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Fig. 1. Using a rainbow color-coded PIV setup in combination with a hybrid diffractive/refractive camera optics(left) we can encode 3D particle positions in
fluid flows into a single camera image, while keeping all particles in focus simultaneously (center). From a sequence of such images, the 3D particle positions
and the dense fluid vector field can be reconstructed using an optimization-based approach. The vector field is represented as a regular grid covering the
entire flow volume, and can be visualized by showing the path lines of new (synthetic) particles (right).

Despite significant recent progress, dense, time-resolved imaging of complex,

non-stationary 3D flow velocities remains an elusive goal. In this work we

tackle this problem by extending an established 2D method, Particle Imaging

Velocimetry, to three dimensions by encoding depth into color. The encoding

is achieved by illuminating the flow volume with a continuum of light planes

(a “rainbow”), such that each depth corresponds to a specific wavelength of

light. A diffractive component in the camera optics ensures that all planes are

in focus simultaneously. With this setup, a single color camera is sufficient

for tracking 3D trajectories of particles by combining 2D spatial and 1D

color information.

For reconstruction, we derive an image formation model for recovering

stationary 3D particle positions. 3D velocity estimation is achieved with a

variant of 3D optical flow that accounts for both physical constraints as well

as the rainbow image formation model. We evaluate our method with both

simulations and an experimental prototype setup.
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1 INTRODUCTION
Fluid capture is an active research area in computer graphics. Recent

works include efforts to image phenomena such as flames [Hasi-

noff and Kutulakos 2007; Ihrke and Magnor 2004], smoke [Gu et al.

2013; Hawkins et al. 2005], transparent hot air flows [Atcheson

et al. 2008], and fluid mixtures [Gregson et al. 2012]. While these

methods recover dense volumetric reconstructions, they only yield

independent scalar fields of the density of the respective phenome-

non at each time step. To fully characterize the 3D flow and open

up applications beyond simple play-back, 3D velocity fields need

to be recovered as well. While there have been efforts to recover

velocities from the captured scalar fields through optical flow-style

approaches, these attempts have been limited by the relatively small

amount of high-frequency texture in the recovered data [Gregson

et al. 2014].

Fluid imaging has many significant applications in scientific and

engineering fields such as combustion research, design of airplanes

and underwater vehicles, and development of artificial heart valves.

Since 3D unsteady flows and turbulence are very common in such

domains, the main task of the fluid imaging is to allow probing

the fluid motions over a range of length scales. In other words, the

ultimate goal is to be able to obtain 3D dense measurements of the

three components of the velocity vector, known as 3D-3C.
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Over the last decades, different imaging techniques have been de-

veloped to get closer to this goal. Particle Imaging Velocimetry (PIV)

is the most commonly used of these techniques [Adrian and West-

erweel 2011; Lourenco et al. 1989]. For PIV, small density-matched

tracer particles are inserted into the flow, and their advected motion

is tracked with image correlation methods, i.e. optical flow. In basic

2D PIV [Okamoto et al. 2000], this tracking is made possible by illu-

minating the volume with a light sheet perpendicular to the camera

line of sight (Fig. 2, left). Particles within that plane can be identified

easily, and tracked over time, so long as the flow does not move them

out of plane. This yields dense measurements of two components of

the velocity field on a two-dimensional slice of the volume (2D-2C).

Although 3D extensions such as holographic PIV [Hinsch 2002] or

tomographic PIV [Elsinga et al. 2006] exist, a dense reconstruction

of all three components of the velocity field over the full 3D volume

requires multiple cameras and remains elusive in practice (also see

Section 2). The densest volume measurements involve high-speed

imaging in combination with scanning laser-volumes [Casey et al.

2013].

This paper proposes a new approach, RainbowPIV, by combining

a suitable setup for color-based encoding of the third dimension in

volumetric PIV, as well as a powerful algorithm to retrieve both the

particle positions and the velocity vector field. For the hardware

part, a linear color filter is employed in order to obtain a continuous

wavelength-gradation pattern, i.e. a rainbow illumination. Then,

a diffractive optical element (DOE) is attached to the camera ob-

jective lens, in order to achieve a wavelength-selective focus that

coincides with the rainbow illumination planes (Fig. 2, right). With

this setup, particles with different wavelengths (different depths)

will be simultaneously in focus on the sensor plane.

The reconstruction algorithm utilizes a detailed image formation

model for this setup to retrieve the 3D location of particles in each

frame. From a sequence of successive frames, the velocity vector

field is reconstructed using an optical flow approach [Horn and

Schunck 1981; Meinhardt-Llopis et al. 2013], where physical con-

straints (incompressibility and temporal consistency) are introduced.

In order to improve the obtained results, we can iterate between

position and velocity estimation, effectively solving a joint opti-

mization problem for both. The specific contributions of this paper

are:

• We propose a simple PIV setup (RainbowPIV) for measur-

ing time-varying 3D-3C fluid velocity vector fields using a

single camera.

• We design a hybrid refractive-diffractive optical system in

order to focus all wavelength on the same sensor plane,

extending the depth-of-field while preserving high lateral

resolution.

• We formulate an image formation model for 3D particle dis-

tribution reconstruction, and apply optimization strategies

to tackle the ill-posed inverse problem.

• We introduce a physically constrained optical flow method

for recovering the fluid velocity fields, and evaluate its

effectiveness on synthetic data. Our approach allows having

a good estimation of velocity over the measurement volume

(high concentration of particles).

• We demonstrate our proposed hardware setup and algo-

rithms on real fluid flows.

2 RELATED WORK

3D Fluid Imaging in Graphics has, as already mentioned, mostly

focused on independent scalar density fields for each time step. Ex-

amples for the physical properties recovered in this fashion include

the distribution of light emission in flames [Hasinoff and Kutulakos

2007; Ihrke and Magnor 2004], scattering density in smoke [Gu

et al. 2013; Hawkins et al. 2005], density of a fluorescent dye in

fluid mixtures [Gregson et al. 2012], as well as the refractive index

distribution in hot air plumes [Atcheson et al. 2008]. While this data

is sufficient for playback in graphics applications, other interesting

applications such as guided simulation [Wang et al. 2009], or flow

editing require velocity fields instead of just scalar densities. This

requires some form of velocity estimation or flow tracking, which

is difficult on this kind of input data (see below).

3D Particle Reconstruction is an alternative to imaging contin-

uous densities, and is used by 3D variants of PIV. The task of the

particle reconstruction is to determine the 3D location of particles

from one or more camera views. The total number of cameras in

these settings is usually very limited due to space constraints, as well

as occlusions by solids, and is typically orders of magnitude lower

than the number of projections in x-ray tomography, for example.

