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Turbulent Flows: an Introduction

Ian P Castro and Christina Vanderwel

Chapter 7

Internal wall-bounded flows

All the specific types of turbulent flow discussed in earlier chapters have been
assumed to be remote from any solid walls. This chapter and the next explore the
shear flows that directly result from the presence of a wall. Classic examples include
turbulent pipe flow (an internal flow) and the turbulent boundary layer (an external
flow). Such flows are necessarily more complex than the free shear flows discussed
earlier, not least because sufficiently near to the wall, they must include significant
viscous effects. The Reynolds number (however defined) thus almost always assumes
greater importance than in the free shear flows discussed in chapter 6. After some
initial remarks, we consider the major types of internal flow in sections 7.2 (Couette
flows), 7.3 (channel flows), and 7.4 (pipe flows). External wall-bounded flows are
considered in the next chapter (chapter 8). In all cases, the discussion starts with a
brief consideration of the corresponding laminar flows. In the case of internal flows,
these are among the very few exact solutions of the Navier–Stokes equations and set
the scene for exploration of the turbulent versions which inevitably arise when the
Reynolds number is high enough.

7.1 Initial remarks
Wall-bounded turbulent shear flows are exceedingly common, arguably much more
common than the free shear flows discussed earlier. Internal flows through pipes and
channels along with external flows around vehicles and over buildings are examples
of flows in which mean flow shear is created in the boundary layer formed by the
flow near the solid surface. In fact, the frictional effects near the wall provide the
most common source of shear. Without these effects, there would be no turbulence.
They arise as a result of the no-slip condition – the requirement that, because of
nonzero viscosity, the velocity of the fluid at the wall must equal the wall’s velocity
(whether zero or not).

Consider, for example, the flow through a long pipe – an internal flow. One could
reasonably claim, given the preponderance of pipes (and channels) of all sizes and in
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such numerous contexts, that this is the most common kind of fluid flow resulting
from human endeavour. Indeed, the measurement of the flow rate in pipes might
well be the most important measurement made daily and often continuously,
throughout large sections of industry: an error of only a fraction of one percent
could lead to the loss or gain of very large sums of money (for the supplier or the
consumer). Recall section 2.8, which mentions Reynolds’ early work on pipe flow.
He showed that if the pipe Reynolds number exceeds a few thousand, the flow
becomes fully turbulent. Most industrial pipework contains flows that have very
much larger Reynolds numbers, so a large fraction of such flows are fully turbulent
and thus, despite the extremely simple boundary conditions, not amenable to a full
analytic solution. In addition, a crucial fact arising from the turbulent nature of such
flows is that the power required to drive the flow through the pipe is usually orders of
magnitude higher than would be needed if the flow remained laminar, as mentioned
in section 1.3.

The planar equivalent of a pipe is a wide rectangular channel; figure 7.1 shows a
snapshot of the fully turbulent flow in such a channel. We do not discuss the details
here, but note that the flow typifies turbulence in that there are entangled eddy
motions on a wide range of scales. It also typifies wall turbulence in particular, in
that the eddy motions are of a much smaller scale nearest the wall than they are
further away. Instantaneously, the cross-stream profile of the streamwise velocity is
far from monotonic, reflecting the state of the flow at the instant the profile was
obtained. This illustrates an important feature that we have not yet mentioned,
perhaps because it should be self-evident (although it can be easily forgotten): the
mean velocity profile in any turbulent flow never actually exists. Note, from the
mean velocity profile shown in the figure, that the velocity gradient is at its largest at
the two walls; the shear stress at the walls is much larger than it would be in laminar
flow, emphasising the point made above, that much greater power is needed to drive
the flow through the channel.

Figure 7.1. A snapshot of the eddy motions within a turbulent flow in a rectangular channel, visualised on the
spanwise centreline, from a direct numerical simulation (DNS) at =τRe 5901. The direction of the flow is from
left to right and the eddies are visualised using the Q criterion (see section 8.5) and are coloured according to
the velocity magnitude – from green (lowest) to red (highest). On the right, there are three sample
instantaneous profiles of the streamwise velocity, with the time-averaged (mean) profile shown as a dashed line.

1Reprinted from [19], copyright (2017) with permission from Elsevier.
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7.2 Couette flows
7.2.1 The laminar case

Many of the laminar flows discussed in this section and the following sections will be
familiar to readers who have studied basic fluid dynamics. The flows represent
classical ones, for which the Navier–Stokes equations yield straightforward analytic
solutions when the Reynolds number is low enough to prevent turbulence from
arising. We include the fundamental results here, without needing to include much
detail in the analysis, or extending the discussion to involve related alternative flows
(laminar flow in branching channels or curved pipes, for example). Our purpose is
merely to provide the background for an exploration of the corresponding turbulent
flow. We begin by discussing Couette flow, a planar flow between two walls.

Figure 7.2 sketches the ideal cases reviewed here. They are contained in a
rectangular channel of internal height h2 and width Lz. We assume its length, Lx, is
very large compared with its other dimensions, so that the entry and exit regions of
the duct, where the flow is still developing, can be ignored. Attention is thus focused
on the ‘fully developed’ region in which the axial velocity does not (and cannot)
depend on x and the flow is a simple one-dimensional one in which the velocity,
U y( ), depends only on y. This assumes, of course, that ⋙L h/2 1z , so that the
influence of the side walls of the duct is negligible.

In the simplest version of this situation, one wall of the duct moves with a
constant velocity, = =U y h U( 2 ) w, say, for then no pressure gradient is needed to
drive the flow – frictional forces at this upper wall suffice. Under these circum-
stances, the flow becomes a simple shear flow; the velocity between the upper and
lower walls is given by =U U y h/ /2w . For the laminar case, the viscous shear stress,
μdU dy/ , is constant across the flow and obviously given by μU h/2w . This is a Couette
flow and is common in lubricating systems, often as the axisymmetric equivalent. Uw

Figure 7.2. A long, straight, smooth-walled, rectangular channel with sketches of the characteristic velocity
profiles for the cases of laminar and turbulent Couette flows (i.e. with a moving wall).
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and h are the only pertinent velocity and length scales, respectively; therefore, as an
appropriate Reynolds number for the flow, we can use either ν= U hRe /w w or

ν= U hRe /c c , (with the centreline velocity =U U0.5c w). Once Rew exceeds about 1200,
the flow begins the transition to turbulence; see, for example, Aydin et al [3]. The
transition process is not discussed here, and we now turn to consider the fully
turbulent Couette flow.

