and permit high 
seeding densities to be used. All techniques achieve some 
degree of super-resolution in the scanning direction: the 
spacing between laser sheets may be tens of voxels wide.

The main disadvantage of scanning techniques is that 
in practice, the flow speed and timescales must be quite 
slow in order to satisfy the “frozen flow” condition during 

scanning. However, the advantages the technique provides 
in terms of seeding density may justify its use in cases 
where the flow can be quite slow moving and small-scale 
information is important. For example, scanning methods 
have already been applied to the far field of a turbulent jet 
(Hori and Sakakibara 2004; Diez et al. 2011; Casey et al. 
2013), to study unsteady separation around a flapping wing 
(David et al. 2012) and the unsteady flow field in a model 
IC engine (Brücker 1997). The present work specifically 
addresses the issue of how fast one needs to scan.

This paper presents a variant of scanning PIV using a 
tomographic approach. Whilst the scanning tomographic 
technique has been shown to be viable, it is still in its 
infancy and there are a number of questions which exist-
ing literature cannot resolve. The interested experimentalist 
will wonder: does the technique provide measurements of 
sufficient quality to justify its use? Furthermore, there are 
questions about the details of applying scanning PIV. How 
many images must be taken per reconstruction? How far 
apart can the laser sheets be spaced? How thick must the 
laser sheet be? How quickly does one need to scan? How 
robust is the technique to image noise and misalignment? 
The first half of this paper aims to answer these questions. 
The second half demonstrates the high fidelity of the tech-
nique through its application to a laboratory study of homo-
geneous, axisymmetric turbulence at moderate Reynolds 
number.

The paper is structured as follows. Sections 2.1 and 2.2 
outline the scanning tomographic reconstruction and self-
calibration technique, which contain some novel aspects. 
Section 2.3 then explains the details of a parametric inves-
tigation designed to quantify the effect of different set-up 
parameters upon measurement accuracy. Section 2.4 gives 
details of a laboratory experiment in a von Kármán swirl-
ing water flow, where scanning PIV has been applied. Sec-
tions 3.1, 3.2, 3.3 and 3.4 present results of the parametric 
investigation, and Sect. 3.5 assesses the performance of the 
self-calibration scheme. Section  3.6 then presents a num-
ber of results from the laboratory experiment, which dem-
onstrate the technique can achieve high fidelity, spatially 
resolved velocity and velocity gradient measurements.

2 � Methods

2.1 � Scanning PIV reconstruction

In this section, the principles of the scanning tomographic 
reconstruction are outlined in an approach which differs 
from previous techniques. The general set-up of the scan-
ning PIV laboratory experiment is shown in Fig. 1. The 
numerical simulation uses a similar configuration. One or 
more cameras are positioned to observe the measurement 
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volume as a laser sheet is traversed (“scanned”) rapidly 
across it. An image n is recorded for each of the 1, . . . , NS 
positions of NS near-parallel laser sheets, which overlap 
substantially.

The objective of the tomographic reconstruction is to 
find a scalar field E(x), which represents the reflectance of 
some small lump of diffusely reflecting surfaces (a particle) 
at point x. Thus, E(x) = 0 when there is no particle at x 
and is non-negative otherwise. Interference effects, absorb-
tion and specular reflection are neglected in this model. The 
reconstruction is made from a number of images In,j(yj) 
recorded by cameras j. A given point in object space x will 
influence image In,j at a position yj, by an amount which is 
proportional to the strength of illumination and the reflec-
tance at that point. The projection of point x onto the image 
plane is modelled using a pinhole camera model (Hartley 
2003):

I3 is the 3 × 3 identity matrix and Gj is a 3 × 3 upper trian-
gular matrix which represents intrinsic camera parameters, 
such as focal length and magnification. The variables xc,j 
and Rj are extrinsic camera parameters which represent the 
camera’s position in object space and orientation with 
respect to the object space coordinate system, respectively. 
The subscript j corresponds to having different model 
parameters for each camera. x̃ and ỹc,j correspond to x and 
yc,j in homopolar coordinates.

Using a Gaussian model of laser sheet intensity, one can 
model the illumination at point x for the nth laser sheet as

where wn is the e−2 width of the sheet and en and dn give 
the equation of plane for the given laser sheet.

Using the pinhole camera model, any point yj viewed 
by camera j is the projection of a single ray, described by 

(1)ỹj ∼ GjRj[I3| − xc,j]x̃

(2)f (x, n) = exp
(

−8(x · en − dn)
2/w2

n

)

xray(s) where s parameterises position along the ray. This 
yields a closed model for the signal recorded at a given 
point by a given camera:

Reconstruction of E(x) is now a tomography problem, 
which can be solved efficiently using the MART algorithm 
(Herman and Lent 1976; Worth and Nickels 2008). For 
the single-camera case, rays are reconstructed individually 
upon a discrete grid defined by the intersection of planes of 
constant depth z with rays back-projected from each pixel 
(Fig. 2a). Let a given ray have intersections with planes of 
constant z which are indexed by m and write the reflectance 
at this location as Em. This ray is always projected onto the 
same pixel on the camera, so there are NS observations of 
this pixel’s brightness denoted φn. Using this discretisation, 
Eqs. (2) and (3) can be used to define a tensor of weights 
Wnm as in (4). The tomography problem is solved by find-
ing the solution for Em using the MART algorithm.

(3)In,j(yj) =

∫ ∞

0

E(xray)f (xray, n)ds.
θ1 θ3

Synchronisation
device

Laser

Scanning optics

Flow Measurement
volume

Scanning
laser
sheet

1
2

3

z

x

Fig. 1   Scanning PIV set-up, as used in laboratory experiment and in 
numerical simulation

Camera pinhole

z

x

(a)

Measurement volume

Camera 1 Camera 2

x

z

(b)

Fig. 2   Schematic representation of reconstruction grid for a single-
camera reconstruction and b stereo reconstruction
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When all rays have been reconstructed, a resampling in 
planes of constant z (using a 10 × 10 Lanczos interpolation 
kernel) provides a reconstruction of the particle field on a 
regular cartesian grid. This extends the work of Brücker 
et al. (2013) to consider a more generalised pinhole projec-
tion model and permit the use of a MART solver.

For the stereo case, independent 2D reconstructions are 
performed on many different epipolar planes. Points on 
an epipolar plane will always be projected onto so-called 
epipolar lines in either camera, as shown in Fig. 2b. That 
is to say, both cameras view the epipolar plane edge-on. 
Equation (3) is cast as a 2D-tomography problem in this 
plane, with a grid defined by the intersection of rays from 
camera 1 with rays from camera 2. By indexing the rays 
from the first camera as s = 1, . . . , N1 and the second as 
t = 1, . . . , N2, a 2D tensor Est can be built with N1 × N2 
elements which represents the planar reconstruction. The 
images can be interpolated, again using a 10 × 10 Lanczos 
kernel, to yield a set of observations φ1,ns and φ2,nt from 
the first and second cameras, respectively, corresponding to 
different sheet positions and rays. As before, the projection 
is represented as a linear operation on Est, namely

The 3D tensor Wnst represents the illumination of the point 
indexed by (s, t) for a sheet n, and the summation over s and 
t represents the integral of Eq.  (3). The projection model 
assumes particles have the same reflectance when viewed 
from either camera. In practice, this is not the case, but 
images can be normalised as a preprocessing step to account 
for this. Equation (5) can then be cast into matrix form 
and solved using MART. The solutions are first resampled 
using linear interpolation on epipolar planes with a regularly 
spaced grid (x, z) for arbitrary y and then resampled again to 
provide reconstructions on a regularly spaced Cartesian grid 
(x, y, z). This combines the multiple view problem discussed 
by Casey et al. (2013) and Ponitz et al. (2012) with the mul-
tiple sheet problem described by Brücker et  al. (2013). In 
addition, this method is not restricted to the use of a simple 
camera pinhole model. Nonlinear distortion can be compen-
sated for in the image plane through the use of a dewarping 
function applied before the images are interpolated.