Another practical issue is depth of field of the cameras, since the

whole volume needs to be in focus simultaneously, and the camera

aperture usually has to be large to collect enough light to capture

fast flows.

Some examples of 3D extensions of PIV include holographic

PIV [Hinsch 2002], which works with coherent light, and tomo-

graphic PIV [Elsinga et al. 2006; Schanz et al. 2016], which utilizes

typically 3-5 cameras. Both of these approaches are in practice very

hard to set up for many types of flow experiments.

More closely related to our approach are single-camera meth-

ods, with drastically simplified setup. Willert et al. [1992] used a

three-pin-hole mask to decode illuminated particles such that the

three-dimensional positions of each particle can be retrieved from

the image patterns on the observed image via a defocus analysis.

Since three dots would appear in the image for each particle, this

method is stuck with a low particle seeding density. Another group

of approaches made use of plenoptic cameras [Levoy et al. 2006; Ng

et al. 2005], which capture the full 4D light field. Particle positions

can be reconstructed using ray tracing based algorithms. The idea

of applying such technology for measuring volumetric particle dis-

tributions has been discussed by [Lynch et al. 2012]. However, due

to the existence of ghost particles originated from reconstruction

algorithm and reduced spatial resolution, it becomes difficult to

reveal particle locations with relatively high accuracy. This can also

be seen as limited angle tomography with a very narrow cone of

observations.

Instead of modifying the camera side, another class of volumetric

particle reconstruction approaches relies on modifying the illumi-

nation method, providing additional information on the relative

depth, as seen from the camera, by encoding it in color. For this pur-

pose different illumination methods were used: prism [Kimura et al.
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Fig. 2. Comparison between the measurement setups for standard PIV (left) and RainbowPIV (right). In regular PIV, a single plane of the volume is illuminated
by a light sheet, and a camera focusing on this plane is able to track particles moving within it. This yields 2 components of the velocity field on a 2D slice of
the volume. By comparison, in RainbowPIV, the 3D volume is illuminated by a continuum of planes, where the wavelength of the illumination varies linearly
with the depth. Particles in the volume can thus be modeled as narrow-band point sources, and a diffractive optical element attached to the camera lens
ensures that for each wavelength the camera is focused at the appropriate depth.

1991], laser [McGregor et al. 2007], color filter [Pick and Lehmann

2009], LCD projector [Watamura et al. 2013]. Herein, the locations

of the particles in the volume can be determined by their 2D spatial

positions and by the colors in the captured image using a mapping

between color and depth position. The primary advantage of this

setup compared to other 3D PIV methods is its simplicity. Never-

theless, the presence of random noise, optical aberrations and focus

issues, color contamination caused by secondary light scattering

from the particles, and color mixing for overlapping particles se-

verely complicate the identification of the representative colors for

every possible particle in the observed image. McGregor et al. [2007]

used a method based on a calibration curve relating the hue of ac-

quired images to the depth of particles within the imaged volume.

Watamura et al. [2013] proposed an algorithm to calculate particle’s

representative color by averaging hue values of the pixels where the

particle is projected on in polar coordinate. Even though it revealed

promising results for Particle Tracking Velocimetry (PTV), where

low density particles are seeded, it will fail for our task of measur-

ing a dense set of velocity fields, where sufficiently high density of

particles is required.

Our method exploits a similar idea of encoding particle depth

by color, however we employ a combination of coded illumination

and modified camera optics to solve many of the issues of existing

methods. Moreover, we develop a new optimization-based joint

reconstruction of both particle position and velocity field.

Velocity Estimation from particle fields has been elaborately stud-

ied not only in the field of fluid mechanics, but also in the computer

vision community. Literature from the fluid mechanics field mainly

adopts correlation-based algorithms [Prasad 2000] for global veloc-

ity measurement, which computes the spatial auto-correlation or

cross-correlation of successive images, extracting average motion at

every single interrogation spot. Though significant improvements

have been made on correlation methods [Stanislas et al. 2008], they

still have issues in areas of low particle density, which is common

in 3D measurements.

In a seminal result from computer vision, Horn and Schunck [1981],

proposed a global variational optical flow method based on the as-

sumption of brightness constancy and smoothness in the flow vector.

The connection between optical flow and fluid flowwas investigated

by Liu and Shen [2008], which revealed that under certain conditions

(mass conservation, inviscid), brightness constancy is equivalent

to scalar transport equation for fluid flow. This connection lends a

physical meaning to optical flow approaches for fluid tracking. Heitz

et al. [2010] gave an overview to the applications of optical flow

based fluid motion estimation. The estimation accuracy between

optical flow and correlation approaches applied to PIV system has

been numerically evaluated [Liu et al. 2015].

Since the optical flow problem is physically connected to the con-

tinuity equation in fluid dynamics, it becomes feasible to introduce

Navier-Stokes equations, which govern real-world fluid motions,

as additional physical priors into the conventional Horn-Schunck

algorithm. Some previous literature has taken divergence-free con-

straints into account [Herlin et al. 2012; Ruhnau et al. 2007; Yuan

et al. 2007], while most of them suffer from the complexity of solving

higher order regularization terms. Gregson et al. [2014] simplify

this issue by connecting the pressure projection method with the

proximal operator, allowing it to be easily handled by a convex

optimization framework. Ruhnau et al. [2007] and Heitz et al. [2008]

also consider the equation for time evolution of fluid flow, imposing

temporal consistency. In our work, we adopt ideas from fluid sim-

ulation [Fedkiw et al. 2001; Foster and Metaxas 1997; Stam 1999],

which approximately solve the time-evolution of fluid flow. This

enables us to integrate the temporal coherence regularization terms

into the optical flow model, which can then be solved by a modular

optimization framework.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 36. Publication date: July 2017.



36:4 • J. Xiong, R. Idoughi, A.A. Aguirre-Pablo, A.B. Aljedaani, X. Dun, Q. Fu, S.T. Thoroddsen, and W. Heidrich

3 RAINBOW PARTICLE IMAGING VELOCIMETRY
The RainbowPIV method consists of two components: a new optical

setup that encodes particle depth into a color image with a large

depth of field, and a matching new reconstruction algorithm that

jointly optimizes particle position and velocity field.

Optical Setup. A comparison between the setups for regular PIV

and RainbowPIV is shown in Figure 2. In regular PIV (left), a laser is

used to create a light sheet perpendicular to the camera line of sight.