7.2.2 The turbulent case

As in the laminar case, in the fully developed region there is no dependence on x and,
provided ⋙L h/ 1z , there is no dependence on z either – the flow is essentially one-
dimensional. The general mean momentum equation (2.16) is repeated here:

ρ
ν∂

∂
+ ∂

∂
= − ∂

∂
+ ∂

∂ ∂
−

∂ ′ ′
∂

U
t

U
U
x

P
x

U
x x

u u

x
1

. (7.1)i ji
j

i

j i

i

j j j

2

Note that the continuity equation directly implies that V must be zero all across the
flow, because ∂ ∂U x/ is zero and V is zero at the walls. (This is obviously true whether
or not the flow is turbulent.) With the assumptions of no dependence on either x or z,
the x-direction (i = 1) equation simplifies greatly and can then be integrated once to
yield

μ ρ τ− ′ ′ = =dU
dy

u constant , (7.2)wv

where τw is the wall shear stress. Equation (7.2) is simply a statement that the total
mean shear, the sum of the viscous and turbulence stresses, is constant across the
flow. Since ′ ′u v is zero at the walls, it is immediately clear that the mean velocity
gradient cannot be constant across the whole flow, unlike in the laminar case
summarised above. The velocity gradient at the walls is larger than it is elsewhere,
and the mean velocity profile takes on a characteristic S-shape, as sketched in
figure 7.2. In each near-wall region, viscous stresses are significant. At sufficiently
high Reynolds numbers ( ν= ⋙U hRe / 1c c ), however, these viscous layers are thin
and one might expect the central portion of the flow to approximate a steady version
of the simple shear flow discussed in section 5.2 (but see below), for which the
viscous stress in equation (7.2) is negligible and the turbulent shear stress is thus
constant.

The viscous region is common to all wall-bounded flows and we explore it in more
detail in the following section; it is sufficient to note here that it becomes thinner and
thinner as the Reynolds number rises. Note immediately, however, that we can
define a characteristic velocity scale of the near-wall flow by using the wall stress;
thus, the frictional velocity, uτ, is defined by ρ τ=τu ;w

2 U and y can be normalised as

ν= =τ τ
+ +U U u y yuand , (7.3)

respectively, so that equation (7.2) can be written as
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− ′ ′ =
+

+
+dU

dy
u 1. (7.4)v

Now consider the origin of the turbulence. Recall from the earlier discussion of
decaying homogeneous shear flow in section 5.2 that the only source of turbulence is
the presence of the mean shear, so that there is a positive production term in the
energy equation (5.29). For a fully developed, steady Couette flow, in which

=dk dt/ 0, the source of the shear stress in the central region (− ′ ′u v ) must be a
result of what happens at and near the two walls. This is intuitively obvious; in the
absence of viscosity, the wall shear stress would be zero and whatever the velocity of
the moving wall, no flow could be generated, as there would be no driving force.

This geometrically simple flow is perhaps the purest among the canonical wall-
affected turbulent shear flows, not least because of its homogeneity in two space
directions (x and z), the lack of any pressure gradient, and the absence of a gradient
in shear stress. The flow is defined by only one parameter, the Reynolds number (in
contrast to pipe flows, section 7.4, which have two controlling parameters). It has
therefore been the study of numerous papers since it was first discussed by Couette in
the late 1800s. But it is not, in fact, at all simple. The flow is fully turbulent above a
Reynolds number (based on =U U2w c and the channel half-height, h) of a few
thousand. Laboratory realisations of this pure, planar, flow are quite difficult to
establish; they often involve a moving belt as the upper wall, which can be difficult to
keep flat (at the speeds needed to establish a reasonably high Reynolds number) and
to make long enough to ensure a fully developed region between the two ends. It is
also usually necessary to initiate the flow in some way in order to ensure the correct
mass flux. Reichardt [38] and Tillmark and Alfredsson [47, 48] are examples of early
and more recent studies, respectively. To obviate the technical problems involved in
setting up a truly planar flow, some laboratory studies have used the approximation
provided by an annular flow in a narrow channel between two long concentric
cylinders, with either the inner or outer cylinder rotating at a fixed speed. If the gap
between the cylinders, g, say, is sufficiently small compared to their circumference,
Lc, say, the annular flow is closely planar. There are hundreds of papers in this
category, starting, perhaps, with the classical works of G I Taylor [45, 46], but nearly
all of them are not concerned so much with the nature of a pure turbulent Couette
flow as with the details of the transitional processes that occur once the Reynolds
number is high enough. Actually, even for very large L g/c , the influence of the well-
studied secondary flows that occur prior to transition and continue beyond it
(including the classic Taylor vortices) can never really allow this situation to be a
genuine surrogate for a true planar Couette flow.

One might think that it would be easier these days to study the flow using DNS
and, in some ways, this is true. However, this approach is not without difficulty
because of the very long and wide structures that are present in the flow [17]; this
makes the problem significantly more expensive than obtaining the DNS solutions
for a Poiseuille (pipe) flow at comparable Reynolds numbers. Nonetheless, a number
of DNS results are now available; figure 7.3 shows some results from the study of
Avsarkisov et al [2]. We use these as being sufficiently typical to make a number of
basic points about turbulent Couette flow without delving into great detail. Note,

Turbulent Flows: an Introduction

7-5

 EBSCOhost - printed on 1/29/2024 5:45 AM via UNIVERSITY OF SOUTHAMPTON. All use subject to https://www.ebsco.com/terms-of-use



incidentally, that since the sum of the normalised viscous and Reynolds shear
stresses is necessarily unity for all Reynolds numbers, as required by equation (7.4),
figure 7.3 does not include the former; the frictional stress, + +dU dy/ , is simply the
difference between unity and the Reynolds shear stress data.