2.2 � Self‑calibration

Whilst the single-camera reconstruction technique is rela-
tively insensitive to calibration error, it is important for 

(4)φn =
∑

m

WnmEm

(5)

φ1,ns =
∑

t

WnstEst

φ2,ns =
∑

s

WnstEst

the two-camera technique in a manner similar to regular 
tomographic PIV (Elsinga et  al. 2006). To rectify this, a 
self-calibration technique similar to Wieneke (2005) was 
implemented. First, single-camera reconstructions of the 
same particle field are performed for both cameras and are 
cross-correlated with find a set of disparity vectors. Then, a 
correction is found to the camera pinhole model and laser 
sheet model that provides a best fit to the observed dispar-
ity vectors in the least-squares sense.

Consider the disparity δ(x1) at position x1: particles that 
appear at x1 in the first camera reconstruction tend to appear 
at x2 = x1 + δ(x1) in the second reconstruction. Suppose one 
had a priori information that a given particle was recorded at 
position y1 on the first camera and at y2 on the second cam-
era and furthermore that one also knew what time tB during 
the acquisition sequence this particle was illuminated most 
brightly. This could be inferred using Eq. (2) from the vari-
ation in brightness of the particle over the course of a scan. 
The single-camera back-projection should reconstruct it at 
some position x1 in the first reconstruction and x2 in the sec-
ond with any disparity δ indicating a miscalibration.

Having measured the disparity field, using the uncor-
rected projection model, one can find y1, y2 and tB for some 
imaginary particle at x1 in the first reconstruction and corre-
sponding x2 in the second. The point x1 is arbitrary: it does 
not have to correspond to a real particle, but it does have a 
correspondence to position x2. With this in mind, one could 
suppose that there exists a small correction to the model 
which can be written as

This correction represents a small rotation �j of either 
camera, a shift in sheet position ǫd and a small rotation of 
the laser sheet normal �s. �j and �s are rotation matrices. 
Because tB may not coincide exactly with when an image 
was taken, a linear interpolation provides the orientation of 
the sheet normal e(tB) and sheet position d(tB) at this time.

For a given disparity model (�j, �s, ǫd) , one finds 
the back-projection xj from either camera j of a particle 
‘observed’ at yj and brightest at time tB, which provides 
a model of the disparity vector δ. Thus, self-calibration 
is achieved by finding the best model parameters which 
match the observed disparity field δ(x) in the least-squares 
sense. As self-calibration requires only trivial computational 
expense and can rectify even large calibration errors well (as 
demonstrated in Sect. 3.4), its application is recommended.

2.3 � Parametric investigation

A handful of parameters can be used to describe the scan-
ning PIV set-up in Fig 1. These are the number of cameras 

(6)
ỹj ∼ GjRj�j[I3| − xc,j]x̃,

xj · (�se(tB)) − (d(tB) + ǫn) = 0
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C and their relative angles θj, the optical magnification M, 
the number of images per scan NS, the frequency of image 
acquisition fS, the seeding concentration ρS, the thickness 
of the laser sheet w and the spacing between consecutive 
sheets �z. The characteristic velocity u of the flow also 
needs to be considered, which in this case is taken to be 
the RMS velocity in the z direction. One can construct a 
“sheet speed” us = fS�z that defines the rate at which the 
laser sheet is scanned across the measurement volume. Six 
independent dimensionless groups arise out of these terms: 
M�z, the sheet spacing (in voxels), w/�z, the dimension-
less sheet thickness, us/u, the dimensionless sheet speed, 
the dimensionless seeding concentration ρSM−3 (parti-
cles/vx3) as well as C and θj.

To investigate this parameter space, numerical simula-
tions of scanning PIV were performed under various con-
ditions. Synthetic PIV images were generated for simula-
tions of the scanning PIV configuration shown in Fig. 1. 
This was achieved by generating a random distribution of 
seeding particles, with a given seeding density, which were 
then advected without slip along Lagrangian trajectories 
in a simulation of isotropic turbulence (R� = 433) from 
the JHU turbulence database (Li et  al. 2008). Scanning 
PIV was simulated by generating images of the particles 

at different laser sheet positions using the EUROPIV Syn-
thetic Image Generator (Lecordier and Westerweel 2004). 
Salient parameters of the reconstruction are defined in 
Table 1. The synthetic images were passed to the recon-
struction routine; subsequent reconstructions were cross-
correlated using an in-house code. The resultant velocity 
fields were then checked against their expected values. For 
each combination of parameters, ten pairs of scanned vol-
umes were simulated. The same ten velocity fields were 
used to advect particles each time, so the only differences 
between runs are the set-up parameters. Issues related to 
statistical convergence are discussed in Sect. 3.1.

To test the self-calibration scheme, the effect of per-
turbations to a typical stereo scanning set-up where 
M�z = 4vx, w/�z = 4, NS = 65, and θj = ±30◦ was 
tested using a Monte Carlo procedure. As in the PIV 
simulation, images of a synthetic particle field are gener-
ated from the perspective of the two stereo cameras. Then 
it is supposed that the orientation of the cameras and the 
position/orientation of the laser sheets has been measured 
inaccurately. This is simulated by handing a perturbed 
back-projection model to the reconstruction algorithm. 
Single-view reconstructions are made from either camera, 
which no longer overlap exactly because of the imposed 

Table 1   Relevant scanning PIV 
parameters for the simulation 
and laboratory experiments

Parameter Symbol Numerical simulation Laboratory experiment

Kolmogorov lengthscale (mm) ηk 0.00287 1.02

Kolmogorov timescale (ms) τk 0.0446 1.079

RMS turbulent velocity (mm/s) uturb 0.681 7.12

Kinematic viscosity (mm
2/s) ν 0.000185 0.97

Taylor microscale Reynolds number R� 433 219

Measured volume width L1/ηk 128 123

Measured volume height L2/ηk 128 121

Measured volume depth L3/ηk 32 23

Number of independent samples N 10 1,003

Number of laser sheets NS 40 50

Image resolution (px) – 1,024 × 1,024 1,024 × 1,024

Laser sheet spacing (voxels) M�z Variable 4.75

Sheet e−2 width w/�z Variable 4.2

Camera frame rate (kHz) fscan Variable 2

Camera 1 viewing angle θ1 −30
◦ ∼ −30

◦

Camera 2 viewing angle θ2 0
◦ n/a

Camera 3 viewing angle θ3 30
◦ ∼ 30

◦

Laser sheet speed us/u Variable 157

Magnification (vx/mm) M 6.35 7.65

PIV time separation �t/τk 0.089 0.056

PIV window size (vx) W1 × W2 × W3 32 × 32 × 32 48 × 48 × 48

Seeding density (vx
−3) – 23.7/32

3 ∼ 25/32
3

PIV window overlap – 75 % 75 %

PIV vector spacing �x/ηk 1 1.53
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misalignment. The self-calibration scheme is then applied, 
and the disparity model tested to see how well disparity 
can be minimised. This was done using 1,000 Monte Carlo 
trials: 34 resulted in a disparity too large to measure reli-
ably (over 32 voxels in any direction), so statistics of the 
remaining 966 trials are presented.