The camera is focused on the illuminated plane, and can therefore

observe and track particles moving within the sheet of light. This

yields 2 components of the velocity field on a 2D slice of the volume

(2D-2C). In RainbowPIV, the illumination is provided by a white

light source that is collimated and filtered so that the wavelength

varies linearly with the depth within the flow volume. In this setup,

particles submersed in the fluid can be modeled as narrow-band

point lights, whose wavelength varies linearly with depth.

The second part of the optical setup is a diffractive optical element

in the form of a Fresnel phase plate, which is implemented as a thin

glass plate with a micro-scale height field structure etched into it.

This DOE provides awavelength-selective focus in the camera optics.

Specifically, the optical system is designed such that the camera

focus for each wavelength corresponds to the depth at which that

wavelength occurs in the rainbow illumination. This design achieves

all-in-focus imaging of the particles in the interrogation volume.

Reconstruction. The reconstruction task is to estimate particle

positions from the the observed color, and then track these particles

over time to obtain a 3D velocity field to get a full 3D, 3 component

(3D-3C) measurement. This task is made more complicated by the

fact that the camera captures only RGB information, not a full

hyperspectral image, which makes the position reconstruction less

robust. To tackle this problem, we employ an iterative approach: an

initial position estimate for each time step can be used to obtain

a first estimate of the time-dependent velocity field. This velocity

field can be used to refine the position estimate by adding physical

priors that tie together all the time steps. These two iterative steps

are described in detail below. For tomoPIV a joint reconstruction of

volume and velocity was already used by [Barbu et al. 2013].

3.1 Particle Position Estimation
An inverse problem is proposed for recovering particle locations

in 3D spatial domain. We start by introducing an image formation

model that relates the obtained particle positions to the observed

image. Three regularization terms are then added to formulate an op-

timization problem, which can be efficiently solved with guaranteed

convergence, tackling our ill-posed inverse problem.

Image Formation Model. As mentioned above, the illumination

in the volume is designed to consist of a continuum of light sheets

(Figure 2) with a narrow-band spectrum, whose wavelength (de-

noted as λ) varies with depth (z coordinate). In this work, we restrict

ourselves to a linear relationship between z and λ since this setting

is easily implemented with off-the-shelf components (see Section 4).

Therefore, the location of particles in the volume can be geomet-

rically represented as the position of the light plane, specified by

wavelength, and pixel positions in that light plane (x, λ) = (x ,y, λ).

The presence of a particle at a specific point in the volume is modeled

as an occupancy probability P (x, λ).
Since we are operating with incoherent light, the imaging pro-

cess of the optical system can be modeled as a set of point spread

functions (PSF), one for each color channel: дC (x, λ), where C ∈
{red, green, blue}.With these definitions, the image formationmodel

is

iC (x) =
∫
Λ

∫
X
дC (x − x′, λ) · ir (x, λ) · P (x, λ) dx′ dλ, (1)

where iC (x) are the color channels of the captured RGB image,

and ir (x, λ) is the corresponding spectral distribution incident on

the image sensor. The spatial integral corresponds to a convolution

representing potentially imperfect focus, while the wavelength in-

tegral represents the conversion from a spectral image to an RGB

image encoding 3D particle positions.

Optimization Problem. After discretization, we can formulate

the convolution of PSFs and reflected light intensity as a matrix

A ∈ R3N×NL
, where N is the number of image pixels, L is the

number of discretization levels along the wavelength coordinate,

and the value of 3 refers to three color channels. Moreover, it ∈ R3N

represents the observed image at time t , and pt ∈ [0, 1]
NL

is the

volume of occupancy probabilities at time t . The distribution of

particles at each time step of a video can be retrieved by solving the

linear system

Apt = it . (2)

However, this inverse problem is ill-posed as we have compressed

the full spectral information encoding the particle position into just

three color channels. To handle this ill-conditioned inverse problem,

some prior knowledge of the distribution of particles is introduced as

regularization terms, resulting the following minimization problem:

(p∗) = argmin

p

1

2


A

p1 |...|pT


−


i1 |...|iT





2

2

(3)

+ κ1
diaд(w) (p1; ...; pT )1

+ Π
[0,1]

(p1; ...; pT )

+ κ2

T∑
t=1

∫
Ω
pt ⊙ (pt − pt+1 (ut ,−∆t ))◦2 dΩ,

where ⊙ and (·)◦2 respectively refer to the operators for theHadamard

(i.e. component-wise) product and square operator. The operator

Π
[0,1]

projects all volume occupancy probabilities onto the convex

set of valid probabilities [0, 1]
NL

.

The first line in Equation 3 is a least-square data fitting term

corresponding to Equation 2. The second line defines a weighted L1

term that encourages sparse distributions of particles in the volume,

and the indicator function enforces that occupancy probabilities are

between zero and one. Finally, the term of the third line provides

temporal coherence by mandating that occupancy probabilities of

successive time frames are consistent with advection under a pre-

viously estimated flow field ut = (ut ,vt ,wt ) by −∆t units of time,

expressed as pt+1 (ut ,−∆t ). We call this term the particle motion
consistency term, and it allows for refining position estimates once

a velocity field has been estimated, and ties the reconstruction of
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all frames together into a single optimization problem. The particle

motion consistency term is discussed in more detail below.

The above optimization problem is non-smooth because of the

L1 term and the indicator function, hence it cannot be solved by

general optimization tools such as gradient descent. The strategy

tackling this kind of issue is to decouple non-smooth terms from the

original optimization problem, such that distinct parts can be han-

dled separately. We apply this strategy using the ADMM framework

which is systematically discussed in [Boyd et al. 2011].

Algorithm 1 ADMM Framework of Computing Particle Distribu-

tion

1: procedure ComputeParticleLocation(F1,H1)

2: for from 1 to maximum ADMM iteration do
3: // p-minimization step

4: pj+1 ← proxσ1F1

(zj − qj )
5: // z-minimization step

6: zj+1 ← proxτ1H1

(pj+1 + qj )
7: // scaled dual variables update

8: qj+1 ← qj + pj+1 − zj+1

9: end for
10: end procedure

The pseudo code for solving Equation 3 using ADMM is shown

in Algorithm 1, where j is the iteration number, z is a slack variable,

q is a dual variable, or Lagrange multiplier. proxσ1F1

and proxτ1H1

are proximal operators [Parikh et al. 2014] based on F1 and H1

respectively, and we provide their derivations in the Appendix. F1

and H1 are defined as:

F1 (p) =
1

2


A

p1 |...|pT


−


i1 |...|iT





2

2

(4)

+ κ2

T∑
t=1

∫
Ω
pt ⊙ (pt − pt+1 (ut ,−∆t ))◦2 dΩ

H1 (p) = κ1
diaд(w) (p1; ...; pT )1

+ Π
[0,1]

(p1; ...; pT ) (5)

Particle Sparsity. The L1 penalized term ensures a sparse distribu-

tion of particles in the volume. It is further weighted by a diagonal

matrix diaд(w). Unlike the algorithm proposed in [Candes et al.

