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Abstract 

We report on an experimental undertaking with the goal of detecting so-called turbulent 

superstructures within a turbulent boundary layer and describing their temporal development 

while propagating from a region of zero pressure gradient (ZPG) into a region of adverse pressure 

gradient (APG). The flow was characterized by performing Lagrangian Particle Tracking (LPT) of 

Helium-filled soap bubbles (HFSBs) using the Shake-The-Box (STB, Schanz et al. 2016) algorithm. 

This work will present first results, but will concentrate on the description of the experimental 

efforts and the evaluation approaches that were necessary to successfully conduct this investigation. 

The tracking of a large number of tracer particles (several 100,000) within an extensive volume 

(nearly three meters in length) was made possible by the use of a system consisting of 12 cameras, 

forming three successive volumetric systems. Calibration and evaluation methods for fusing the 

different systems into one large camera system are described. Challenges in calibrating camera 

systems with a large field-of-view due to small-scale distortion effects introduced by the 

observation windows are discussed and correction methods are introduced. Methods for achieving 

a perfect transition between overlapping camera systems are introduced. 

For higher flow velocities, a double illumination approach was created in order to limit the pixel 

displacement between frames. To the knowledge of the authors, this is the first time such an 

approach was realized for time-resolved image sequences. 

1 Introduction 

The understanding of the formation and the dynamics of very-large scale coherent structures within 

turbulent boundary layers (TBLs) and their influence on the wall shear stress and intermittency is 

an important research topic in aerodynamic flows at high Reynolds numbers not attainable by DNS. 

Amongst others, Jimenez (1998) showed that eddies with streamwise lengths of 10-20 δ are present 

in the upper logarithmic region of wall-bounded flows. In addition to TBLs and turbulent channel 

flows, Kim and Adrian (1999) found streamwise energetic modes with wavelengths up to 14 pipe 

radii within fully developed turbulent pipe flow. The characterization of these large-scale coherent 

motions, often referred to as superstructures in TBLs and very large scale motions (VLSMs) in 

turbulent pipe or channel flow, has since been the subject of numerous experimental investigations, 

which successfully detected and described partial views and features of these large scale coherent 

structures (e.g. Hutchins and Marusic 2007 and Marusic et al. 2010). However a full spatiotemporal 

experimental investigation was still pending. Such an experimental undertaking will be presented in 

the following, here concentrating on the applied and developed measurement techniques. 
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2  Experimental setup 

The experiment was set up in the 22m long test section of the Atmospheric Wind Tunnel (AWM) at 

the University of the Armed Forces in Munich (see Figure 1 a). A model was installed at the side wall 

of the 1.8 × 1.8 m2 cross section (Figure 1 b and c). The flow develops on the wind tunnel wall over a 

few meters and is then  

  

Figure 1: a) Cutaway of the Atmospheric Wind tunnel at the Univerität der Bundeswehr in Munich 

(AWM). The approximate location of the model (installed up-right on the wind tunnel wall) is given 

by the red rectangle; b) Sketch of top view of the model with the different pressure gradient 

regimes; c) Photograph of the installed model from a downstream position, showing the deflection 

leading into the APG region. LED Illumination from above, back-reflected by mirrors on the floor. 

accelerated in a FPG region along a ramp of 1.20 m length with smooth curvatures. Next, the flow 

develops gradually into a canonical ZPG boundary layer state along a flat plate of length 4.0 m. The 

TBL flow then follows two curvilinear deflections over a length of 1.17 m, causing a small FPG, and 

enters into the APG region of a subsequent flat plate with an inclination angle of 18° and length of 

763 mm. 

A system of twelve high-speed cameras was installed outside of the tunnel, opposite to the model. 

Three overlapping volumetric subsystems (see Figure 2) covered a continuous volume from the 

middle of the ZPG plate to the APG region (~2.90 m stream-wise, 0.8 m span-wise and 0.25 m wall-

normal). The cameras were operated at a constant repetition rate of 1 kHz and recorded continuous 

data for 1382 images. The most upstream camera system (A) consisted of four VEO 4K L cameras, 

which provide a 4096 × 2160 pixel resolution at 1 kHz. Due to the high spatial resolution and the 

elongated shape of the sensors, this system was able to capture the full ZPG-region at a length of 

1.80 m, using f=35 mm Carl Zeiss Distagon lenses, mounted in Scheimpflug-adapters. The two 

subsequent systems (B and C) each consisted of four PCO DiMax cameras (2016 × 2016 pixel) and 

each covered around 1 m in stream-wise direction, being equipped with f=50 mm Carl Zeiss Planar 

lenses. The magnification is between 2.0 to 2.5 px/mm for the whole system. 