First, as mentioned above, the frictional layer near the wall ( =y h/ 0) becomes
thinner as the Reynolds number rises. This is obvious in figure 7.3(a) from the
increasingly full mean velocity profile in outer scaling (i.e.U U/ w versus y/h) and, in
figure 7.3(b), from the reducing region in which the frictional shear stress is
significant. Second, notice how much larger the velocity gradient near the wall is
in the turbulent case, compared with the laminar case, emphasising the much larger
wall stress very close to the wall and thus the much greater drag when turbulent flow
occurs. It is straightforward to show that the turbulent to laminar wall stress ratio is
given by ∣τ

+
=U2Re /( )y h , where ν=τ τu hRe / ; for the data in the figure at =Re 22500c

( =τRe 550), the ratio is about 55. Third, recall that we might have anticipated a
central region of uniform velocity gradient (shear) in which the flow is similar to
homogeneous shear flow (a steady version of the homogeneous shear flow turbu-
lence (HSFT) discussed in section 5.2). Figure 7.3(a) suggests that if there is a region
of constant shear, its strength weakens with increasing Reynolds number and at

=Re 22500c it is given by ∣ ≈=d U U d y h( / )/ ( / ) 0.1w y h/ 1 , shown as the thin blue line at

Figure 7.3. (a) Mean velocity profiles of plane Couette flows at various Reynolds numbers, over one half of the
channel and normalised using the outer (top, left: h, Uw) and inner (bottom, right: ν τu/ , uτ) scales. (b) The
turbulent shear stress. ν= hURe /w w values are shown in the legend. In (a) the straight, dashed black line
represents the laminar profile (U U/ w versus y/h), the lower black line illustrates the same data as those shown
by the upper black line but plotted using inner scaling, the solid blue line depicts the viscous law, =+ +U y ,
and the solid red line shows κ= ++ +U y B1/ ln( ) with κ = 0.41, =B 5.1. The straight blue line at the top
indicates the gradient ofU U/ w at =y h/ 1. The symbols are for other sets of computations at comparable Rec,
as detailed in [2]. Only one half of the channel, with a width of h2 , is shown; the other half of the mean flow
consists of an inverted mirror image, withU U/ w rising to unity at the moving wall ( =y h/2 1)2.

2Reproduced with permission from [2], copyright Cambridge University Press.
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the top of the figure. It appears to be an open question whether this shear tends
towards zero at an infinite Reynolds number [22] or to some small finite value [8].
What is clear, however, is that the reduction in shear is quite slow as Rew rises.

7.2.3 The viscous sublayer

Consider now the mean velocity profile of figure 7.3(a) plotted as +U versus +y . It
was Prandtl [37] who first postulated that at high Reynolds numbers, there is an
inner layer close to the wall, in which the mean velocity profile must be determined
only by viscous scales – independently of the characteristic length and velocity scales
far away from the wall – in this case, h and Uw. The natural velocity scale in the
viscosity-dominated region is uτ (as mentioned earlier) and the viscous length scale,
which we call ηv, must then be η ν= τu/v . Note that this is quite distinct from the
Kolmogorov scale, η, discussed in section 3.3. Hence, η ν= = τ

+y y yu/ /v is a wall
distance appropriately normalised by this viscous scale, as previously expressed in
equation (7.3). It can be thought of as a local Reynolds number, so its magnitude at
any point is a measure of the relative importance of the viscous and turbulent
processes. +U (= τU u/ ) and +y are normally thought of as the velocity and the wall
distance in wall units (i.e. inner scaling). It is clear that in the region very close to the
wall, where the turbulence shear stress ′ ′u v can be ignored when compared to the
viscous stress, equation (7.2) leads directly to

=+ +U y . (7.5)

This viscosity-dominated region is usually called the viscous sublayer, although
sometimes it is referred to as the laminar sublayer – rather a misnomer, as that could
suggest there are no velocity fluctuations within it, which is not true. Figure 7.3(a)
includes the sublayer =+ +U y relation and it can be seen to describe the profile up
to ≈+y 5. Note that equation (7.5) is not exact; a fuller analysis shows that

=+ +U y is correct up to +y( )4O (i.e. a Taylor series expansion shows, on applying
the boundary conditions, that near the wall terms in +y 2 and +y 3 are identically zero,
see Pope [36], for example). Notice, too, how thin the viscous sublayer is; at =+y 5,

<y h/ 1%, emphasising how taxing it is to undertake a laboratory experiment to
measure velocities within this viscous region, which becomes increasingly thin as the
Reynolds number rises.

7.2.4 Beyond the viscous sublayer

Further from the wall, the turbulence shear stress begins to be significant and
eventually, after a region usually called the buffer layer, the profile appears to follow
a log-linear relation, above around =+y 30, which can be written

= ++ +U A y Bln( ) . (7.6)

The reasons for which one might expect such a profile are explained in section 7.3.2.
One of the practically important measures related to the energy needed to drive

the flow in any wall-bounded situation (or, equivalently, the drag the flow imposes
on the surface) is what is called the skin friction coefficient, which can be defined (for
this Couette flow) in terms of the wall velocity Uw by
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τ
ρ

= = τC
U

u
U2

2 . (7.7)f
w

w w
2

2⎛
⎝⎜

⎞
⎠⎟

If equation (7.6) holds all the way to the centre of the channel (where =+ +U U /2w ), it
follows that

= +τC A B0.5 ( ln(Re ) ) , (7.8)f
2

showing that Cf falls with increasing τRe , but much more slowly than it would in the
laminar Couette flow, for which = = τC 1/Re 1/(2Re )f w

2 . So, for example, taking
=A 2.5 and B = 5 as typical for equation (7.5), the ratio of turbulent to laminar

friction coefficients (if the flow were somehow to remain laminar) is about 11 at
=τRe 50 but about 1330 at =τRe 500.

7.2.5 The turbulence

Finally, we make a few comments about the nature of the turbulence away from the
wall region. We show first, in figure 7.4(a), profiles across the channel of the three
normal Reynolds stresses (as rms values in viscous units, i.e. normalised by uτ). Note
first that there is a maximum in ′+u rms of around 2.8 close to the wall, which turns out
to be fairly typical of wall-bounded flows. Second, because the turbulence kinetic
energy production term is nonzero across the whole flow, there is significant axial
stress at the centreline – ′ ≈+u 2.1rms . Third, it is clear that the turbulence is
anisotropic throughout the flow, including around the centreline – much more so
than in pure channel flow, see section 7.3.