2008], which iteratively changes the weight coefficients based on

previous results for enhancing sparsity, weights in our approach

are fixed during iterations, but vary with particle depth. The moti-

vation for this process is to compensate for different sensitivities of

the camera to different wavelengths. For example, wavelengths in

the yellow or in the blue-green part of the spectrum elicit a strong

response in two or even three color channels, while wavelengths in

the far blue or far red parts only trigger one channel. This can result

in a non-uniform particle distribution, where particles are more

likely to be placed at certain preferred depths. The weighting term

allows us to eliminate this bias by compensating for the photometric

non-uniformity.

Particle Motion Consistency. As mentioned, particle motion con-

sistency ensures that estimated particle locations in successive

frames are consistent with advection through a previously esti-

mated flow field. This turns the position estimation from a set of

independent problems, one for each time step, to a single joint esti-

mation problem for the whole sequence. This term can be improved

by adding a mask to suppress the impact of low confidence flow

estimates.

3.2 Velocity Field Reconstruction
This section describes how we estimate the fluid flow vectors from

reconstructed 3D particle distributions in a video frame. First, we

introduce the physical properties of fluid flow formulated in Navier-

Stokes equations, and then an optimization problem is constructed

by combining conventional optical flow with those physical con-

straints.

Divergence Free. An incompressible flow can be described as a

solenoidal flow vector field usol, which is divergence free:

∇ · usol = 0. (6)

Based on the Helmholtz decomposition, any arbitrary vector field u
(in our case an intermediate flow vector that does not necessarily

satisfy the divergence-free constraints) can be decomposed into a

solenoidal (divergence-free) part and an irrotational (curl-free) part.

The irrotational flow vector is the gradient of some scalar func-

tion (pressure P in our case), hence we can express the Helmholtz

decomposition as

u = usol + ∇P/ρ, (7)

where ρ defines density. Taking the divergence of both sides, we

obtain

∇ · u = ∇2P/ρ (since ∇ · usol = 0). (8)

With the intermediate vector field u, the scalar function P can be

computed by solving the above Poisson equation, and then the

solenoidal flow vector field can be simply retrieved as

usol = u − ∇P/ρ. (9)

Equations 8 and 9 represent a pressure projection ΠCDIV operation

that projects an arbitrary flow field onto the space of divergence-free

flows CDIV , and is widely used in fluid simulation. Mathematically,

this step corresponds to an operator splitting method [Gregson et al.

2014].

Temporal Coherence. The incompressible Navier-Stokes equation

describes the time evolution of fluid velocity vector fields, given by:

∂u
∂t
+ (u · ∇)u = −∇P/ρ + (∇ · ¯̄τ )/ρ + f , (10)

where P is the pressure, ¯̄τ is deviatoric stress and f is an exter-

nal force. For a non-viscous fluid in absence of external force and

ignoring the unknown pressure gradient term, Equation 10 becomes

∂u
∂t
+ (u · ∇)u = 0, (11)

which refers to an approximated evolution of fluid velocity over

time. On the basis of this equation, we can advect the fluid velocity

at the current time step by itself, and then project it onto a space

of divergence-free flows to generate an estimate of the subsequent

velocity field, and vice versa. This time evolution equation will be
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introduced into the optimization problem discussed in the following

as a soft constraint.

Optimization Problem. We aim to reconstruct the fluid flow ve-

locity vector fields based on a physically constrained optical flow

model. The extended optical flow model is formulated as:

u∗t = argmin

ut

∫
Ω
pt ⊙ (pt − pt+1 (ut ,−∆t ))◦2 dΩ + κ3 ∥∇ut ∥22

+ κ4

( M(ut − ΠCDIV (ut−1 (ut−1,∆t )))


2

2

+
M(ut − ΠCDIV (ut+1 (ut ,−∆t )))


2

2

)
+ ΠCDIV (ut ),

(12)

each line of which is explained hereafter:

• the first line describes the conventional Horn-Schunck op-

tical flow model except that the brightness constancy con-

straint is replaced with the masked particle motion consis-

tency as discussed in Section 3.1.

• the second and third lines describe the temporal coher-

ence regularization as explained above: the fluid velocity

at the current time step is approximated by either forward

warping the flow vector at the previous time step by itself,

followed by a projection operation, or by backward warp-

ing the flow vector at the next time step by the current

flow, followed again by a projection operation. The binary

maskM is employed to ensure confidence-based weighting,

giving 0 for the flow vectors near the boundary and 1 for

vectors in the central region.

• the fourth line represents an indicator function of the pro-

jection method introduced above. Gregson et al. [2014]

found that the projection operation is equivalent to the

proximal operator for the space of divergence-free velocity

field. This allows us to integrate the divergence-free con-

straint into the original optical flow model, which can still

be efficiently solved by well-known optimization frame-

works.

We formulate this optimization problem in the ADMM framework

in Algorithm 2, where the definitions of the functions F2 and H2 are

given below. The corresponding proximal operators can be found

in the Appendix.

F2 (ut) =
∫
Ω
pt ⊙ (pt − pt+1 (ut ,−∆t ))◦2 dΩ + κ3 ∥∇ut∥22

+ κ4

( M(ut − ΠCDIV (ut−1 (ut−1,∆t )))


2

2

+
M(ut − ΠCDIV (ut+1 (ut ,−∆t )))


2

2

)
(13)

H2 (ut) = ΠCDIV (ut) (14)

In addition, a coarse-to-fine strategy is applied to deal with large

displacements. The algorithm begins from the coarsest level, and

an initial guess of optical flow at the next finer level is obtained

by scaling up the flow computed in the coarser level. It should be

noted that in this case, the above optimization problem becomes

non-linear in ut on account of the warping term pt+1 (ut ,−∆t ). To

Algorithm 2 ADMM Framework of Computing Fluid Velocity Vec-

tor Fields

1: procedure ComputeVelocity(F2,H2)

2: for from 1 to ADMM iterations do
3: // u-minimization step

4: uj+1

t ← proxσ2F2

(zj − qj )
5: // z-minimization step

6: zj+1 ← proxτ2H2

(uj+1

t + qj )
7: // scaled dual variables update

8: qj+1 ← q + uj+1

t − zj+1

9: end for
10: end procedure

tackle this issue, the non-linear term is linearized by using first order

Taylor expansion and ut is updated iteratively based on fixed-point

theorem. More detailed descriptions about this approach are given

in [Meinhardt-Llopis et al. 2013].