The wall-normal extent of the recorded volume is defined by the illumination, consisting of 10 high-

power LED arrays (Hardsoft ILM 501CG, Stasicki et al. 2017), installed above window inserts on the 

wind tunnel roof. Mirrors at the wind tunnel floor provided back-reflection (Figure 1 c).  

Three different free stream velocities Ufs were considered: Ufs ≈ 7, 14 and 21 m/s. At the lowest 

velocity, particle shifts of around 19 pixels are found in the free stream. In order to limit the shift for 

higher velocities, a double illumination scheme was applied, motivated by its successful application 

on double frame cameras for the investigation of high-speed flows (Novara et al. 2019). While the 
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cameras retained the rate of 1 kHz, the LEDs were operated at 2 kHz, thus imaging each particle 

twice per camera image. 

Seeding of the flow was realized by several arrays of HFSB-nozzles (250 nozzles in total). For the 

lower velocity, most of the seeding rakes (200 nozzles) were installed close to the contraction 

before the test section. While ensuring a high seeding concentration, a downside of this position is 

an interaction of the rakes with the incoming boundary layer that might persist in the measurement  

 
Figure 2: a) View of the twelve-camera system outside the AWM tunnel; b) Schematic sketch of the 

camera positions, viewed from the top. Three camera systems are indicated in black (A), red (B) and 

blue (C). Flow from left to right, the model geometry is indicated in dark grey 

region. Therefore, for the more relevant runs at higher Reynolds numbers, the seeding system was 

moved much further upstream, into the tower of the wind tunnel. Now the bubbles had to pass 

through several layers of meshes, minimizing any flow disturbances, but also reducing the number 

of bubbles reaching the measurement volume. In both cases, 50 additional nozzles were installed in 

a cabinet close to the contraction region, seeding the near-wall parts of the boundary layer through 

a thin slit in the wind tunnel wall.  

For the Ufs ≈ 7 m/s case 24 runs of 1382 images each were recorded in single illumination mode. 

The particle image density visible on the camera images varies locally, depending on the amount of 

tracer particles and the local strength of illumination. Typically values between 0.04 and 0.06 

particles per pixel (ppp) are detectable. Figure 3, Left shows a typical particle image distribution. 

The attained image quality (signal to noise ratio) is high, with peak intensities typically ranging 

from 500 to several thousand counts. The illumination is well sufficient, even though the LEDs were 

operated only in short bursts of 40 μs per image (4 % duty cycle, at 45 A power), in order to avoid 

any motion blurring for the fastest particles.  

At the two higher velocities, the seeding concentration is reduced, both due to the increased mass 

flow and the repositioning of the main seeding system. However, the recorded particle image 

density is doubled due to the two light pulses. Figure 3, Middle shows a sub-sample of a typical 

camera image of such a case, while Figure 3, Right shows a region with low seeding density in order 

to better visualize that each particle is imaged twice per camera image. For Ufs ≈ 14 m/s, being the 

central case for the physical evaluation, 68 runs of 1382 recordings (corresponding to 2764 time-

steps) were recorded. 

 

 
Figure 3: Excerpts from camera images. Left: Single-illuminated run at Ufs ≈ 7 m/s. Middle: double-

illuminated run at Ufs ≈ 14 m/s., center of the volume. Right: same, corner of the volume with less 

particles and illumination, showcasing double images per particle. In all cases, preprocessing 

consisted of subtracting the minimum image and a constant. 
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3  Data evaluation 

Particle tracking was performed using the current DLR implementation of the Shake-The-Box (STB) 

algorithm. For the required 3D calibration a large 2D target, oriented parallel to the flat plate, was 

imaged by all cameras simultaneously at two wall-normal planes, separated by 100 mm. This rough 

calibration was refined using Volume Self Calibration (Wieneke 2008), calibration of the optical 

transfer function (OTF, Schanz et al. 2013) and several specifically adapted procedures to ensure 

optimal overlap of the up to 8 calibrated camera models in the common regions and to correct for 

distortion effects of the wide-angle lenses and the wind tunnel windows. Chapter 5 gives a detailed 

overview of the special calibration procedures developed for this evaluation.  