2.4 � High Reynolds number mixing tank experiment

The present scanning PIV technique was specifically 
developed to study fine-scale turbulence experimentally at 
high Reynolds number in a purpose built large-scale mix-
ing tank whose arrangement is colloquially referred to as 
the “French washing machine”. It consists of two counter-
rotating impellers 1.6 mm in diameter immersed in a dode-
cagonal Perspex tank filled with water as shown in Fig. 3. 
Baffles spanning the length of the tank are positioned at 
each vertex protruding a distance of 100 mm into the flow. 
The impellers generate a region of axisymmetric shearing 
near the middle of the tank, generating high levels of tur-
bulence with a weak mean flow approaching zero near the 
centre of the tank. Since the largest lengthscale scales with 
the impeller radius (Douady et  al. 1991), the Kolmogo-
rov lengthscale is of the order of 1 mm at R� ≃ 219. This 
makes fully spatially resolved measurements possible with 
moderate levels of magnification (Worth 2010; Worth and 
Nickels 2011).

The experimental set-up is illustrated in Fig. 1 and is 
deliberately similar to the simulation experiment. A three-
camera set-up was used, with the initial intention of com-
paring a stereoscopic arrangement (cameras 1 and 3) with a 
single-camera arrangement (camera 2). As such a compari-
son has been made redundant in this paper by the parametric 
investigation, only the results of stereo measurements made 

by cameras 1 and 3 are presented. The cameras were Pho-
tron SA1.1s equipped with Sigma 105  mm macro-lenses 
and Scheimpflug adapters and are focused on a measure-
ment volume at the centre of the mixing tank. The param-
eters of the laboratory scanning experiment are provided in 
Table 1. The experiment aimed to produce a large number 
of statistically independent samples of the turbulent velocity 
field, with accurate measurements of its spatial and tempo-
ral derivatives. To achieve this, each statistically independent 
sample consisted of a small time-series of ten vector fields, 
with time resolution determined by the PIV time separation.

At this point, it is emphasised that the laboratory experi-
ment does not achieve a particularly high level of spatial 
resolution (the window size corresponds to around 6 mm). 
However, it does achieve a high seeding concentration 
(∼ 25 particles/323 vx), which is necessary to capture fine-
grained velocity field information smaller than the interro-
gation window size and contributes to the high fidelity of 
the velocity gradient measurements.

Throughout the experiment, the water temperature was 
maintained at 22 ± 1 ◦C. Polystyrene seeding particles (TS-
20, Microbeads, AS) of density 1.05 kg/L and mean diam-
eter 21.3 µm were used as flow tracers. Their size is two 
orders of magnitude smaller than the Kolmogorov scale, 
the Stokes number is very low (∼ 0.015), and they occupy a 
volume fraction of ∼ 2 ppm.

To generate approximately parallel laser sheets with 
control over laser sheet thickness, an optical set-up simi-
lar to Brücker et al. (2013) was used. This is illustrated in 
Fig. 4. The beam from a Darwin Duo pulsed Nd:YLF laser 
enters a set of three lenses which act as a beam expander, 
to control the laser sheet thickness. After passing through 
a spherical divergent lens (A), it reflects off a mirror (B) 
attached to a galvanometer (dynAXIS XS, Scanlab GmbH) 
and passes through a cylindrical convergent lens (C). 
Finally, a cylindrical divergent lens (D) helps expand the 
beam further into a laser sheet. The mirror surface (B) is 
placed at the focus of the convergent lens (C), such that 
as the laser beam is deflected by rotation of the mirror, 

2m

2m

1.6m

FOV

(a) (b)

Fig. 3   Schematic (a) and illustration (b) of the large mixing tank 
facility used in the laboratory experiment

Laser
source

Beam expander
A

B

C

D

fC

Fig. 4   Schematic of scanning optics used in the laboratory experiment
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ensuring the laser sheets remain parallel. The divergent 
lens (A) was introduced to control the position of the beam 
waist induced at (C). By coordinating the steady rotation of 
the mirror with the laser triggering, parallel laser sheets can 
be generated which traverse the measurement volume at a 
constant rate.

The cameras were calibrated using a bundle calibration 
technique similar to Brücker et  al. (2013). A calibration 
target at placed at an angle of 30◦ to the laser sheet was 
traversed across the measurement volume, permitting a pin-
hole model to be fitted for both cameras and the position, 
thickness and orientation of the laser sheet during a scan to 
be measured. This information was then incorporated into 
the reconstruction model described in Sect. 2.1.

Using the self-calibration procedure described in 
Sect. 2.2, corrections to the projection model were gener-
ated for small batches of 80 samples at a time, which corre-
sponds to around two hours worth of measurements. Each 
self-calibration used ten sets of images, from ten volumes 
in each batch, to construct an average disparity vector field 
between the views of cameras 1 and 3. The largest dispar-
ity tended to exist in the x direction, as large as 30 vx. The 
typical disparity observed in the y direction is much smaller 
(as large as 2.5   vx) and negligible in z. Most of the dis-
parity can be accounted for by a drift in the z position of 
the laser sheets, which is probably due to thermal drift of 
the galvanometer’s zero position. The disparity correction 
model was able to correct most of the disparity error: in 
the worst case, the RMS remaining disparity was 0.62 and 
0.21 vx in x and y, respectively.

2.5 � PIV processing

For both the laboratory and simulation experiments, PIV 
processing was performed using an in-house code. Prior 
to cross-correlation, reconstructions are normalised with 
a nonlinear filter to minimise variations in particle image 
intensity, which can impair accuracy (Nobach 2011). 
This consists of a subtract sliding minimum filter over the 
lengthscale of a cross-correlation window, followed by 
normalisation by a local maximum value obtained from a 
sliding maximum filter whose size is the lengthscale of a 
particle. This code implements a 3D version of multiple 
pass cross-correlation with symmetric window deforma-
tion (Meunier and Leweke 2003). For window deformation, 
the velocity field is interpolated at each pass using a bilin-
ear interpolation and a 103 Lanczos interpolation kernel is 
used for subpixel interpolation. Correlation windows are 
weighted using a Blackman weighting window (Cameron 
2011; Astarita 2007), and peak location is performed using 
the a 3-point Gaussian fit for the first pass and least-squares 
Gaussian fit to a 53 region near the peak for subsequent 
passes. False vector rejection using median filtering and 

infilling is performed after each pass. To obtain first-order 
velocity gradients, a “least-squares” finite difference opera-
tor is applied over four neighbouring points (Raffel 2007): 
this choice of operator strikes a balance between noise sen-
sitivity and spatial resolution.

A version of the Lagrangian filtering used by Novara 
and Scarano (2013) was used to improve the measurement 
accuracy. In this scheme, tracers are tracked forwards and 
backwards in time, using the PIV velocity fields, from grid 
collocation points to yield time-series of tracer positions. A 
second-order polynomial is fitted to these trajectories, and 
the coefficients yield velocity and acceleration data over 
the short interval tracking is performed for (up to ±0.28τk).  
This effectively applies a temporal filter to (Lagrangian) 
time-series data that help to reduce noise, at the expense of 
some temporal resolution.

Because both tomography problems (single camera or 
stereo) are split up into multiple, small, independent prob-
lems, they can be efficiently solved with parallel computa-
tion. On the author’s desktop machine (Dell Optiplex 790 
with Core i7-2600 CPU), a single-camera reconstruction of 
the experimental data takes around 2.5   min and a stereo 
reconstruction takes around 6 min. This is quite good: by 
comparison, Ponitz et  al. (2012) perform scanning recon-
structions of a 700 × 500 × 519 vx volume in 35  min.