For a sequence of fluid velocity vector fields, each of them is

solved independently in an iterative loop. The update of the flow at

one time step will impact the subsequent flows in current iteration,

and also the previous flows in the following iterations.

4 RESULTS AND DISCUSSION

4.1 Experimental setup
Figure 3 represents a picture of the experimental configuration used

to evaluate the performance of the RainbowPIV algorithm.

Light source 
DOE 

Lens 

Linear filter 

Tank 

Collimator 
x 

z 

Fig. 3. Illustration of the experimental setup. A combination of a white light
source, a collimator and a linear bandpass filter yields a parallel rainbow
beam. After reflection on the particles present in the tank, the light is
acquired by a camera. A hybrid refractive-diffractive lens (lens+DOE) is
used to ensure that all particles of the measurement volume are focused on
the same sensor plane.

Rainbow light generation. The experiments were performed us-

ing a high power plasma light source combined with a liquid light

guide (HPLS245, Thorlabs) to generate white light (output spectrum:

[390, 730 nm]). A collimator was added to obtain a parallel light

beam. It is important to have a parallel light beam, to guarantee

that two particles having the same depth will be illuminated by the

same colored light.
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To split the white light in a rainbow beam, we employed a con-

tinuously linearly varying bandpass filter (LF103245, Delta Optical
Thin Film). Other components (prism, blaze grating) were also con-

sidered for their ability to generate a rainbow beam. However after

comparison, the linear filter appeared to us as the best solution for

its effectiveness and simplicity. The generated beam encompasses

a spectral range from 480 nm to 680 nm, and corresponding to a

depth range of 18 mm in the z direction. Given the height of the

beam and the length of the used tank, the two other dimensions of

the measurement volume are 50.1mm along the x axis and 25.6mm
along the y axis.

Acquisition device. To record the particle images, a digital cam-

era was used (RED SCARLET-X DSMC, sensor: MYSTERIUM-X

[30mm × 15mm], 4096 × 2160 pixels). A lens with a focal length of

50mm was mounted on the camera. As can be seen in Figure 5 (b,

c, d), when a standard refractive lens is used alone, the depth of

field is very shallow, and only a small depth range can be in focus.

For these three cases the other wavelengths are out of focus, which

makes it impossible to exploit these images to retrieve the velocity

of particles.

A DOE (see Figure 4) was designed in order to overcome this

limitation. Specifically, the DOE is a Fresnel phase plate, which is

implemented as a height field with 16 discrete levels as discussed

in other recent works, e.g. [Heide et al. 2016; Peng et al. 2015]. The

design parameters for the hybrid refractive/diffractive camera lens

are summarized in the following table (please refer to the Appendix

for a description on how to derive these parameters):

Symbol Description Value

DDOE DOE diameter 16mm

f DOE
λ0

DOE focal length for λ0 = 563 nm 401.8mm

γ Magnification 2.065

F# Aperture 4.125

L′ Distance hybrid lens - sensor 66mm
L2 Distance hybrid lens - volume 127.3mm

3 mm

Fig. 4. Left: The designed DOE fixed on a support, and destined to be
mounted on the refractive lens. Right: A microscopic view of the designed
DOE.

The image of particles acquired using the hybrid lens is presented

in Figure 5 (a). One can notice that for this case all particles within

the measurement volume are in focus. Their size on the image is

almost the same, contrary to the defocused images obtained without

using the DOE.

a b 

d c 

1 mm 

1 mm 

1 mm 

1 mm 

Fig. 5. Comparison of subsections of the images acquired using a hybrid
lens and a refractive lens. (a) Image obtained with the hybrid lens (DOE
+ lens). (b, c, d) Images obtained when using only the refractive lens. The
focus is adjusted respectively for blue (b), green (c) and red (d) particles.

Measured flows. Two types of experiments were realized using

transparent, rectangular tanks made of glass plates placed on a brass

metal support:

• Experimentswith a ground truthwere performed using

a high viscosity transparent fluid (PSF-1,000,000 cSt Pure

Silicone Fluid). Its viscosity is one million times higher

than that of water. White particles (White Polyethylene

Microspheres, with a diameter in the range [90, 106 µm])

were introduced to this liquid. This involved heating the

liquid while stirring in the particles, followed by vacuum

treatment to eliminate bubbles. After cooling the liquid, the

particles become frozen in place. Then, experiments were

conducted by applying a known movement (translations or

rotation) to the tank using micro-meter stages. Therefore,

the particle motion is known, since they are immobile with

respect to the tank.

• Experimentwithout "ground truth"were realized using
the same particles, after introducing them in a tank contain-

ing tap water. A small amount of surfactant (Polysorbate

80 Water) is added in order to reduce the surface tension of

water. This is to avoid the agglomeration of particles in the

tank. In this case, the particle motion is generated manually

through stirring, pouring, and similar excitations.

4.2 Velocity Vector Field Reconstruction Results
In this section, we first evaluate our proposed approaches based on

synthetic examples for ground truth comparisons. Then, we conduct

two types of experiments, where the first one is to move particles

with known motion vector, verifying the accuracy of our methods

on real data, the second one is to work on practical fluids.

Synthetic simulations. To quantitatively assess our reconstruc-

tion method, we tested our algorithm on simulated data. A volume

with the size of 100 × 100 × 20 (X × Y × Z ) was simulated and

we randomly generated 1000 particles in the volume. The particles

were advected over time by ground truth flow vectors that were

generated using the method of Stam [1999], such that we can obtain

time evolved particle distributions from a forward simulation that

is completely decoupled from our implementation. Using the image
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formation model from Equation 1, we simulated a time sequence of

5 captured images.

We compare our proposed velocity vector reconstruction algo-

rithm, referred to "S-T div-H&S", with the general multi-scale Horn-

Schunck algorithm "H&S" [Meinhardt-Llopis et al. 2013] and its

extension by introducing divergence free constraint as a proximal

operator "div-H&S" [Gregson et al. 2014]. Note that the last two

approaches compute the motion between one pair of frames in-

dependently, while our approach works on a sequence of frames

simultaneously.

Time frame Time frame

En
d 
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 (R
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Degree Pixel

Fig. 6. Numerical comparisons with ground truth data for different algo-
rithms. Left: Average angular error (in degrees). Right: Average end-point
error (in pixels).