Figure 7.4. DNS data for a Couette flow at =τRe 52 from [18]. (a) normalised root-mean-square velocity
fluctuations; solid line, ′+u ;rms dashed line, ′+rmsv ; dotted line, ′+w rms. Symbols are laboratory data at =τRe 82
from [5]. (b) Turbulent kinetic energy budget. Solid line, production; dashed line, dissipation; dotted line,
transport. Symbols are from a DNS of channel flow at =τRe 180 [23]3.

3Reproduced with permission from [18], copyright Cambridge University Press.
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The turbulent kinetic energy equation and the Reynolds stress equations are not
exactly those presented and discussed in section 5.2, for in that case of homogeneous
isotropic shear flow we assumed initial homogeneity in the turbulence and, because
the velocity gradient dU/dy is invariable with y, the homogeneity remains for all time
(refer to the argument just prior to equation (5.29)). However, in the case of Couette
flow, although there may be a region of closely constant velocity gradient in the
centre, it is certainly not constant across the whole flow. This leads to the appearance
of an additional term in the Reynolds stress equation, which, for steady flow, from
equation (2.27), becomes (recalling = =V W 0, ∂ ∂ = ∂ ∂ =x z/ / 0)

ρ ρ
δ

ρ
δ

ν

= − ′ ′ − ′ ∂ ′
∂

+
∂ ′
∂

− ∂
∂

′ ′ ′ +
′ ′

+
′ ′

−
∂ ′
∂

∂ ′
∂

u u
dU
dy

p u

x

u

x y
u u

p u p u

u

x

u

x

0

2 .

(7.9)
i j

i j
i j

j i

i j

j i
i j

k k

2 2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v

So, for example, with = =i j 1 (in equation (2.27), for the ′u 2 stress), the equation

describing the transport of the streamwise component of the turbulence energy, ′u1
2

2, is

ρ
ϵ= − ′ ′ − ∂

∂
′ ′ + ′ ∂ ′

∂
−u

dU
dy y

u
p u

x
0

1
2

1
3

, (7.10)2v v

which, compared with equation (5.36) for homogeneous shear flow, includes the
triple-velocity-product term which would be zero if the turbulence were homoge-
neous. Nonetheless, DNS experiments have shown that this term is, in fact, very
small except close to the wall. This equation for the axial Reynolds stress is the only
one that contains the mean velocity gradient (i.e. a nonzero energy production term),
so the mean flow drives the production of ′u 2. Energy in the other normal stress
components arises as a result of the pressure strain terms (as discussed in section
5.2.2) but also, in this case, the nonzero triple-velocity-product turbulence transport.
The kinetic energy equation (obtained by summing the three normal stress
equations) is

ρ
ϵ= − ′ ′ + + ′ ′ −u

dU
dy

d
dy

kv
d
dy

p0
1

. (7.11)v v

This shows directly that the imbalance between the production and dissipation of
turbulence kinetic energy (k) at any point in the flow – the first and last terms – is a
direct consequence of the transport of energy in the y direction. Even when the triple
product term is close to zero, the pressure–velocity transport of k is not. Figure 7.3
(b) shows the turbulence kinetic energy balance for the same Couette flow (in which
the fluctuation velocities are those shown in figure 7.3(a)). It is clear that the
transport terms (the central two terms in the above equation, plus the viscous
diffusion) is significant close to the walls, where there is thus no balance between
production (the first term) and dissipation (the final term). In fact, as →+y 0, the
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balance is essentially one between the inward transport of k and dissipation. Even in
the central part, however, the transport term remains significantly nonzero.

We emphasise that equations (7.9)–(7.11) are written without the viscous
diffusion terms, on the assumption that they are negligible. However, although at
high enough Reynolds numbers this is not unreasonable in the central part of the
flow, very near the wall, viscous diffusion unsurprisingly plays a significant role at
any Reynolds number. In fact, it has been shown through detailed DNS studies [2]
that for +y below about five (i.e. within the viscous sublayer), the missing viscous
term in equation (7.9) balances dissipation, and all other terms are negligible. The
same is true for the transport equation for ′ +

w 2 . This is reflected in the transport term
shown in figure 7.4(b), which clearly becomes comparable (but of opposite sign) to
dissipation below about =+y 5; this is because of the relatively large viscous
diffusion, which is much larger than the other transport terms, although it is not
separated from these in the figure. On the other hand, for ′ +2v the balance in that
region is between pressure strain and turbulent (triple product) transport, and for
′ ′+u v the balance is between pressure strain and pressure diffusion. Clearly, fully
developed turbulent Couette flow is complex, despite the fact that it is the flow with
the simplest possible boundary conditions and, unlike all other wall flows, dependent
on only one free parameter – the Reynolds number (Rec, say).

Incidentally, since equation (7.4) shows that, at the centreline, the Reynolds shear
stress, − ′ ′+u v , is ( − ∣+ +

=dU dy1 / y h), the turbulence kinetic energy production there
can be written as

= −
=

=

+

+

+

+
=

P
dU
dy

dU
dy

1 . (7.12)
y h

y h

y h

⎛
⎝⎜

⎞
⎠⎟

This rather remarkable result is exact for all Couette flows and is independent of the
Reynolds number. For the case shown in figure 7.3, for which the normalised
velocity gradient at the centreline is about 0.05, the turbulence production on the
centreline is thus about 0.048, which corresponds to the DNS result.

Overall, whilst the various turbulence statistics discussed above do depend on the
Reynolds number to a greater or lesser extent, the general behaviour is similar in
many respects to that for the more common case of pure channel flow, which we
now discuss. Readers wishing to pursue the topic of Couette flows in more detail
could refer, for example, to the joint experimental and numerical studies of Bech [5]
and the DNS studies of Komminaho et al [18] and Tsukahara et al [50] and the
references therein.