A note on nomenclature: in the subsequent analysis, it is 
most convenient to use tensor notation. Position is denoted 
xi, with subscripts 1, 2 and 3 corresponding to x, y and z,  
respectively. The velocity field is denoted Ui = �Ui� + ui 
where ui is the turbulent fluctuating velocity. For the simu-
lation experiment, �Ui� = 0 so ui simply refers to the veloc-
ity. Corresponding displacements in the PIV measurement 
are written δi. The (fluctuating) velocity gradient tensor is 
written as Aij = ∂ui/∂xj and its symmetric part is Sij. The 
fluctuating vorticity is written ωi. Error in the ith velocity 
component, denoted ǫi, is the difference between the meas-
urement Ûi(x, t) taken at time t and the ground truth Ui(x, t) 
and is always presented in voxel units.

3 � Results

3.1 � Baseline error and convergence

In this paper, the RMS velocity error will be used exten-
sively to assess measurement accuracy. It is therefore use-
ful to get an idea of the size of error associated with the 
PIV algorithm alone. To this end, ideal reconstructions 
were simulated from the particle tracking data, by plac-
ing gaussian blobs of characteristic radius 1.4  vx at the 
location of each particle. Thus, the method is identical to 
the scanning simulation, but the reconstruction process 
has been replaced with an idealised operation. The RMS 
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velocity errors in the x, y and z components were 0.036, 
0.038 and 0.038  vx. The RMS errors in longitudinal and 
transverse velocity gradients were around 2.0 × 10−3 and 
2.4 × 10−3  vx/vx, respectively. For reference, the RMS 
velocity gradient is 16.5 × 10−3 vx/vx for longitudinal gra-
dients and 23.3 × 10−3 vx/vx for transverse gradients.

Given the small number of volumes simulated, there is 
some uncertainty in the reported statistics of velocity error, 
because the error has a dependence upon the flow. This is 
mostly due to the PIV algorithm. To obtain estimates of sta-
tistical uncertainty in the RMS errors, the bootstrap proce-
dure was applied using 1,000 bootstrap samples to all of 
the simulated data (Efron and Tibshirani 1994). Both non-
parametric case resampling and the block bootstrap were 
applied. In case resampling, error vectors are randomly 
sampled with replacement to generate a set of bootstrap 
samples. For the block bootstrap, independent velocity 
fields constitute separate blocks, which are then sampled 
with replacement to make up the bootstrap sample. Using 
these bootstrap samples, 95  % confidence intervals on 
RMS velocity errors can be calculated for the population 
in question.

Naturally, the block bootstrap sample estimates larger 
confidence intervals. For example, in the aforemen-
tioned ideal reconstruction, the 95 % confidence intervals 
(obtained from the bootstrap sample) of the RMS x veloc-
ity error are approximately ±6.6 × 10−3  vx, with similar 
levels for y and z components. Across the entire survey, the 
block bootstrap confidence intervals for RMS velocity error 
were typically around ±11 % and no larger than ±20 % of 
the reported value. The regular, case resampling population 
shows much lower uncertainty in RMS error, with typical 
confidence intervals around ±0.2  % and no larger than ±
2.5 % of the reported value. Thus, whilst there is moderate 
uncertainty in the absolute value of RMS error, the trends 
identified in the following sections are distinguishable from 
statistical uncertainty.

3.2 � Single‑camera parametric investigation

The problem of single-view reconstruction is considered 
first. A preliminary exploration of the parameter space is 
made, before incorporating additional complications such 
as the effect of finite sheet speed and noise. For a camera 
angle of −30◦ (camera 1), simulations with sheet thick-
nesses w/�z = 2, 4, 6 and spacing M�z = 2, 4, 8, 16 vox-
els (NS = 129, 65, 33, 17) were performed. For the plane-
normal camera (θ = 0◦, camera 2), additional simulations 
were performed at w/�z = 3, 5. Error in velocity was 
found to be anisotropic: it is worst in the viewing direction 
and best in the x and y directions.

For the plane-normal camera, the effect of sheet 
thickness and spacing on accuracy are shown in Fig. 5. 

Only RMS errors in the y and z directions are shown. 
Unsurprisingly, the best accuracy is obtained at the low-
est spacing (highest sampling rate in z). However, error 
remains comparable using half the number of laser 
sheets. There is an optimum laser sheet thickness: too 
small (w/�z ≃ 2) and particles become undersampled 
in depth, effectively introducing peak-locking. Too 
large (w/�z ≃ 6) and the particle image is spread over 
too large a depth, increasing uncertainty in its posi-
tion. There exists a happy medium somewhere between 
w/�z = 3 − 4 where error in the z component is mini-
mised. Error in the component orthogonal to the viewing 
direction is largely unaffected by sheet spacing or thick-
ness. When considering the M�z = 2 vx case, error is in 
fact marginally higher in y (and x, not shown) compared 
to the z direction. This is because the resampling of par-
ticle images in planes of constant z, which occurs dur-
ing the reconstruction process, introduces some error in 
x and y but not in z.
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Fig. 5   RMS velocity error in a z direction (viewing direction) and 
b y direction, as a function of sheet spacing and thickness for plane-
normal camera. Inverted triangle M�z = 2  vx, circle 4  vx, square 
8 vx, diamond 16 vx
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The same analysis is repeated for camera 1 which is off-
axis, see Fig. 6. The trends are the same, but error in the 
viewing direction is larger. This is partly because the effec-
tive laser sheet spacing (as measured along a ray from the 
camera pinhole) is larger and scales as M�z/cos(θj). Since 
any trends observed for the plane-normal reconstruction are 
expected to be similarly true for the off-axis reconstruction, 
the investigation now focuses on a set-up with a camera 
normal to the laser sheet.

It is preferable to use as large a sheet spacing as pos-
sible because, for a fixed reconstruction depth, this mini-
mises the number of sheets per reconstruction. However, 
the accuracy in the viewing direction depends jointly on 
the sheet spacing and noise. To simulate this, for w/�z = 3 
(around the optimal sheet thickness), poisson noise is added 
to synthetic images before reconstruction. Six noise levels 
were chosen: the mean number of counts corresponded to 
0, 1, 2, 5, 10 and 25 % of the maximum greyscale image 
value (255 counts). For example, a noise level of 1 % cor-
responds to poisson noise with a mean of 2.55 counts. This 

qualitatively approximates sensor noise and weakly illumi-
nated particles. However, it fails to represent other poten-
tial sources of noise, such as shot-to-shot variation in pulse 
energy, deviation from a gaussian laser sheet profile or jit-
ter in sheet position.

Figure 7 shows the joint dependence of error in the y and 
z directions upon the sheet spacing and image noise level. 
The strongest trend is in the view-normal (z) velocity com-
ponent. There is a simple trade-off: with fewer sheets and 
therefore a larger sheet spacing, sensitivity to image noise 
is greater and the initial error is larger when no noise is 
added. There is large relative difference in error between 
the zero-noise case and lowest level of noise: 17 % greater 
at M�z = 2  vx growing to 50 % greater by M�z = 6 vx. 
For a moderate level of image noise (2 % of peak bright-
ness), a sheet spacing below around 5 voxels is necessary 
to maintain RMS error below 0.1 vx in the z direction.