3.1 Triangulation approach for extensive multi-camera systems 

The thorough calibration allowed to treat the whole camera-system as one within the STB-

procedure: The specific implementation of the triangulation procedure, being a central part of the 

iterative particle reconstruction (IPR) within each STB-step, can be operated with an arbitrary 

number of cameras Ncam and returns the triangulated 3D positions of all particles visible in at least 

Nv cameras, where Nv is specified by the user. In this case, all cameras from the three subsystems 

were included in the triangulation process (Ncam = 12) and particles were retrieved that either fulfill 

Nv ≥ 4 (first two iterations of IPR) or Nv ≥ 3 (last two iterations of IPR). The result is a cloud of 

triangulated particles that are seen by at least three cameras, spanning over the whole volume.  

3.2 Particle tracking in single-illuminated cases 

When applying the Shake-The-Box algorithm to the preprocessed camera images, the combination 

of high image quality and a very refined calibration allows using a restrictive parameter of 0.7 px for 

the search radius in the triangulation process, thereby limiting the creation of ghost particles as 

much as possible. Still, for the first images, a total amount of particles (real and ghosts) of ~ 1.55 

million is reconstructed. From these particle clouds ~251,000 4-time-step tracks are extracted. 

Figure 4 left) illustrates the convergence of the tracking system. The found tracks help in reducing 

the perceived seeding density and act as a predictor for the search for new tracks. This way, the 

system quickly identifies more and more trajectories. Within 10 time-steps ~443,000 particles are 

tracked, after 70 time-steps the system reaches a maximum of ~580,000 tracked particles. From 

there on the system is stable, the visible decline in tracked particles is caused by variations of the 

particle density. At the end of this 300-recording test-run, the algorithm reverses the time-series 

and walks backwards for a second pass. Triangulation is not performed anymore, only the known 

tracks from pass 1 are elongated into regions where they have not been tracked yet in the first pass. 

This approach increases the number of tracked particles per time-step by approx. 33.000. The 

convergence region is effectively filled up and a maximum number of ~620,000 tracked particles 

per time-step is achieved.  

 

  
Figure 4: (left) Number of tracked particles per time-step for STB evaluation over a time-series of 

300 images (single illumination mode at 7 m/s), first going forward in time (pass 1), then reversing 

and elongating found tracks in backwards direction (pass 2). Up to 620,000 particles are tracked.  
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(right) Number of tracked particles per time-step for an STB evaluation in double illumination mode 

at 14 m/s. 1382 images yield 2764 time-steps. Up to 200,000 particles are tracked per time-step. 

3.3 Particle tracking in double-illuminated cases 

For the double illumination images, the STB scheme had to be modified: Firstly, the trajectories 

known in time-step N are extrapolated to both time-steps tN+1 and tN+2 imaged in the next snapshot 

and the resulting particle cloud is corrected for inaccuracies by shaking. Now IPR is applied to 

identify new particles. Next, fitting particles to extend the know tracks to the first time-step t1 are 

searched within all (twice predicted and triangulated) particles. Now the tracks known in tN+1 are 

again predicted to tN+2, where they form a particle cloud together with the already precisely know 

tracked particles from tN+1 (which are also imaged and therefore have to remain in the volume). This 

cloud is again treated by shaking and IPR triangulations. As a last step, fitting particles to extend the 

know tracks to the second time-step t2 are searched within the particle cloud. By applying this 

scheme of double extrapolation and shaking, an unfavorable treatment of the second time-step is 

avoided. If the known tracks were simply elongated to tN+1 and tN+2, followed by a normal STB 

treatment, the extrapolation of tN+2 would cover such a large separation (up to 60 pixels) that the 

errors would not always be recoverable by the shaking process, resulting in an enhanced loss of 

tracks within each second time-step. The described scheme avoids this effect and was implemented 

in a way that an arbitrary number of illuminations per image can be processed. 