7.3 Channel flows
7.3.1 Governing equations

Channel flows, like Couette flows, occur between two flat plates that form a duct, see
figure 7.5. The simplest case is that in which neither duct wall moves, so that the flow
is driven solely by an applied streamwise pressure gradient. There are more
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complicated cases in which a pressure gradient is applied and, simultaneously, one
wall moves relative to the other, but we do not consider such cases. For a laminar
flow and fixed walls, consideration of the streamwise momentum equation, or a
simple force balance argument, lead to a parabolic velocity profile given by

= −U
U

y
h

y
h

2 1
2

, (7.13)
m

⎜ ⎟⎛
⎝

⎞
⎠

where the maximum velocity on the channel centreline, Um is μh dP dx( /2 )( / )2 .
At high enough Reynolds numbers, the flow becomes transitional, and we now

move on to a discussion of the fully developed turbulent channel flow. Figure 7.5
shows the geometry, a sketch of the mean velocity profile under laminar and
turbulent conditions, and a snapshot from a DNS computation of the turbulent
flow.

As in Couette flows, away from the entry and exit regions of a fixed-wall channel
flow, i.e. in the fully developed region, the velocity statistics do not depend on x, nor,
for wide enough channels and away from the side walls, on z. The flow is therefore
statistically stationary and one-dimensional, just as in Couette flows. Since the flow
is symmetric about the channel centreline, the statistics at y are identical to those at

−h y2 and, in discussing the flow, we can simply consider the lower half, i.e.
between y = 0 and y = h – see figure 7.1. Defining the bulk velocity, UB, as

4 https://www.youtube.com/watch?v=t_5tEqa8rYs&ab_channel=jinLEE, courtesy of Hyung Jin Sung.

Figure 7.5. Sketch of the channel geometry, the laminar and turbulent velocity profiles in plane channel (left)
and a snapshot from a numerical computation of the flow at Reτ = 930, from a video by J Lee4. Dark green
denotes the lower velocities, shading towards red for the highest. The disorganised nature typical of turbulent
flows is apparent.
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∫=U
h

Udy
1

, (7.14)B

h

0

an appropriate Reynolds number is given by ν= U hRe /B B . It is known that the flow
becomes fully turbulent once >Re 900B . As in Couette flow, we can consider the
mean axial momentum equation or a simple force balance over the whole flow, in
order to deduce how the shear stress varies. The three mean momentum equations
(2.16) simplify to

ρ
ν= − ∂

∂
− ∂ ′ ′

∂
+ ∂

∂
P
x

u
y

U
y

0
1

, (7.15)
2

2

v

ρ
= − ∂

∂
− ∂ ′

∂
P
y y

0
1

(7.16)
2v

and

ρ
= − ∂

∂
P
z

0
1

. (7.17)

Note that continuity is automatically satisfied. These equations differ from their
laminar equivalents by the appearance of the usual turbulent stress terms in
equations (7.15) and (7.16), and they differ from the turbulent Couette flow because
of the nonzero streamwise pressure gradient. P is clearly independent of z, and based
on equation (7.16), its variation across the channel is a second-order effect:

ρ ′ + =P P x( ), (7.18)w
2v

where Pw is the mean pressure at the walls and depends only on x. Substituting this
result into equation (7.15) yields

τ= =P
x

P
x y

d
d

d
d

d
d

, (7.19)w⎛
⎝⎜

⎞
⎠⎟

where the total shear stress, τ, is given by

τ μ ρ= − ′ ′U
y

u
d
d

. (7.20)v

The axial pressure gradient is, of course, what drives the flow; it acts to balance the
wall stresses. Unlike the case of Couette flow, τ is clearly not constant with y.
However, both sides of equation (7.19) must be constant (since one side is a function
of y only and the other is a function of x only) so, using the boundary conditions, it
follows that

τ τ= −y
y
h

( ) 1 (7.21)w⎜ ⎟⎛
⎝

⎞
⎠

and also that
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τ− =P
x h

d
d

, (7.22)w w

where τw is the wall stress (at y = 0). It is therefore the shear stress gradient, rather
than the shear stress itself, that is constant across the whole channel. This is true
whether or not the flow is turbulent and, in the laminar case, it is equations (7.21)
and (7.22) that lead to the parabolic velocity profile quoted in equation (7.13). This
laminar case is usually known as Poiseuille flow (as is the corresponding pipe flow
case discussed in section 7.4), although some authors also refer to the turbulent
channel case as a Poiseuille flow, despite the fact that it does not have a parabolic
velocity profile.

7.3.2 The mean velocity profile

On dimensional grounds, the mean velocity gradient can depend on only two
independent groups, y/h and Re. We can therefore write

η
= ΦτU

y
u
y

y
h

yd
d

, , (7.23)
⎛
⎝⎜

⎞
⎠⎟v

where ηv is the viscous length scale defined in section 7.2.3 as ν τu/ . Near enough to
the walls (i.e. when ≪y h/ 1), recall that Prandtl postulated that only the viscous
scales are important and the wall units are defined by equation (7.3), so that
equation (7.23) must become

η
= Φ ≪τU

y
u
y

y y
h

d
d

for 1. (7.24)i

⎛
⎝⎜

⎞
⎠⎟v

Using wall scaling (i.e. equation (7.3), η ν= = τ
+y y yu/ /v and = τ

+U U u/ ), this
becomes

= Φ
+

+ +
+U

y y
y

d
d

1
( ) (7.25)i

which integrates to

=+ +U f y( ). (7.26)

(As in Couette flow, in the viscosity-dominated region, this is just
= ++ + +U y y( )4O .) In this near-wall region, we can write

= Φ = ′+
+

+
+ + +y

U
y

y y f y
d
d

( ) ( ). (7.27)i

Now suppose that the Reynolds number is sufficiently large that there is a region
well outside the viscous sublayer in which viscosity is irrelevant but y is still much
less than h. Then Φi in equation (7.24) must be constant; we will call this constant κ1/
and call κ the von Kármán constant, so that integration yields
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κ
= ++ +U y A

1
ln( ) . (7.28)

This is the celebrated logarithmic law of the wall (commonly called the log law)
which von Kármán first deduced in 1930; it can be thought of as one of the few exact
results in turbulence, although we emphasise that it is only true asymptotically as
Re→∞. It requires the existence of a region in which y is large compared to ηv but
small compared to h; this region is often called the inertial layer and sometimes the
‘overlap’ region. There are various alternative arguments that lead to this result but,
in some ways, the above approach is the most satisfying, since it depends on minimal
assumptions.