When noise is present, a weak trend appears in the 
error in the view-orthogonal (y) velocity component: it is 
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Fig. 6   RMS velocity error in a viewing direction and b y direction, 
as a function of sheet spacing and thickness for off-axis camera (1). 
Inverted triangle M�z = 2  vx, circle 4  vx, square 8  vx, diamond 
16 vx
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Fig. 7   Sensitivity of measurement accuracy to additive poisson noise 
in source images, for camera 2 with w/�z = 3 in a the z direction 
and b the y direction. Noise levels circle 0 %, square 1 %, diamond 
2  %, triangle 5  %, right pointing triangle 10  %, inverted triangle 
25 %
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marginally reduced at larger sheet spacings. This curious 
effect can be understood thus: the smaller the sheet spac-
ing, noise artefacts of smaller dimension (in depth) can be 
reconstructed. The closer these artefacts in size to a true 
particle image, the more they may influence error in the 
view-orthogonal component through the nonlinear peak 
fitting operation during PIV cross-correlation, which is 
(by design) sensitive to small wavelength features of the 
reconstruction.

3.3 � Stereo camera parametric investigation

A more accurate velocimetry may be obtained using two 
cameras for stereo scanning reconstructions. This allows 
information about a particle’s position in depth (z) to be 
encoded not only by its variation in illumination during a 
scan, but also by its triangulation between views. From a 
tomography perspective, the inclusion of how a true par-
ticle’s brightness varies as it is recorded provides extra 
information that enables it to be distinguished from ghost 
particles.

To identify the optimal sheet thickness and spacing for 
the stereo case, a similar test was performed for two cam-
eras at ±30◦ and us/u = ∞. The result is plotted in Fig. 
8, which shows that the measurement error is lower than 
the single-camera case (for equivalent thickness and spac-
ing) and is also less sensitive to the choice of sheet thick-
ness and spacing. As expected, the greatest error lies in the 
scanning direction, z. There is an optimal w/�z at around 
3 where the error in the z direction is similar to both the x 
and y components and is close to the best achievable by the 
PIV algorithm.

To test sensitivity to noise, as in Sect. 3.2, varying levels 
of poisson noise were added to source images before recon-
struction. This was performed for M�z = 2, 3, 4, 5, 6, 8 vx 
and w/�z = 3. Samples of the reconstructions are shown 
in Fig. 9 which indicate the algorithm is quite robust to 
noise: the particle field can be faithfully reconstructed even 
when the mean noise level reaches 25  % of the dynamic 
range. Relative to the particle brightness, reconstruction 
artefacts become increasingly apparent in the background 
as the noise in the source images increases.

Figure 10 shows the dependence of error in the y and z 
directions upon the image noise level and sheet spacing. If 
one contrasts this against Fig. 7, which shows noise sen-
sitivity for the single-camera case, one immediately sees 
that the stereo technique is more robust to noise. Two sepa-
rate trends are apparent in the error in y and z components. 
For the z component, RMS error tends to increase as more 
image noise is added. There is a significant increase in error 
beyond M�z ≃ 8 vx.

For the y component, when noise is present, the veloci-
metry actually becomes more accurate when fewer laser 

sheets are used. This trend does not continue indefinitely: 
accuracy tends to get worse for M�z ≥ 8 vx. This is simi-
lar to the weak trend observed for the single-camera case. 
Likewise, this is attributed to the presence of reconstruc-
tion artefacts, such as those in Fig. 9, which may become 
smaller and more particle-like at smaller sheet spacings. 
For a moderate level of image noise (2 %) the RMS error 
in both y and z components can be maintained below 0.1 
voxel with a sheet separation as large as M�z ≃ 18 vx.

3.4 � The effect of finite sheet speed

Until now, the effect of finite sheet speed has not been 
addressed. Aside from interfering with the reconstruction 
of the particle field, finite sheet speed can have two addi-
tional consequences for PIV. As the acquisition of an image 
volume takes a finite amount of time, the reconstruction of 
a pair of particles separated by some distance δ3 in the scan-
ning direction will correspond to their positions at different 
times, separated by an interval δt = δ3/us. Thus, if the same 
particle is recorded in consecutive volumes, during which it 
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Fig. 8   RMS velocity error in a z direction and b y direction as a 
function of sheet spacing and thickness for stereo configuration. 
Inverted triangle w/�z = 2,circle 3, square 4, diamond 5, triangle 6
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has been observed to undergo a displacement δ3, there is an 
effective time separation �t + δ3/us between consecutive 
particle images. To first order, the particle velocity is

where δi is the particle’s displacement as measured by the 
PIV algorithm. If one does not make this “delta-t correc-
tion”, then there will be an error, which to first order is 
uiu3/us. This effect is referred to as “delta-t dilation”, as the 
PIV time separation has been effectively extended/short-
ened by the particle motion across the volume.

Secondly, the aforementioned time gradient in the 
scan direction means that the velocity measured at one 
side of the volume corresponds to the motion at a slightly 
different time compared with the other side of the veloc-
ity field. If unsteady effects are large, this may contrib-
ute to error. In a worst-case scenario, the time separa-
tion between opposite sides of the volume is around the 

(7)ui = δi/(�t + δ3/us)

size of the PIV time separation, and this unsteady effect 
would be comparable to error introduced by the finite 
PIV sampling rate.

These hypothesised effects have been tested by simu-
lating a stereo measurement with finite sheet speed. The 
configuration was chosen to match the laboratory experi-
ment: w/�z = 4, M�z = 4 vx and θ ± 30◦. Eight dif-
ferent sheet speeds were tested, corresponding to 
us/u = 10, 20, 30, 60, 100, 160, 250 and ∞. This is equiva-
lent to varying the time taken to scan a complete volume, 
which is determined by the frame rate and the number of 
sheets. This varied between NS/fscanτk = 0 and 0.307 
(at us/u = 10). In comparison, the PIV time separation 
is 0.056τk. In practice, the time taken to scan the volume 
would be less than the PIV time separation. This unphysi-
cal scenario was simulated to test the effects of very low 
sheet speeds.

Figure 11 shows the mean error in the z component of 
velocity u3, conditioned on u3. When the sheet speed is very 
fast, the bias error is small. At lower sheet speeds, there is a 
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Fig. 9   Single-voxel-thick slices through stereo reconstruction at dif-
ferent levels of additive poisson noise. Markers indicate true particle 
positions. a–f 0, 1, 2, 5, 10 and 25 % noise
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Fig. 10   RMS velocity error in a z direction and b y direction as a 
function of sheet spacing and noise level for stereo configuration with 
w/�z = 3. Noise levels of circle 0 %, square 1 %, diamond 2 %, tri-
angle 5 %, right pointing triangle 10 %, inverted triangle 25 %
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significant bias error due to delta-t dilation which is quad-
ratic in u3, a consequence which may be inferred from (7). 
Red dotted lines show the conditional mean error after the 
delta-t correction has been applied. It is immediately appar-
ent that the bias error has been removed.

Figure 12 plots the RMS error in each (uncorrected) 
velocity component at different sheet speeds. As sheet 
speed is decreased, error increases. On the same figure, the 
filled markers show the RMS error in each velocity com-
ponent after the correction for finite sheet speed has been 
applied. Whilst the correction makes little difference when 
the sheet travels very quickly, there is a substantial reduc-
tion in error at slower sheet speeds. Even at very low sheet 
speeds (us/u ≃ 25), the RMS error in the corrected velocity 

remains below 0.1 vx. At us/u = 100 (NS/fscanτk = 0.031),  
there is virtually no additional error beyond the delta-t 
dilation.