For evaluation, we use two metrics known from the optical flow

literature: the average end-point error, i.e. the average Euclidean

distance of the true and estimated particle positions after advection,

and the average angular error, i.e. the average discrepancy in flow

direction. In Figure 6 we show how both types of error accumulate

over multiple frames, which is a good indicator for the accuracy of

path lines generated through forward integration in the estimated

velocity fields. As expected, the reconstruction errors increase over

time in all methods. However, by considering temporal coherence,

our proposed method exhibits better performance compared to the

other two approaches. We point out that a temporal smoothness

regularizer may not necessarily result in improved reconstruction

results at each particular time step, however, it conveys better esti-

mations in the temporal domain. This is essential for video frames

captured in real-world experiments.

We also ran experiments on simple analytical flows, specifically

one vortex with the rotation axis aligned with the optical axis, and

one with the rotation axis orthogonal to the optical axis. The results

(shown Figure 7) are consistent with the above results on more

complex simulated flows. In the first case, the mean of the average

end-point error for a sequence of 5 frames are 0.54, 0.52 and 0.49 in

pixels, and the mean of the average angular error are 8.06, 7.77 and

7.08 in degrees respectively for "H&S", "div-H&S" and "S-T div-H&S"

approaches. As for the latter one, the mean of the average end-point

error are 0.79, 0.77 and 0.73 in pixels, and the mean of the average

angular error are 17.15, 16.24 and 13.65 in degrees. These results

verify that the temporal smoothness term truly boosts the overall

reconstruction results for a sequence of frames. Moreover, we could

observe a better estimation for flows in the longitudinal plane than

those in the transverse plane. This will be further discussed in the

following section.

Norm of Velocity (Pixel/time unit)
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el

]
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 [p
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]

Fig. 7. Ground truth (left) and reconstructed (right) results for simple ana-
lytical flows. Top: Rotation around axis aligned with the optical axis. Bottom:
Rotation around axis orthogonal to optical axis.

Fig. 8. Calibrated PSFs for different layers along depth direction. From near
camera side to far-end of the camera.

Experiments with a ground truth. To evaluate the effectiveness

of our proposed methods on real captured data, we firstly conduct

the experiments with a tank containing seeded particles in high

viscosity liquid. The tank is put on a multi-dimensional transla-

tion/rotation stage such that reconstruction results of the algorithm

can be compared with ground truth movements. Three independent

tests are performed:

(1) Translation in the x direction (i.e. perpendicular to camera

line of sight): 5 frames were acquired. Between each two

successive frames, a translation of 0.2mm in the x direction

was applied.

(2) Translation in the z direction (i.e. along the camera line of

sight): 5 frames were acquired. Between each two succes-

sive frames, a translation of 0.5mm in the z direction was

applied. In this case, the translation is larger, in order to

observe easily the color change.

(3) An approximation of rotation around the vertical (y) axis in
a clockwise direction.With our setup of “frozen” particles in

a volume, only an approximation of this rotational motion

is possible, since it is not possible to tilt the tank relative

to the camera line of sight to avoid distorting the volume

by refraction. We therefore approximate rotational flow

by rotating the rainbow illumination pattern relative to

ACM Transactions on Graphics, Vol. 36, No. 4, Article 36. Publication date: July 2017.



Rainbow Particle Imaging Velocimetry • 36:9

N
or

m
 o

f V
el

oc
ity

 (P
ix

el
/ti

m
e 

un
it)

Z [pixel]

Y
 [p

ix
el

]

x

y

z

y

x z

Y
 [p

ix
el

]

N
or

m
 o

f V
el

oc
ity

 (P
ix

el
/ti

m
e 

un
it)

Y
 [p

ix
el

]

N
or

m
 o

f V
el

oc
ity

 (P
ix

el
/ti

m
e 

un
it)y

x
z

Fig. 9. The reconstructed velocity vector fields induced by moving the mea-
surement volume with a rotation stage. Top: Translation along x direction.
Middle: Translation along z direction (towards the camera). Bottom: Rotate
along y axis in clockwise direction. The magnitude of the vectors are coded
by color.

the tank. In practice, the tank and the camera are mounted

together on a rotation table with fixed relative position, and

the lighting setup is fixed. The rotations were performed

from an angle of −8
◦
to 8
◦
(the reference is defined when

the tank is aligned with the (x,z) directions). Between each

two successive frames, a rotation of an angle equal to 4
◦

was applied.

Before processing the captured images, we first pass them through

a Gaussian filter and then downsample them by a factor of 8, hence

the resolution for the downsampled image is about 100 µm/pixel,

approximately one particle per image pixel. We discretize the wave-

length coordinate into 20 levels, corresponding to 900 µm/layer. The

calibrated point spread functions for each levels are shown in Fig-

ure 8. It should be noted that the resolution along the wavelength

coordinate is about 9 times coarser than that in x − y plane.

The reconstructed velocity vector fields are visualized in Fig-

ure 9. The overall structures of the reconstructed flow in all three

cases reveal that a significant part of the real flow structures are

reproduced.

Furthermore, we can numerically analyze the reconstructed re-

sults with respect to the ground truth movements. In the exper-

iments, the x-axis and the z-axis translations move respectively

200 µm and 500 µm in one time step, which corresponds in the cap-

tured images to 2 and 5 pixels. In the rotation test, the total rotation

π
45

rad , and the 2D plane of the test section has the physical size of

10mm×18mm (x×z), and distance from the center of the test section

to the center of the disk is 10mm, hence the practical magnitudes

of the displacements are about 334 µm (3.3 pixel sizes) for the part

at the near-end of the disk center and 506 µm (5.1 pixel sizes) for

the part at the far-end of the disk center. The computed magnitudes

of the flow vectors are encoded by color in our represented results.

The mean of the norm of the velocity in the left translational

experiment is 1.75 pixel sizes with standard deviation of 0.15, while

the mean of that in the experiment of translating towards camera

is 3.48 pixel sizes with standard deviation of 0.79. We can see that

reconstructed flow vectors reveal higher accuracy for the flow per-

pendicular to the optical axis with respect to the flow in longitudinal

direction. This is reasonable since: (1) depth resolution is highly

limited compared to lateral resolution as camera is much more sen-

sitive to the spatial change of objects in 2D plane than the change

of wavelength, which results in coarser reconstructed flow vectors

along the wavelength coordinate. (2) the error may also come from

a bias of reconstructed particle distributions. Determination of the

spatial positions of the particles along z axis involves higher uncer-
tainties. Moreover, distortion caused by the refractive effect of the

applied high viscosity materials, arises when moving the tank along

the z axis. As the thickness of the material between camera and

illuminated particles changes, the PSFs are altered simultaneously.