In the region beyond the viscous wall layer, one also expects that the departure of
the mean velocity from its centreline value, i.e. −U U y( )c , will be independent of
viscosity and that the appropriate length scale will thus be h rather than ηv.
Classically, the velocity scale appropriate to this velocity deficit in the outer region
is still uτ, for to an observer on the centreline and moving at the centreline velocity,
the only effect of the wall is to transmit a shear stress, τw. (Arguments for an
alternative velocity scale have been proposed but are not discussed further here.)
This all implies that

− =+ +U U y g y h( ) ( ), (7.29)c

which is usually called the velocity defect law, and we can write the Φ in equation
(7.23) as Φ y h( / )o . It follows that

= Φ = − ′+
+

+y
U
y

y
h

y
h

g
y
h

d
d

. (7.30)o⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Since +y and y/h are independent variables, this equation and equation (7.27)
together require that Φ = Φo i. After the integration of equation (7.30) between the
limits y and h and (for velocity) +U and +Uc , we can express the defect velocity as

κ
− = − ++ +U U

y
h

B
1

ln . (7.31)c ⎜ ⎟⎛
⎝

⎞
⎠

It is worth noting that in recent decades there has been some (often heated!)
discussion about whether the log law, equation (7.28), is, in fact, the most
appropriate relationship for the velocity profile outside the viscous wall region.
The alternative is to take it as a power law (extending well above the inertial layer),
i.e. =+ +U ay n, where a and n are functions of the Reynolds number. This often
results from an alternative assumption about the appropriate velocity scale to use for
the outer flow. Interested readers might like to consult, for example, the discussion
presented in [7]. Nonetheless, the weight of experimental evidence, both from
laboratories and computer simulations, is, in our view, strong enough to provide
powerful evidence for the efficacy of the log law in an inertial layer, although one
must always bear in mind that theoretically it is only an asymptotic result requiring a
sufficiently large Reynolds number.
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7.3.3 Some data and their implications

We now present some experimental confirmation of the log law. First, figure 7.6
shows profiles from the laboratory channel flow experiment of Wei and Willmarth
[52], undertaken in the 1980s, in which (almost for the first time) laser Doppler
anemometry (LDA) was used to obtain the data, which avoids the difficulties
associated with using hot-wire probes within the channel. (In retrospect, these
difficulties were evident in a number of earlier studies, not least the early work of
Laufer [20], and especially in the near-wall region.) The experiments also covered a
wider range of Reynolds number ( ν= hURe /c c ) than most previous studies – a factor
in excess of 13. In figure 7.6(a), the various regions of the flow are indicated and it is
clear that the data yield a reasonable collapse to a log law above the buffer layer.
(Although, in principle, the authors could have used the known channel pressure
gradient to deduce uτ, they actually deduced it by fitting the near-wall data to the
required =+ +U y viscous sublayer profile; the resulting uτ differed from that
calculated from the pressure gradient by less than 6%.) The log-linear layer extends
quite close to the channel centreline (which, at the different Reynolds numbers, is at
different values of +y ). Since the flow is symmetric, there must be a zero velocity
gradient at y = h, so the log-law region clearly cannot extend quite that far.

In turbulent boundary layers, explored in sections 8.3–8.7, there is usually a much
more substantial region above the inertial layer, normally termed the outer layer
‘wake’ but, as is evident in figure 7.6(a), this region is quite narrow in channels, the
excess velocity above the log law is very small and, in those particular experiments, it
is only really noticeable at the highest Reynolds number. As far as +U is concerned,
figure 7.6(a) suggests that Reynolds number effects are weak. Not surprisingly,
however, they are not weak when the turbulence statistics are considered. This is
most obvious in the shear stress profiles, shown in figure 7.6(b), in which the
thickness of the region where viscous stresses are important seems to extend to at

Figure 7.6. Mean velocity (a) and turbulence shear stress (b) profiles in wall units, from a turbulent channel
flow, at four Reynolds numbers. ≈τRe (Re )c : O, 2970 (170); □, 14914 (710); △, 22776 (1012); ▽, 39582
(1650). Reproduced with permission from [52], copyright Cambridge University Press.

Turbulent Flows: an Introduction

7-15

 EBSCOhost - printed on 1/29/2024 5:45 AM via UNIVERSITY OF SOUTHAMPTON. All use subject to https://www.ebsco.com/terms-of-use



least =y h/ 0.25 at the lowest Reynolds number. In the course of this experiment, it
was shown that there is a significant interaction between the turbulence structures
within one half of the channel and those in the other half; this is not surprising, for
there is no ‘hard’ boundary at y = h and eddies from below that point are able,
instantaneously, to migrate to the upper half.

High-quality DNS experiments remove the inevitable uncertainties that arise in
laboratory work; figure 7.7(a) shows mean velocity profiles obtained during a
comprehensive set of computations by Jiménez and his co-workers [14, 15, 21]. At
the higher Reynolds numbers in particular, these were expensive computations. For
the reader’s interest, at =τRe 2003 about ×1.7 109 grid points were used and

×6 106 processor hours of a supercomputer system with 2048 processors were
required; 25TB of raw data were produced [14]. This kind of computation would
have been inconceivable much before the beginning of this century. Except for the
lowest τRe case, all the velocity profiles seem to collapse until near the channel
centreline, just as the laboratory data shown in figure 7.6(a) suggest. However, on
this kind of log-linear scale it is always difficult to be certain about the collapse in the
inertial layer, and a more revealing test is to plot what is sometimes called the
Kármán measure or the diagnostic function, defined by

Π = +
+

+y
U
y

d
d

, (7.32)

which should equal κ1/ wherever the mean profile is logarithmic. The same data are
plotted in that form in figure 7.7(b), in which it is clear that data at the highest τRe
(4200) provide a substantial region of constant Π – extending over the approximate
range ⩽ ⩽+y200 1200. In that region, its value is 2.58, so that κ = Π =1/ 0.387. The
theoretical log-law line plotted in figure 7.7(a) thus uses κ = 0.387 and =A 4.5. This

(a) (b)

Figure 7.7. Mean velocity (a) and Kármán measure (KM) (b) profiles in wall units from a turbulent channel
flow at five Reynolds numbers. Figures based on the data of Jiménez’s group5 [14, 15, 21]. τRe values are given
in the legends. The dashed black line in (a) is equation (7.27) with κ = 0.387, =A 4.5.