Figure 13 plots the RMS error in selected velocity gra-
dients at different sheet speeds. The velocity gradients 
are markedly less sensitive to finite-speed effects than the 
velocity. This counter-intuitive result can be understood by 
looking at the error term arising from the delta-t dilation. 
To first order, the error in ∂ui/∂xj is

Thus, large errors in velocity gradients require large veloc-
ity gradients in regions of high velocity. After the delta-t 
correction has been applied, the effect upon the RMS error 
in velocity gradients remains modest down to quite low 
sheet speeds (us/u = 30).

The increase in error at lower sheet speed is only partly 
due to the different time separation. There is also an effect 
associated with unsteadiness. The simulation has been 
arranged so that the sheet passes z = 0 at t = ±�t/2 in the 
first and second scans, respectively, i.e. centred around t = 0

. Thus, vectors at depth z are effectively measured at time 
t = z/us: there is a time gradient across the measurement 
volume. Figure 14 shows the RMS error in the corrected 
velocity conditioned on the z coordinate. Two cases are pre-
sented: a reference (us/u = ∞) and a case where unsteady 
effects are significant (us/u = 30). When the sheet speed is 
very high, the conditional average only reflects the fact that 
vectors near the edges of the volume are less reliable. At low 
sheet speeds, unsteady effects are apparent, as error becomes 
larger further from the middle of the volume. Near the mid-
dle of the volume, where unsteady effects are negligible, 
error is comparable to the infinite sheet speed case.
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It is clear that the errors reported here, after delta-t cor-
rection has been applied, depend upon the degree of flow 
unsteadiness and the time taken to record the measure-
ment volume. To distinguish the unsteady effect from other 
sources of error, the RMS error has been re-calculated by 
comparing the measurement ûi(x, t) to the ground truth 
ui(x, t + z/us) after the time gradient has been compen-
sated for. This is shown in red in Fig. 12. This residual 
error has a very weak dependence upon sheet speed. Thus, 
the increased error at low sheet speed (after delta-t correc-
tion) is due to the time gradient across the measurement 
volume. More generally, the error associated with unsteadi-
ness will depend upon the flow in question, but the error 
associated with remaining factors is expected to scale inde-
pendently (i.e. with the other parameters identified in this 
investigation).

3.5 � Self‑calibration

Just as in tomographic PIV, a small misalignment between 
cameras can cause large errors in reconstruction. Figure 15 
shows a 9-vx thick slice through part of a simulated stereo 
reconstruction made with and without a small misalign-
ment of the camera set-up. Markers indicate true parti-
cle positions. For the aligned reconstruction, particles are 
reconstructed at their correct position and there are only a 
few, weak ghost artefacts. In contrast, the misaligned recon-
struction contains many ghost particles and exhibits poor 
recovery of the true particle field even though the misalign-
ment is quite small (mean disparity between stereo cameras 
was 4.56 and 2.13 vx in x and y, respectively). This high-
lights the need for self-calibration: slight misalignment in 
even the most carefully conducted of experiments can lead 
to grossly erroneous reconstructions.

A typical scanning stereo set-up was simulated in the 
absence of flow (θ = ±30

◦
, M�z = 4 vx, w/�z = 4,

us/u = ∞). If the reconstruction set-up is known perfectly, 
then the disparity should be zero. To measure the dispar-
ity, a 2D cross-correlation was applied in planes of constant 
z in a manner similar to Brücker et  al. (2013). Whilst the 
mean disparity was found to be close to zero, the RMS dis-
parity is 0.064 and 0.026 vx in x and y, respectively. In this 
case, there is no disparity error due to misalignment and the 
fluctuating error is due to PIV uncertainty caused by elon-
gation of particle shape in the viewing direction of either 
camera. In this instance, re-sliced particle images are elon-
gated in the x direction, and this is the reason for the larger 
fluctuating disparity error in x compared to y.

966 Monte Carlo trials were conducted where a small 
perturbation was applied to the camera set-up and the 
resulting disparity between single-camera back-projections 
was measured. Excellent correlation was found between 
the measured disparity and that predicted by the self-cali-
bration model, with an R2 correlation coefficient of 1.000 
in both x and y (to 4 s.f.). The RMS error between meas-
urement and prediction is 0.070 and 0.029 vx in x and y, 
respectively, which is close to the level of the PIV uncer-
tainty quantified by the zero-disparity case.

Whilst the self-calibration model has been demonstrated 
to correctly predict the disparity error for a known mis-
alignment, the objective of self-calibration is to infer the 
misalignment given the disparity and subsequently correct 
for it. To check the validity of the disparity correction, one 
can calculate the residual disparity vectors after correction 
has been made to the back-projection model. The RMS 
residual is 0.057 and 0.016 vx in x and y. The residual dis-
parity error has actually been reduced below the level of 
the unperturbed case. This is a subtle consequence of the 
self-calibration “correcting” an error introduced by cross-
correlating reconstructions from different cameras.

Successful minimisation of disparity is no fluke since 
the unperturbed back-projection model can be recovered 
with some confidence. Before disparity correction, the 
RMS error in laser sheet position is 7.37 vx, the RMS error 
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Fig. 14   RMS error in each corrected velocity component, condi-
tioned on z coordinate, for a reference case (us/u = ∞, . . .) and a 
case where unsteady effects are significant (us/u = 30, −)
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in sheet orientation is 1.16  mrad, and in (absolute) camera 
orientation, it is 1.14 mrad. After disparity correction, the 
RMS error in laser sheet position is 0.15  vx, its orientation 
0.54 mrad, and in camera orientation 0.54 mrad. However, 
if one considers the relative orientation of cameras, one 
finds that the disparity correction reduces the RMS error 
from 1.58 to 0.05 mrad. For this configuration of cameras, 
it turns out to be quite difficult to identify a joint tilt of 
both cameras about the x axis using disparity vectors alone. 
Indeed, if one evaluates the PDFs of alignment cosines (not 
shown), they show that error in absolute camera orienta-
tion is strongly aligned with the x direction. Thus, dispar-
ity correction can reliably detect relative rotation between 
cameras, but not the absolute rotation of both. On the other 
hand, sheet position and orientation errors can be corrected 
for quite well.

3.6 � Large mixing tank experiment

An example of a typical reconstruction from the labora-
tory experiment after intensity normalisation is shown in 
Fig. 16, which has been truncated to 483 vx (the size of an 
interrogation window). Clearly the seeding density is ade-
quate and that particle images are well defined, with few 
artefacts from reconstruction. The seeding concentration 
was measured to be around 25 particles/32  vx3, which is 
quite high. To achieve this seeding concentration, a tomo-
graphic PIV measurement spanning the same size volume 
(without scanning) would have a source density of 0.9, 

which would be far too high to yield valid reconstructions 
(Westerweel et al. 2013).

Making accurate and well-resolved measurements 
of velocity gradients of fine-scale turbulence is fraught 
with difficulties, so it is very important to be able per-
form checks on the data. Buxton et al. (2011) studied the 
effects of spatial resolution and noise on the measurement 
of fine-scale statistics of turbulent flows using DNS and 
experimental data. They highlighted a number of measure-
ments related to velocity gradients which have well-known 
behaviours in turbulent flows, which are also sensitive to 
measurement noise and spatial resolution. As there is no 
simultaneous, superior reference measurement available 
for the laboratory experiment, the tests they suggest are an 
extremely valuable tool in the assessment of measurement 
accuracy.