Figure 4 right displays the convergence of STB for a double-illuminated time-series of 1382 images, 

corresponding to 2764 time-steps at 2kHz recording rate. The tracking system starts with ~110,000 

4-step tracks and quickly converges to 190,000 to 200,000 tracked particles, corresponding to 

380,000 to 400,000 imaged particles within each recording of the combined camera system .  

3.4 Data postprocessing 

The raw particle positions are filtered by a spline-interpolation scheme (‘TrackFit’, Gesemann at al. 

2016), yielding continuous position, velocity and acceleration. The gained data can be used in many 

ways: volumetric averages can be created using a bin-averaging approach; one-point statistics (e.g. 

PDFs), space-time spectrum, two-point correlations or Lagrangian properties can be extracted. As 

the tracks represent a spatially dense sampling of the flow, the instantaneous flow field can be 

reconstructed using the ‘FlowFit’ algorithm (Gesemann et al. 2016). This method allows to further 

increase the spatial resolution by incorporating physical constraints into the reconstruction process 

on a volumetric grid of cubic B-splines.  

4  Results 

Figure 5 shows exemplary results from an evaluation at Ufs ≈ 7 m/s. The full field (top) visualizes the 

dense tracking of approx. 620,000 particles. It can be seen that the flow reaches approx. 7 m/s 

above the flate plat, is slightly accelerated in the suction peak of the FPG and clearly decelerates in 

the APG region. 

By applying the FlowFit algorithm to the discrete particle cloud, flow structures can be identified 

(middle). Despite the large measurement domain, medium-scale structures in the outer parts of the 

boundary layer are well resolved, as a result of the dense particle tracking and the further increase 

in spatial resolution by the data assimilation approach. Close to the wall, where structures become 

smaller and smaller, undersampling of the flow gradients is evident, as expected given the large 

observation space and the bubble diameter of 300 μm. The results gained by FlowFit can be used, 

among others, for analyzing the interaction of superstructures with smaller scales. 

When displaying a wall-parallel slice of the particle field, approximately centered around 0.4 

boundary layer thicknesses (bottom), elongated structures of low and high relative velocity can be 

seen, reaching from the ZPG into the FPG and APG domains. The identification and analysis of the 

spatio-temporal development of these structures will be the main topic of the upcoming 

investigations.  
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The gained velocity- and acceleration information at the discrete locations of the particles can be 

used to generate statistical results by defining bins and averaging the properties of all particles 

found within a certain bin over a time-series. Figure 6 shows a first result of this approach (using 

only 200 images), where the bins were extending over the whole spanwise domain. The resolution 

in streamwise and wall-normal direction was 4 × 4 mm2. 

 

 

 

 
Figure 5: Exemplary instantaneous evaluation result at Ufs = 7 m/s. (top) 620,000 tracked particles, 

color-coded with streamwise velocity; (middle) FlowFit interpolation of the same particle cloud, 

visualized as isosurfaces of Q-criterion (Q = 2500/s); (bottom) wall-parallel cut (displayed region 

signified as the black area in the insert) through the particle field, showcasing large-scale structures. 

The boundary layer of the ZPG-region can be recognized, though the near-wall region cannot be 

resolved. Resolving the near wall region requires seeding and recording concepts outlined e.g. in 
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Schröder et al. (2015) and Bross et al. (2019). When approaching the deflection region, the FPG 

causes an acceleration peak (see bottom figure) with a significant thinning of the boundary layer. 

Within the deflection the flow decelerates as the APG region is entered and the boundary layer 

thickens rapidly. Using the full dataset for such statistics will allow for much finer resolutions 

and/or the creation of 3D averages by using multiple bins in wall-normal direction, thus capturing 

e.g. three-dimensional side wall effects.  

 

 

 
Figure 6: Average streamwise velocity (top) and acceleration (bottom) field based on 200 

instantaneous samples. 

Turning to the results of the double-illuminated cases at Ufs ≈ 14 m/s (see Figure 7) it is evident that 

the double-illumination evaluation was equally able to seamlessly track the bubbles over the whole 

system. FlowFit interpolation shows a still detailed system of vortical structures; however the 

under-sampling is more evident in comparison to the slower case, as the particle number is 

reduced, while the spectrum of turbulent structures grows with increased Reynolds number. 