5 http://torroja.dmt.upm.es/channels
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value of κ is some 3%–6% lower than the ‘classical’ value of 0.4–0.41, which, for most of
the 20th century, was the accepted value. The data for =τRe 4200 plotted in the form
of figure 7.7(a) also fit very closely to a log-law line for which κ = 0.41 and =A 5.2 (not
shown), which illustrates how careful one should be in using such plots to deduce κ.
And, we emphasise, this is in the context of knowing the wall friction velocity exactly, as
it is obtained from the applied pressure gradient. In the case of external flows, such as
boundary layers, the wall stress (and thus uτ) is rarely known exactly, as we shall see in
section 8.3, and this makes it even more difficult to be certain of the value of κ.

Not surprisingly, therefore, there has been some dispute over the years about the
precise value of Kármán’s constant, κ. Some authors believe it can be flow-dependent.
This view has been well argued by Nagib and Chauhan [31], who preferred to call κ a
‘coefficient’ rather than a constant, but the issue remains somewhat contentious,
especially among purists who believe that, in the spirit of von Kármán, it should be a
universal constant. See also the discussions by Marusic [24, 25]. We will say a little
more about this in our exploration of turbulent boundary layers in section 8.3.

7.3.4 The surface skin friction

Many authors have sought to measure the important skin friction coefficient.
Perhaps the first comprehensive set of experiments, which also covered some of
the laminar flow regime, was published by Dean [10]; he deduced a correlation for
the fully turbulent channel flow which fitted the data reasonably well and is given by

= −C 0.073Re , (7.33)f b
0.25

where Reb is the Reynolds number based on the bulk velocity and full channel width,
( νhU2 /b ) and τ ρ=C U2 /( )f w c

2 , respectively. Figure 7.8 shows this result and an

Figure 7.8. Skin friction coefficient in a turbulent channel flow. Symbols are deduced from the data of
Jiménez’s group6; the dashed line is the laminar case ( =C 16/(3Ref b); the solid black and dotted red lines are
the Dean and Zanoun correlations [10, 56], respectively.

6 http://torroja.dmt.upm.es/channels
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alternative, much later, correlation [56] based partly on more modern, and hence
arguably more accurate, experimental techniques. Nonetheless, the difference is very
small (0.073 is replaced by 0.0743 in the above equation). The DNS data from which
figure 7.7 was derived can also be used to deduceReb andCf, and the results are included
in figure 7.8. Recall that transition is normally reckoned to begin at ≈Re 1500b , so Cf

then begins to rise from its laminar value towards the fully turbulent line, and transition
is complete by about ≈Re 3000b . It is also possible to deduce the Cf variation from the
defect law for the velocity profile. This requires some straightforward assumptions, but
the result is close to the data shown in figure 7.8; the details are given by Pope [36].

7.3.5 The turbulence

DNS computations, unlike laboratory experiments, allow deep exploration of any of
the turbulence statistics that may be of interest. We conclude this section with
comments about some of these, as deduced from the computations mentioned above
by the Jiménez group. Figure 7.9 shows the rms axial velocity fluctuation profiles
corresponding to the velocity profiles in figure 7.7(a), plotted against both y/h and

+y . A number of points should be noted. First, recall our comment in the previous
section that Couette flow turbulence is noticeably more anisotropic than it is in
channel flows. This is evident by comparing figure 7.9(a) with figure 7.4(a). For
example, on the centreline ( =y h/ 1), the ratio of the axial to the vertical (or
spanwise) rms fluctuations is 1.5, whereas in Couette flow it is between about 1.6 (for
′ ′+ +u w/rms rms) and 2.0 (for ′ ′+ +u /rms rmsv ). The ratio increases somewhat as y/h decreases.

Figure 7.9. (a) Profiles of the axial velocity intensity profiles (rms values) for a turbulent channel flow at five
Reynolds numbers. Figure based on the data of Jiménez’s group7 (as in figures 7.6 and 7.7); τRe values are
given in the legend of (b). The inset in (a) shows the variation of the peak mean square values as a function of

τRe , fitted by ′ = +τ
+

u Re0.65 ln( ) 3.65p
2 . The lower two (black) lines are profiles of ′+rmsv (the lowest line) and

′+w rms. (b) The same as in (a), but plotted against +y .

7 https://torroja.dmt.upm.es/channels/data/statistics
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Second, despite a reasonable collapse in the mean velocity profiles over the
Reynolds number range studied (see figure 7.7(a)), there is clearly no collapse in the
′+u i, rms profiles however they are plotted. The fact that fluctuation profiles are not
independent of τRe , even within the log-law region, suggests that the usual wall
scaling is inadequate for the turbulence statistics in the way that is classically
expected, no doubt because the influence of the outer layer turbulence extends into
the viscous region. There have been a number of attempts to introduce alternative
scaling to take account of this, starting with [13], and subsequently, with varying
degrees of success. We do not pursue the issue here, although rather more is said
about it in section 7.4 because data (for the corresponding pipe flow case) are now
available at much higher Reynolds numbers.

Third, it is evident that, as in Couette flow, there are peak values of ′+u rms near the
wall at a roughly constant ≈+y 15 – see figure 7.9(b). This peak value increases with
the Reynolds number and, as shown in the inset of figure 7.9(a), its mean square
value varies logarithmically, at least over this range of Re. Such a variation was first
noted in the laboratory in the context of boundary layers by De Graaff and Eaton
[13] but, since the peak is so near the wall, its accurate measurement is not without
difficulty. Quality DNS avoids this difficulty, and the solid line shown in the inset is
the fit proposed by the Jiménez group [42], according to the general proposal for the
peak variance:

′ = +τ
+

u A Bln(Re ) , (7.34)p
2

which has been much discussed (e.g. [26]) and initially proposed by Townsend [49].
(Note that A and B here are not related in any way to those in the standard log laws,
equations (7.28) and (7.31).) It must be emphasised that this behaviour cannot
continue as →∞Re , for that would seem to imply asymptotically infinite dissipation
in the wall region, as argued by Chen et al [9].