One of the simplest measures to test the accuracy of 
velocity gradients is to test the divergence-free condition 
(∂Ui/∂xi = 0) of the incompressible flow. One may calcu-
late the joint PDF of quantities in the divergence sum, e.g. 
∂U1/∂x1 and −(∂U2/∂x2 + ∂U3/∂x3). In an ideal measure-
ment of an incompressible flow, the correlation coefficient 
between these terms is unity. However, truncation errors 
associated with applying a finite difference method to 
obtain gradients would reduce this figure below unity even 
in an ideal measurement. Figure 17a shows logarithmically 
spaced contours of probability density showing that large 
departures from incompressibility being rare. The correla-
tion coefficient Q is 0.978, which compares favourably to 
Ganapathisubramani et al. (2007) (0.82, using stereo PIV 
and Taylor’s hypothesis) and Tsinober et  al. (1992) (0.7, 
using multi-probe hot-wires). Without the Lagrangian fil-
ter (Fig. 17b), the data are slightly noisier, but the correla-
tion coefficient is still very good (0.943). For a comparison 
to other experimental data sets concerning turbulent flows, 
see Ganapathisubramani et  al. (2007) and Casey et  al. 
(2013).

Zhang et al. (1997) introduced a dimensionless quantity 
ξ that can quantify the level of error in the velocity gradi-
ents (9). �ξ� = 0 implies mass continuity is always satisfied 
and �ξ� = 1 if the velocity gradients in the sum are inde-
pendent (no continuity constraint). Over 1,003 independ-
ent turbulent velocity fields, �ξ� = 0.156 before Lagran-
gian filtering and �ξ� = 0.045 after. It is worth noting that 
the PIV algorithm used incorporates no information about 
mass continuity. This compares favourably to Mullin and 
Dahm (2006), Ganapathisubramani et  al. (2007), Casey 
et  al. (2013) and Zhang et  al. (1997), who report values 
of 〈ξ〉 of 0.12, 0.18, 0.36, and 0.5, respectively. However, 
〈ξ〉 cannot be used as a marker of accuracy alone as Zhang 
et al. (1997) show that one can improve the reported value 
substantially by low-pass spatial filtering, at the sake of 
resolution. The rest of this section will present data after 
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Lagrangian filtering has been applied, with the intent of 
demonstrating both the high fidelity and spatial resolution 
of this data set.

At this juncture, it is worth noting that for this flow, the 
anisotropy presents at the large scale persists down to the 
fine scales. Consider Table 2, which lists a select number 
of ratios of moments of the VGT. For homogeneity, a pre-
requisite of axisymmetry or isotropy, �ωiωi� = 2�SijSij�. 
For isotropy, the ratios Ki should all be equal to unity, but 

(9)ξ =
(∂Ui/∂xi)

2

(∂U1/∂x1)2 + (∂U2/∂x2)2 + (∂U3/∂x3)2

under axisymmetry about the 2 direction, only K1 = K2 and 
K3 = K4 with no restriction on their values (George and 
Hussein 1991). The measurement is therefore consistent 
with homogeneous, axisymmetric turbulence, but not isot-
ropy. One must therefore be careful about what checks are 
appropriate for the data on the basis of turbulence statistics, 
which are often derived on the basis of isotropy. Further 
checks on axisymmetry are presented later in this section.

Figure 18 shows PDFs of the longitudinal velocity 
gradients (on-diagonal components of the VGT), which 
shows good qualitative agreement with that of homoge-
neous isotropic turbulence at similar R� (see Ishihara 
et  al. 2007, Fig. 5 or Buxton et  al. 2011, Figs. 1, 2 for 
a comparison). The PDFs exhibit the well-known nega-
tive skewness and wide, non-gaussian tails, which Bux-
ton et  al. (2011) note are features that are particularly 
sensitive to spatial resolution, with skewness S decreas-
ing with decreasing spatial resolution. For this flow, 
S = −0.54, −0.29 and −0.57 for velocity gradients in the 
1, 2 and 3 directions which (despite the obvious anisot-
ropy) is still in approximate agreement with the power 
law trend identified by Ishihara et al. (2007) for isotropic 
turbulence, which predicts S ≃ −0.62. The collapse is 
quite good for the positive tails (given the normalisation), 
and it is apparent that the negative tail is the reason for the 
less negative skewness in the two directions. Thus, depar-
ture from isotropy is likely the explanation for the more 
positive skewness of ∂u2/∂x2, rather than a lack of spatial 
resolution. Furthermore, the PDFs of longitudinal gradi-
ents are consistent with axisymmetry.

Figure 19 shows PDFs of the transverse velocity gradi-
ents (off-diagonal components of the VGT), which do not 
exhibit the same degree of skewness as the longitudinal 
gradients. The tails of the PDF of the transverse veloc-
ity gradients exhibit the non-exponential, fat tails more 
strongly than the longitudinal gradients in agreement with 
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Fig. 17   Joint PDF of ∂U3/∂x3 and −(∂U1/∂x1 + ∂U2/∂x2) a with 
and b without Lagrangian filtering. Contours of probability density 
are logarithmically spaced from 10−3 to 101

Table 2   selected ratios of second moments of velocity gradients

K1 K2 K3 K4 H1

2
〈∂2u2

2
〉1/2

〈∂2u2

1
〉1/2

2
〈∂2u2

2
〉1/2

〈∂2u2

3
〉1/2

2
〈∂2u2

2
〉1/2

〈∂1u2

2
〉1/2

2
〈∂2u2

2
〉1/2

〈∂3u2

2
〉1/2

2
〈SijSij〉

〈ωiωi〉
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Fig. 18   PDF of longitudinal velocity gradients (∂ui/∂xj for i = j)
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Ishihara et al. (2007). Buxton et al. (2011) noted that the fat 
tails were a feature that disappeared as resolution coarsened 
and are almost completely lost by �x = 5ηk. Axisymmetry 
requires that ∂u2/∂x1 and ∂u2/∂x3, ∂u1/∂x3 and ∂u3/∂x1, 
and ∂u1/∂x2 and ∂u3/∂x2 exhibit the same collapse, which 
approximately holds.

The joint PDF of invariants QA = −AijAji/2 and 
RA = − det(Aij) of the VGT has been shown to take a 
characteristic tearing drop shape in a wide variety of tur-
bulent flows (Ooi et  al. 1999; Soria et  al. 1994; Chacin 
and Cantwell 2000; Andreopoulos and Honkan 2001; Els-
inga and Marusic 2010) and has been hypothesised to be 
universal features of turbulence (Tsinober 2009; Elsinga 
and Marusic 2010). Whilst the shape is relatively insensi-
tive to spatial resolution when normalised by small-scale 

quantities, it is very sensitive to noise in velocity gradient 
measurements, as QA and RA are second- and third-order 
products of velocity gradients, respectively. Figure 20a 
shows the joint PDF for the present experimental data, 
whilst Fig. 20b provides a comparison with data taken from 
the JHU turbulence database. Despite the differences in 
Reynolds number, very good agreement is observed with 
DNS. The JPDF takes the characteristic tearing drop shape, 
exhibiting sharp changes in the angle of contours around 
the line of zero discriminant (denoted by the black, tent-
like curve), which tends to become more rounded at higher 
levels of noise. The PDF is strongly skewed towards the so-
called Vieillefosse tail which is another feature that disap-
pears in the presence of noise.