Animations still show a high degree of temporal coherence of the structures. Large-scale structures 

can again be easily identified by eye, when displaying the outer turbulent boundary layer region. 
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Figure 7: Exemplary snapshot of evaluation at Ufs = 14 m/s. (top) 200,000 tracked particles, color-

coded with streamwise velocity; (middle) FlowFit interpolation of the same particle cloud, 

visualized as Isosurface of Q-criterion (Q = 2000/s); (bottom) wall-parallel cut of particle cloud. 

5  Special calibration requirements 

During the evaluation of the experimental data, certain issues with the viewing conditions of the 

cameras and the 3D calibration were discovered and correction methods were developed.  

Volumetric experiments typically concentrate on flow measurements in relatively small volumes 

due to the available laser light. Only recently, with the growing use of Helium-filled soap bubbles as 

seeding material, much larger volumes became accessible. Such experimental setups, like the one 

described in the previous sections, typically make use of lenses with quite short focal lengths (24-50 

mm). However, wide-angle lenses are much more prone to suffer from distortions (pin-cushion, 

barrel, moustache), compared to the more commonly used tele-lenses (60-180 mm) when imaging 

smaller volumes.  

Commonly used calibration models approximate the viewing conditions from first order (e.g. the 

pin-hole model) to third order (e.g. polynomial models). However, even a third order model is often 

not able to capture all distortions introduced by wide-angle lenses up to the desired accuracy. In 

order to ensure reliable particle detection in the whole measurement volume, the calibration 

function of each camera has to be able to model the occurring imaging defects. Typically, the 

reprojection error should be kept below 0.1 pixels over the whole imaged volume.  

Another factor that is often overlooked is that for many experiments the cameras are viewing the 

flow through glass or plexiglass windows. Depending on the quality of the glass (e.g. Schlieren), the 

lines-of sight can be slightly deflected, introducing fine-scale distortions. If the glass surface is 

curved (e.g. a pipe), the distortions can be massive (see e.g. Paolillo and Astarita, 2019).  
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Effects of the mentioned imaging problems were found within evaluated data from the large-scale 

boundary layer experiment. While the initial tracking results were promising, an interesting 

observation was made when looking at averaged results. Figure 8 shows a result of bin-averaging 

the properties of the tracked particles (comparable to Figure 6 bottom, albeit without any 

corrections). A pronounced stripy pattern is visible in the streamwise acceleration, which is clearly 

not of physical origin. Very distinct jumps in average acceleration can be observed at the transitions 

between different cameras (see the camera field-of views in Figure 8 bottom). This behaviour can be 

understood: The image distortions of wide-angle lenses are most severe at the border of the camera 

image. In case a particle transitions from being observed by a certain camera to not being observed 

anymore, this camera (and its potential remaining local decalibration) does not affect the particle 

position anymore. Therefore, the reconstructed trajectory exhibits a sudden jump, which is very 

visible in the average acceleration, even if its magnitude is low. 

 

  
Figure 8: Averaged streamwise acceleration (left) and streamwise acceleration underlaid by camera 

field-of-views (right). Results gained by same bin averaging approach and time-series as in Figure 6.  

However, the stripes in regions where no camera field-of-view is ending (especially visible in the 

region of the upstream flat plate) cannot be explained that way. The orientation of these stripes 

clearly follows the lines-of-sight of several cameras, most notably cameras A3 and A4 from the 

upstream system (see also Figure 2b). 

This observation led to the conclusion that an effect on the camera images itself has to be the source 

of the artificial accelerations observed. In order to isolate each camera from any effects of the 

calibration or image processing, two-dimensional particle tracking was performed directly on the 

unprocessed images of all cameras, using measurement runs with low seeding concentration. The 

results were averaged in 10 × 10 pixel-bins. 

 

 
Figure 9: Results of 2D particle tracking on the unmodified source-images of cameras A1-A4. 