Fortunately, this issue does not exist when measuring practical fluid

flow, where the particles move, instead of the light beam. Though

facing the fact of relatively low reconstruction accuracy for flow

in axial direction, not only flow in simple translational structures,

but also vortical flows are reasonably reproduced, and the error in

wavelength axis is within a certain tolerance, which, in general, is

no more than half of length of the discretization intervals.

Experiments without ground truth. Finally, we test our Rain-

bowPIV system on four different real flows of varying complexity

(Figures 10–13). Using the setup described in Section 4.1, we cap-

tured image sequences of fluids at a frame rate of 30Hz, and down-

sampled the images by a factor of 8 from an original resolution of

4096×2160 to 512×270. The wavelength coordinate was discretized

into 20 levels (10nm/level), hence the maximum grid resolution for

any experiment was reach 512 × 270 × 20, although additional crop-

ping was performed on some datasets to only reconstruct regions

with interesting flows. The voxel pitch in the (x ,y) plane is 100µm,

while along the z axis it is 900µm.
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Fig. 10. Left: 5 successively captured images (without post-processing) in a video frame. Six representative particles are tracked in the time sequential
frames to verify the reconstructed flow structure. Right: Computed flow vectors according to the given frame data, viewing from different angles. Please see
supplemental video for better visualization.
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Fig. 11. Path line visualization of the dataset from Figure 10.

The parameters for the optimization method were kept the same

for all datasets (κ1 = κ2 = 0.01, κ3 = 10
−5,κ4 = 10

−7
). Only two

outer loops were required for all datasets, with 30 − 50 iterations

in the inner loop of the position estimation subproblem, two inner

loops for the velocity estimation problem, and finally five loops for

each frame within each velocity estimation step. The reconstruction

time for the largest dataset was 125 minutes on a 2.50Ghz Intel Xeon

E5-2680 CPU with 128GB RAM. Roughly 1/3 of that time was spent
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Fig. 12. Path line visualization for two more datasets, corresponding to a
drop of water being dripped into the volume from the top (top image), and
a small jet of water being injected from the bottom (bottom image).

on the position estimation, and the remaining 2/3 on the velocity

estimation.

Five successive captured images are shown in the left hand side of

Figure 10, and the reconstructed velocity vectors are visualized on

the right hand side of the same figure. Six representative particles

are manually selected to verify the accuracy of the computed flow

vectors. The first particle moves upward in the image plane, and the

color of it changes from green to cyan, which states that it moves

away from the camera. The second particle moves upward and

slightly to the right in the image plane and in the depth direction,

it moves to the far-end of the camera. The third particle moves

to the upper left, color changes from green to cyan. The fourth

particle quickly moves to the left hand side with no significant color

change. From the fourth particle, we can observe a certain amount

of motion blur due to its large velocity. The fifth and sixth particle

move downwards in the image plane and towards camera in the

wavelength domain, while the orange one moves to the right and

blue one moves to the left. Comparing the motion of these chosen

particles with the corresponding flow vectors in the reconstructed

results, it reveals that overall agreement is achieved. In addition, the

actual stirred flow structure is supposed to be a vortex, rotating in a

clockwise direction. We observe that the key features of the vortex

structure are well reconstructed by our developed methods. A path

line visualization of the same velocity data is shown in Figure 11.

Note that the particles in the visualization are seeded synthetically

and do not directly correspond to RainbowPIV particles. Please also

refer to the supplemental video for dynamic visualizations of all

results.

Figure 12 shows two more data sets, one with a drop of water

being dripped into the volume from the top, and one where a small

amount of liquid is injected into the volume form the bottom. The

recovered flow field in both cases is consistent with both the expec-

tations and the observed RainbowPIV frames (see video).

Finally, the most complex example is shown in Figure 13. This

flow was generated by strongly stirring the fluid, and then letting it

set. After a while, the pictured two-vortex structure can be observed.

Like many fluid imaging methods, RainbowPIV has problems recon-

structing flows with strong motion blur. This limits our ability to

reconstruct the early stages of this experiment. To overcome this

limitation, high speed cameras could be used in conjunction with

stronger light sources.

5 CONCLUSION
We have introduced a novel RainbowPIV system coupled with opti-

mization strategies, which enables us to recover the 3D fluid flow

structures using a single color camera, greatly reducing the hard-

ware setup requirements and easing calibration complexity com-

pared to the other approaches handling 3D-3C measurements. Our

approach is implemented by illuminating particles in the volume

with "rainbow" light such that the depth information of the particles

is color-coded into the captured images, and the 3D trajectory of

particles can be tracked by analyzing the 2D spatial motion in the

image plane and the color change in the wavelength domain. A spe-

cially designed DOE helps to focus all the wavelength planes on the

sensor plane simultaneously, to achieve high lateral resolution and

relatively large depth of focus at the same time. We then formulate

an inverse problem to reconstruct the particle positions in 3D using

a sequence of frames to alleviate the ambiguity issues of identifying

particle positions from a single frame. With the recovered particle

locations at different time steps, a further step is taken to reconstruct

the fluid velocity vector fields. An optimization problem integrating

the conventional Horn-Schunck algorithmwith physical constraints

is proposed to compute the flow vectors.

We demonstrate our approach both on synthetic flows induced

by moving a frozen particle volume and by using a real stirred flow.

Overall, our method can robustly reconstruct a significant part of

the flow structures at good accuracy.

The primary drawback of our system is the limited spatial resolu-

tion along the wavelength (depth) coordinate. Due to the existence

of noise and light scattering issues, and relatively low sensitivity of

the camera to the wavelength change, at current stage the wave-

length coordinate is not allowed to be discretized any further. In the

future this situation could be improved by making use of the IR end

of the spectrum instead of blue light, where camera sensitivity is

rather low. Other possible improvements include the use of cameras
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Fig. 13. Path line visualization of a complex flow created by stirring the fluid. Note the two vortices that interact in a complex fashion. The visualization uses
virtual particles that do not correspond directly to real particles imaged with RainbowPIV.

with additional color primaries, or primaries that are optimized for

this task.

Furthermore, our current system can only measure velocities

within a flow volume of fixed dimensions, which are determined

in the axial direction by the wavelength spread of the generated

rainbow volume and the matching chromatic aberration in the DOE

camera optics. In the future we intend to address this issue by design-

ing a dynamically reconfigurable rainbow light engine. In addition

to having an adjustable depth range, this Rainbow light engine will

use diffractive optics to provide better light efficiency than the cur-

rently used linear filter. On the camera side, a viable solution already

exists in the form of encoded diffractive optics [Heide et al. 2016],

which allows for diffractive lenses with dynamically adjustable fo-

cal length. However, integration of the encoded DOE and the new

light engine into a new RainbowPIV setup requires still a significant

amount of system development.