Finally, as a check on the spatial resolution, one can 
compare the mean dissipation to that predicted by Kol-
mogorov’s second similarity hypothesis using measure-
ments of the modified third-order longitudinal velocity 
structure function, following Nie and Tanveer (1999). They 
show that the well-known Kolmogorov 4/5th Law can be 
derived for the more general case where isotropy does not 
hold. They define a modified third-order structure function 
S̃3(r) which reaches an asymptotic value of − 4

3
�ǫ�r in the 

inertial regime ηk ≪ r ≪ Lturb. Their modified third-order 
structure function is defined

where r = (rjrj)
1/2 and the integration represents taking an 

average over all solid angle Ωr. The angle θδu,r is the angle 
between the velocity increment δui = ui(xj + rj) − ui(xj) 
and the displacement rj. The integrand in (10) is the 

(10)S̃3(r) =
1

4π

∫

�(δuiδui)
3/2 cos(θδu,r)�dΩr
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Fig. 19   PDF of transverse velocity gradients (∂ui/∂xj for i �= j)
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Fig. 20   Joint PDFs of invariants QA and RA of the VGT for a the laboratory experiment and b DNS of homogeneous isotropic turbulence at 
R� ≃ 443 (Li et al. 2008)
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third-order longitudinal structure function (11) without 
solid angle averaging and is an axisymmetric function of 
r in this case. When pre-scaled by − 4

3
�ǫ�r , it becomes a 

dimensionless measure of the average kinetic energy flux 
across the boundary of a spherical control volume, of 
radius r, in a frame of reference moving with the fluid.

This third-order structure function is plotted in Fig. 
21 without solid angle averaging in the three princi-
pal directions, as well as the solid angle average which 
was obtained with recourse to axisymmetry. The struc-
ture functions have been scaled by − 4

3
�ǫ�r where 

�ǫ� = 2ν�SijSij� = 0.833 mm2 s−3 comes directly from 
velocity gradient measurements. There is excellent agree-
ment between S̃3(r) and its asymptotic form in the inertial 
range (within 3 %), indicating that the dissipation has been 
well resolved. The structure function in the 1 and 3 direc-
tions is in agreement and is substantially different to the 
two directions. This is consistent with axisymmetry, but not 
isotropy. That they are so markedly different is not neces-
sarily erroneous: it indicates that eddies in the inertial range 
are largely fed kinetic energy by fluctuations in velocity 
orthogonal to the symmetry axis. Velocity fluctuations par-
allel to the symmetry axis exhibit a much weaker net flux 
of kinetic energy.

4 � Conclusion

This paper has introduced, tested and applied a hybrid 
variant of scanning PIV, which combines aspects of tomo-
graphic PIV and conventional scanning PIV. The objective 
has been to develop a technique applicable to big, slow, 

(11)S̃c
3(rj) = �(δuiδui)

3/2 cos(θδu,r)�

turbulent flows that can yield accurate measurements of the 
full VGT in 3D with good space and time resolution. This 
requires a technique that can handle high seeding densities, 
in order to capture the contribution of the smallest scales of 
motion to the velocity gradients.

Velocimetries are made by cross-correlating volumetric 
reconstructions of the particle field obtained from particle 
images corresponding to different depths through a meas-
urement volume. Only one or two cameras are necessary to 
make reconstructions, which can be completed in just a few 
minutes on a high-end desktop computer. The details of 
the reconstruction method have been exposited, and a self-
calibration scheme has been introduced to correct misalign-
ment when using the stereo reconstruction method.

A parametric investigation using synthetic particle 
images and velocity fields from numerical simulation of 
isotropic turbulence has been conducted. The effect of six 
dimensionless parameters on velocimetry accuracy has 
been tested: the number of cameras and their orientation, 
the sheet spacing, sheet thickness, sheet speed and image 
noise level.

The single-camera method produces less accurate 
velocimetries and error is anisotropic: it is largest in the 
viewing direction. The most accurate single-camera veloci-
metries are made when the camera is oriented normal to the 
laser sheet. The stereo method is able to extract depth infor-
mation about particles as encoded by their brightness and 
their triangulation between views. As such, it is more accu-
rate and error is less anisotropic, although remains largest 
in the scanning direction.

For both single-camera and stereo configurations, there is 
an optimal laser sheet thickness of w/�z ≃ 3. For the single-
camera configuration, there is a trade-off to be made between 
accuracy and the sheet separation used in the presence of 
image noise. Using a smaller sheet separation (more laser 
sheets) tends to improve accuracy for a given level of image 
noise. The stereo configuration is less sensitive to image 
noise than the single-camera configuration. At a moderate 
level of image noise (2 % of the image’s dynamic range) and 
in the absence of finite sheet speed effects, the single-camera 
configuration achieved an RMS error in the scanning direc-
tion below 0.1 vx for sheet separations M�z up to 5 vox-
els. For the stereo configuration, the same level of error was 
achieved with a sheet spacing as large as 18 voxels.

The time taken to record an acquisition in comparison 
with the PIV timescale is characterised by the dimensionless 
sheet speed us/u. Two sources of error are associated with 
finite sheet speed: one is due to an effective modulation of 
the PIV time separation (“delta-t dilation”) and the other is 
associated with flow unsteadiness. The former can be read-
ily corrected for using information available from the meas-
urement itself and can make a substantial reduction in error 
at low sheet speed. For this study, after making the “delta-t 
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Fig. 21   Modified third-order structure function, taken in x (dot), 
y (times) and z (circle) direction and also solid angle averaged form 
(square)
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correction”, the effect of finite sheet speed was found to be 
negligible for us/u ≥ 100 and RMS errors below 0.1 voxel 
were achieved for sheet speeds as low as us/u = 30.

The error associated with flow unsteadiness is more 
difficult to correct for and its size will naturally depend 
upon the unsteady behaviour of the flow in question. After 
accounting for this unsteady effect using information avail-
able from the numerical simulation, and applying the delta-
t correction, the error has only a weak dependence upon 
sheet speed over the range tested. The implication is that 
surprisingly low sheet speeds can be used, provided error 
associated with flow unsteadiness can be tolerated.

The self-calibration scheme for stereo reconstruction 
has been validated using a Monte Carlo approach to apply 
small perturbations to the camera set-up and subsequently 
test how well the perturbation can be corrected for. The 
measured disparity vectors, after applying each perturba-
tion, agree with the self-calibration model to within the PIV 
uncertainty. A least-squares fitting operation of the self-cal-
ibration model to the disparity vectors has been shown to 
correct the disparity to within the PIV uncertainty. This is 
no fluke: the exact details of the applied perturbation can be 
recovered with good confidence.

Stereo scanning PIV has been applied to a laboratory 
investigation of homogeneous turbulence in a von Kármán 
swirling water flow at R� ≃ 219. Statistics of velocity gra-
dients and two-point correlation functions indicate a turbu-
lence consistent with homogeneity and local axisymmetry, 
rather than local isotropy.

A number of tests upon accuracy and spatial resolution 
of velocity gradients have been made. Errors in veloc-
ity gradients, as tested through mass continuity, are sub-
stantially lower than those reported by previous authors 
(�ξ� = 0.045). The PDFs of longitudinal and transverse 
velocity gradients exhibit the well-known fat, and non-
gaussian tails and the longitudinal velocity gradients 
exhibit levels of skewness approximately consistent with 
isotropic turbulence at similar Reynolds number. The well-
known tearing drop shape of the joint PDF of invariants QA 
and RA has been reproduced and is in good agreement with 
data from isotropic turbulence. Using measurements of the 
modified third-order structure function, the presence of an 
inertial range has been demonstrated, with a level of dissi-
pation consistent with that directly measured from velocity 
gradients to within 3 %. These results confirm that stereo 
scanning PIV is capable of making accurate and spatially 
resolved measurements of turbulent flows.
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