Average acceleration in units of pixels and time-steps (dt), calculated in bins of 10 × 10 px. Stripes of 

acceleration, originating from deviations of the optical paths, are evident, especially for cameras A3 

and A4. The empty space to the left marks the end of the illuminated region. 
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Figure 9 shows the acceleration in x-direction (corresponding to the flow direction in world 

coordinates) of the 4 cameras of the A-system.  Please note that due to the omission of any 

calibration, these results do not have any physical meaning. Due to the different angles of the 

cameras in relation to the measurement volume, the magnification varies over the field-of-view of 

each camera, leading to virtual accelerations. However, patterns of average acceleration are clearly 

defined, with camera A3 showing a very pronounced system of acceleration stripes and camera A4 

showing a pattern of similar detail, albeit less organized. Cameras A1 and A2 are less effected, 

however they still show stripy patterns of lower frequencies.  

The acceleration results in Figure 9 show a combination of physical effects, perspective projection 

and the discussed deflection pattern. In order to isolate the latter effect and to get a more 

quantitative description, a further processing is carried out. 

Most of the particles located in a certain distance from the wall - above the log-layer - move at 

relatively straight paths, as they are only rarely subject to turbulent structures. In such a case, 

temporal smoothing with a long kernel can be used to dampen the high-frequency effects of the 

deflection fields, thus correcting the particle position, at least in a statistical sense. The qualified 

particle trajectories are identified by a velocity threshold on the 2D tracks and filtered using cubic 

B-splines (‘TrackFit’, Geseman et al. 2016) with a low cross-over frequency of 0.12. The found 

positions are subtracted from the originally found (image matched) positions, thus giving a measure 

in pixels of the deviation induced by fine-scale distortions, whose effects should be largely erased by 

the filtering. 

 

 
Figure 10: Results of 2D particle tracking on the unmodified source-images of cameras A3, A4, B1 

and B3. Shown is the averaged deviation of the particle positions after a strong temporal filtering 

from the original positions (in x-direction). Fine-scale deviations can be isolated.  

Figure 10 shows the bin-averaging results for this approach for cameras A3, A4, B1 and B4. The 

result for Camera A3 closely resembles the accelerations shown in Figure 9, as this camera is 

oriented nearly parallel to the window and flow. For camera A4 the virtual accelerations induced by 

the perspective imaging are gone and the small-scale deviations are isolated. Cameras A3 and B1 are 

viewing the flow through the same window, though they do not share a common field-of view. Still, 

the same vertical stripe pattern can be seen. B1 is located much closer to the window, which 

explains the stripes being much wider and lower in magnitude. Cameras A4 and B3 share a common 

field-of-view on another window. The marked box indicates a region, in which the found deviation 
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patterns clearly match between the two cameras, even if the magnitude is different (due to the 

different viewing conditions: distance and angle to the window, focal length, pixel size). 

These findings clearly indicate that the glass windows of the wind tunnel are the origin of the 

observed acceleration patterns. Other sources of distortions can also be imagined, like the lens, the 

protective glass in front of the sensor or the positioning of the micro-lens array in relation to the 

silicon beneath. However, investigations if these play an additional role still have to be carried out. 

Localized spots of positive and negative acceleration are visible on all cameras, which are likely 

caused either by local defects in the window glass or by dust particles on the sensor cover glass.  

 

5.2 Creating 2D correction maps 

 

The deflections caused by the wind tunnel windows can be seen as an effect that is largely 2D, in 

that the deflection magnitude will be the same for all particles along a certain camera line-of-sight, 

regardless of the depth position.  

Therefore, a 2D correction scheme can be attempted. The idea is to locally assess (calibrate) this 

disparity to determine a correction field, which can be used to shift the projection point of a 3D 

particle to its ‘true’ position, where it would have been projected without the obstacle. The disparity 

fields gained from 2D tracking and shown in Figure 10 could already be used for this purpose, as 

they describe the fine-scale distortions quantitatively for every camera. However, large-scale effects, 

like lens distortions that are not covered by the 3D camera model are not included in this correction 

maps. Therefore, a more general approach, using the tracking results of a full 3D STB evaluation is 

applied. As shown above, despite the small-scale calibration errors introduced by the windows, 

particle tracking is working successfully, though the 3D positions of the particles will be slightly 

altered by the calibration errors. The effects of the several cameras will overlap in the volume, 

possibly reducing this effect to a certain extent. However, in order to accurately calibrate the 

deflection field, the 3D position should be as accurate as possible.  