Despite these current limitations, on account of the simple setup

and good accuracy, our system can be easily implemented and ap-

plied to investigate new types of fluid flows in the future.

A APPENDIX

Proximal operators for Algorithm 1 and 2
This section describes the derivation of proximal operators in Al-

gorithm 1 and 2. To simplify the notations, we denote zj − qj as dj ,
pj+1 + qj as ej , uj+1

t + qj as hj , and pt+1 (ut ,−∆t ) as p̂−t+1
.

For Algorithm 1:

p = proxσ1F1

(d) ⇒ (15)



σ1

(
AT (Ap1) + f1,2 (p)

)
+ p1

.

.

σ1

(
AT (Apt ) + ft,t−1 + ft,t+1

)
+ pt

.

.

σ1

(
AT (ApT ) + fT ,T−1

)
+ pT



=



σ1AT i1 + d
j
1

.

.

σ1AT it + d
j
t

.

.

σ1AT iT + d
j
T



where

ft,t+1 (p) = 2κ2pt ⊙ (pt − p̂−t+1
) + κ2 (pt − p̂−t+1

)◦2,

ft,t−1 (p) = 2κ2pt−1 ⊙ (p̂−t − pt−1).

z = proxτ1H1

(ej ) ⇔

z = Π
[0,1]

(
(ej − τ1κ1w)+ − (−ej − τ1κ1w)+

)
.

(16)

In the first term, p is represented by procedural operator on the left

hand side of Equation 15, and it is solved by Conjugate Gradients.

The second term is the point-wise shrinkage operation followed by

a projection onto the domain of [0, 1].

For Algorithm 2:

ut = proxσ2F2

(d) ⇔ (σ2A + I)ut = dj − σ2b

A = pt ⊙ (∇p̂−t+1
)◦2 + κ3∇

2 + 2κ4M

b = pt ⊙
(
(p̂−t+1

− pt) − ∇p̂−t+1
ukt
)
∇p̂−t+1

− κ4M(ΠCDIV (û
k+
t−1

) + ΠCDIV (û
k−
t+1

)),

(17)

where

ûk−t+1
= ut+1 (ukt ,−∆t ),

ûk+t−1
= ut−1 (ukt−1

,∆t ).

z = proxτ2H2

(hj ) ⇔ z = ΠCDIV (h
j ). (18)

By applying the fixed-point theorem to tackle the nonlinear opti-

mization problem, uk. in the first term refers to the result in the kth

iteration. We use Conjugate Gradients to solve this linear system in

combination with an incomplete Cholesky factorization. The second

term is a simple pressure projection step.

Design of the hybrid refractive-diffractive lens
With a standard refractive lens, the thickness of the measurement

volume that is in focus is extremely small for many fluid imaging

problems of practical interest. In our case, since the wavelength of

the light that illuminates the particles varies linearly in the volume,
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the in-focus measurement volume can be easily extended by adding

a DOE to the camera optics.

When designing the DOE we must ensure that all wavelengths

are focused on the same sensor plane. Moreover, the aperture and

the magnification of the hybrid lens should allow for an image of

good quality.

𝜆0, 𝑓𝜆0  

𝜆2, 𝑓𝜆2  

𝜆1, 𝑓𝜆1  

L’ 

L1 

L2 

L0 

DOE + Lens Sensor 

Fig. 14. Schema for hybrid refractive-diffractive lens. All particles illumi-
nated by a light, which wavelength is included in [λ1, λ2], will be focused
on the sensor plane.

The Figure 14 shows a schematic for a hybrid refractive-diffractive

lens. The aim is to design a DOE, that allows us to have all particles

illuminated by a light, which wavelength is included in [λ1, λ2]

focused on the same sensor plane.

A DOE is characterized by its phase, which can be expressed as

follows:

ϕ (r ) =
2π

λ
·

r2

f DOE
λ

, (19)

where r is the radial distance to the center of the DOE, λ is a given

wavelength, and f DOE
λ is the focal length of the DOE associated

to the wavelength λ. Indeed, for a DOE the focal length is spectral-

dependent, and obeys the following relationship:

λ · f DOE
λ = constant . (20)

Thereafter, the wavelength λ0 =
2·λ1 ·λ2

λ1+λ2

will be used to design the

DOE. Thus, we only need to determine f DOE
λ0

, in order to recover

the phase of the DOE.

On one hand, the thickness of the measurement volume ∆z =
L1−L2 is enforced by the used setup. On the other hand, the distances

L1 and L2 are expressed as follows, as a function of L′ the distance
between the hybrid lens and the sensor, and fλ the focal length of

the hybrid lens:

L
1/2
=

L′ · fλ1/2

L′ − fλ1/2

. (21)

Furthermore, (fλ ) can be expressed as:

1

fλ
=

λ

λ0 · f
DOE
λ0

+
1

fL
⇔ fλ =

λ0 · f
DOE
λ0

· fL

λ0 · f
DOE
λ0

+ λ · fL
. (22)

By combining the Eqs. 21 and 22 in the expression of ∆z, we
obtain:

∆z =
λ0 f

DOE
λ0

fLL
′(

λ0 f
DOE
λ0

+ λ1 fL

)
− λ0 f

DOE
λ0

fL

−

λ0 f
DOE
λ0

fLL
′(

λ0 f
DOE
λ0

+ λ2 fL

)
− λ0 f

DOE
λ0

fL

.

(23)

Here, fL is fixed by the choice of the refractive lens, ∆z, λ1 and λ2

are measured and depend on the illumination setup. Therefore, the

focal length of the DOE f DOE
λ0

and the distance L′ are retrieved by

minimizing the difference between the two terms of the equation

23.

To ensure a good quality of the obtained image, we have to add

some constraints to this minimization. These constraints involve

the aperture (F# = L′
D ) and the magnification (γ (λ) = Lλ

L′ ) of the

hybrid lens. Where D is the diameter of the hybrid lens, and Lλ is

the distance between the hybrid lens and the plane illuminated by a

light with a wavelength equal to λ. The constraint on the aperture

will improve the signal to noise ratio of the obtained image; while

the constraint on the magnification will warrant a good size match

between the measurement volume and the acquired image.

Once the optimal focal length f DOE
λ0

retrieved, the DOE is com-

pletely characterized by its phase (see Eq. 19).
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