To further dampen the small scale window-deflections, a similar as introduced for the 2D tracking is 

applied: The particle trajectories above a certain velocity threshold from a sample run of 800 time-

steps (each containing approx. 520,000 particles) are filtered using cubic B-splines (‘TrackFit’, 

Geseman et al. 2016) with a low cross-over frequency of 0.05. The found particle positions are back-

projected onto the camera images. These 2D positions on the different cameras will show a 

disparity to the particle peak present at the source image. Averaging these disparities will give a 

measure for the deflection error at this image location.  

In order to calculate the disparity for each individual particle, the peak position of the particle image 

has to be determined with high accuracy. Typically used peak finding procedures are not suited, as 

these do not provide the required accuracy and do not work reliably at the high particle image 

densities present in this case. Instead, a 2D image matching technique is applied, which is closely 

related to the 3D ‘shaking’ procedure, which is used at the heart of the IPR (Wieneke 2013, Jahn 

2017) and STB methods. In the 2D version (termed ‘2D-shaking’ from here on), not the 3D particle 

location is altered in order to best match the images of several cameras, but the peak location on a 

single camera is varied to minimize the local residuum. To this end, a steepest-descent method that 

uses the gradient of the cost function to analytically derive the optimal step size (Jahn 2017) was 

used. Using this approach, the projected positions of all particles seen by a certain camera are 

corrected to best fit the original camera image. 

The difference between the original back-projected position and the position determined by 2D-

shaking gives the disparity. These disparities are averaged in bins of 10 × 10 pixels for the whole 

time-series. On average around 2,000 entries are gathered within each bin. The results for camera 

A1 to A4 are given in Figure 11. They clearly show a similarity to the 2D-tracking results given in 

Figure 10 , however now additionally overlapped by large-scale lens-effects. 
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Figure 11: Deflection fields of cameras A1-A4, determined by averaging the disparity between back-

projection of fitted 3D tracks and optimal peak position according to the source-images. 

The inner parts of the images can show disparities up to 0.3 pixels, at the border values above 0.5 

pixels are registered. These border effects are likely caused by lens distortions, which were not 

captured by the camera model. The two distinct lines of positive and negative disparity at the 

downstream edge of camera A2 are caused by diffraction from a window frame, which was present 

in very close proximity to the field of view of this camera. The interplay of the different cameras 

within the volume is clearly visible in camera A3, where the projected field-of-views of other 

cameras can be seen as line-patterns overlaying the stripe structure. 

Now that we have a well-resolved measure for occurring deflections, we can use these maps to 

correct the camera calibration. When projecting a location from 3D space to a 2D camera image, the 

result is simply shifted according to the deflection value at this position given by the calibrated map. 

When determining a 3D line-of sight from a 2D camera location, the inverse transformation is 

applied. In order to ensure smooth transitions between the cells (bins), the map is interpolated by a 

2D B-Spline field. 

 

 
Figure 12: Second iteration of deflection fields of cameras A1-A4 
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The same time-series of 800 images was re-evaluated using the new, corrected, calibration. The 

results are shown in Figure 12. It can be seen that the effects were largely corrected. Hints of the 

underlying patterns still remain though. The maps from this second iteration are added to the 

original ones, providing the final correction maps. It has been found that the detected deflections 

are slightly underestimated (likely because the particle position during calibration is still influenced 

by the deflection, despite the strong temporal filtering). Therefore the correction maps are 

multiplied by a factor of 1.1, which provides the best results. 

These maps are then used to re-evaluate the previous time-series. The averaged accelerations are 

given in Figure 13 (left). The artificial accelerations caused by the window glass are largely resolved. 

However, at the transition regions between different cameras the deviations are too severe to be 

fully corrected by updated calibration. Though the effects are reduced, traces of the particle 

trajectories exhibiting a jump are still visible as bands of artificial acceleration along the borders of 

the field-of-view of several cameras. 

 

   
Figure 13: (left) Averaged streamwise acceleration for the same case as given in Figure 8, here with 

3D calibration corrected for deflections and camera calibration deviations. (right) Weighting 

function in relation to normalized x-coordinate of each camera (extending to x = ± 1). The weight is 

gradually reduced by a smoothstep-function starting at x = ± 0.75 to x = ± 0.94. 

In order to further reduce the edge-of-camera effects another measure was introduced. The distinct 

acceleration bands are caused by the sudden loss of influence of a certain camera on the particle 

location. Therefore a weighting system was implemented, which regulates the influence of each 

camera on the shake process of a certain particle, based on the 2D position of the particles 

projection point on this camera. To this end, a smoothstep-function is used, which reduces the 

weight from 1.0 in the inner parts of the camera image to down to 0.001 in the last 6 % of the image 

in x-direction (as the camera systems overlap in this direction). See Figure 13 (right) for a depiction. 

Evaluating the same time-series as above with this additional weighting applied during the shake-

process yields the result shown in Figure 6 (bottom) in the results section, where the influence of 

the camera transitions has been reduced to a negligible level. The acceleration peak at the onset of 

the FPG region is now clearly defined, as well as the deceleration region where the FPG transitions 

into the APG. The FPG region is now nearly void of artefacts.  

4  Conclusions 

A large-scale time-resolved experimental investigation on a turbulent boundary layer in several 

regimes of pressure gradient has been successfully performed using Shake-The-Box Lagrangian 

Particle Tracking of Helium-filled soap bubbles with the goal of investigating so-called turbulent 

superstructures. Hundreds of thousand bubbles could be tracked over a 2.9 m long measurement 

volume using a system of 12 high-speed cameras.  

When using HFSB seeding it can be non-trivial to achieve high seeding densities, especially at higher 

flow velocities, as the number of nozzles cannot be scaled as easily compared to DEHS seeding 

generators. Furthermore, wind-tunnel meshes prove to be an obstacle, potentially destroying a high 

percentage of bubbles. In the current experiment, the maximum spatial resolution could only be 

achieved by positioning the HFSB nozzle-arrays close to the measurement section, potentially 

influencing the flow. For the physically more interesting cases, the nozzles had to be moved into the 

wind tunnel tower, minimizing their impact on the flow, at the cost of reduced bubble 

concentration. Still, approx. 200,000 bubbles could be instantaneously tracked for these cases at 14 
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m/s free stream velocity. In order to limit the particle shift at higher velocities, a time-resolved 

double illumination scheme was applied and the STB evaluation has been modified accordingly. 

Large-scale structures can be identified by eye within the particle field. The development of feature 

detection and tracking methods for these structures is an ongoing work. Interpolation of the 

discrete particle field using physical constraints (FlowFit) demonstrates that also finer scales can be 

resolved within such large measurement volumes, providing a sufficient seeding concentration. The 

interaction of these vortical structures with superstructures can thus be investigated, e.g. their role 

in transport processes over structure boundaries. 

Several optical and experimental effects have been found to interact with the tracking accuracy. 

Windows placed between the camera sensor and the measurement region introduce distortion and 

deflection effects. These effects are especially pronounced in large-scale measurements due to the 

used wide-angle lenses and the large field-of-view on a wind tunnel window. The installed windows 

did not show any visible defects, therefore it is expected that such effects are widespread when 

using readily available glass plates (like float glass). Installing Schlieren-free, polished optical glass 

would minimize distortions, however the cost typically prohibits this solution for large windows. A 

further deviation is introduced by the use of wide-angle lenses, which can exhibit large-scale 

distortions that cannot be fully corrected using standard 3D calibration models, most notably at the 

outer areas of the frame. Lagrangian Particle Tracking methods have become accurate enough to 

measure such phenomena. The average acceleration is a very sensitive tool for detecting localized 

calibration (i.e. deflection) errors. 

Both of the mentioned effects have been found to be largely 2D (not changing over the depth of the 

measurement volume). Therefore, a correction method was developed, that relies on calibrating the 

shift on the different cameras introduced by the different effects. To this end, the particle position 

was treated by a large-kernel temporal filter, minimizing the position bias. The reprojected particle 

position is compared to the position of the particle image found on the original image. These are 

determined by applying an image matching scheme (‘2D shaking’). The disparities are averaged in 

small bins, thus creating a well-resolved correction map to the calibration of each camera.  

The updated calibrations effectively reduce the small-scale effects. A special treatment of the edge 

region of each camera ensures a smooth transition of a particle from being inside and outside the 

field-of-view of a certain camera. To this end, a smoothstep function gradually reduces the weight of 

the camera in the shaking process when the particle approaches the edge of the field-of-view. 
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