We conclude by considering the turbulence kinetic energy (TKE) balance, which
we call Bk here. This is exactly the same as in Couette flow, equation (7.11), and was
discussed in that context there. We can summarise the full TKE (for a steady flow) as

ϵ= + + + + =B P T Pr V 0 (7.35)k k k t k

where Pk is the production term, Tk is the turbulent transport, Prt is the pressure
transport, Vk is the viscous diffusion, and ϵ is the dissipation. These correspond to
the four terms in equation (7.11), plus Vk. Recall that we previously ignored this
latter term, viscous diffusion, which we include here and which becomes, in this case,

ν= + ′V y k((d /d )( ));k
2 2 2v if the Reynolds number is high, we expect this to be

negligible everywhere except close to the wall. In an ideal logarithmic layer in which
we expect the Reynolds shear stress to be τu 2 (see section 8.3.2) and the mean velocity
gradient to be simply κy1/ , the production term Pk would be κτu y/3 , so all the terms in
the TKE might be expected to decrease roughly according to y1/ away from the wall,
which means that an appropriate way to normalise all the terms is to multiply them
by τy u/ 3, as is done for the TKE balance shown in figure 7.10. With a logarithmic
scale for y, the areas under each line are then proportional to the total (integrated)
energy.
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According to the data in figure 7.7(b), the buffer layer extends up to about
=+y 50, i.e. ≈y h/ 0.025 – beyond that, the Kármán measure Π is constant at κ1/ .

Note first from figure 7.10 that energy production roughly balances its dissipation in
the region above this buffer layer, defined approximately by < <y h0.025 / 0.4. It
also shows that the y1/ behaviour holds quite well. Above =y h/ 0.4, the production
decreases faster than that, because the mean velocity gradient reduces (and is zero at

=y h/ 1.0, of course). The dissipation then becomes increasingly balanced by
turbulent transport (the triple velocity product) as the centreline is approached.
Second, below =y h/ 0.025 (i.e. in the buffer layer and below), viscous diffusion
becomes important, as does turbulent transport. In this region, an adequate energy
balance thus requires the inclusion of Vk, as seen for Couette flow in the previous
section. Just as in the latter flow, energy enters the flow by the action of the mean
flow that drives the production of the axial velocity fluctuations (recall equation
(7.10) and the surrounding discussion). It is the pressure strain terms that
redistribute the energy to the other components (with dissipation then removing
energy from all the components).

The various features of the mean velocity and turbulence fields discussed in this
and the previous section are similar to those in very many wall-bounded flows,
including external flows. There are differences, nonetheless, because external wall
flows have additional complicating influences. In particular, in turbulent boundary
layers there is always, at the very least, some dependence on x – the flow develops in

8Figure reprinted from [15] with the permission of AIP Publishing.

Figure 7.10. Turbulent kinetic energy balance for a turbulent channel flow, with each term normalised using y
and τu 3: τB y u/k

3. The yellow region marks the approximate extent of the mean velocity log law. The data
correspond to the results shown in figures 7.6 and 7.8 for the =τRe 2000 case8.
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the streamwise direction, so homogeneity in that direction does not usually exist.
This is the topic of chapter 8.

7.4 Pipe flows
7.4.1 Introductory matters

Perhaps the most common type of internal turbulent flow worldwide is that in pipes.
A straight, smooth-walled pipe (figure 7.11) is the axisymmetric equivalent of the
planar channel flow we considered in the previous section. A brief reminder of the
laminar case is given first, to set the scene. Consider a straight, smooth-walled pipe
of internal diameter d, where d is much smaller than the pipe length. The flow is
driven through the pipe by a pressure difference between its ends which, apart from
relatively short regions near these ends, leads to a constant pressure gradient equal
to − P xd /d along the pipe’s length (the pressure falls along the pipe). A simple force
balance over the entire pipe cross-section leads to an equivalence between this
pressure gradient and the frictional stress on the inside wall of the pipe, τw, i.e.

τ− =P
x d

d
d

4
. (7.36)w

A similar balance can be expressed by equating the force that results from the
pressure difference acting on a circular cross-section between the centre of the pipe

Figure 7.11. Sketch of pipe geometry and snapshots of the vortex structures, from a DNS at =Re 133000,
ν= =τ τRuRe / 3008, from the visualisations by Ahn9 [1]. The left-hand view is down the length of the pipe

along an axis slightly inclined to the pipe’s axis (so that the end of the pipe is off-centre). The right-hand view is
a streamwise slice through a plane normal to the pipe’s axis.

9 https://gfm.aps.org/meetings/dfd-2015/55f566dc69702d060d510300, copyright (2015) by the American
Physical Society.
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and an arbitrary radius, r, and that provided by the internal shear stress, τ, acting on
the circumference of that section over the pipe length. In the absence of turbulence,
only the viscous stress given by μ− dU dr/ (U falls with increasing r), contributes to
this internal stress, and integration of the resulting balance leads to the well-known
result that the axial velocity profile is parabolic (just as in a planar channel, see
figure 7.2) and given by

= −U
U

r
R

1 , (7.37)
c

2
⎜ ⎟⎛
⎝

⎞
⎠

where Uc is the centreline velocity and =R d /2 is the pipe radius. The bulk velocity
in the pipe, UB, is easily shown to be one half of Uc. As for the planar channel, the
flow Reynolds number can be defined in terms of the bulk velocity: ν= U dRe /B . It
has been common practice since the Blasius era to define a friction factor f as

ρ
≡ −f

P
x

d

U

d
d

, (7.38)1
2 B

2

which is equal to C4 f , with the friction coefficient defined in the usual way
( τ ρ=C U2 /f w B

2). Note that equations (7.36) and (7.38) imply that = τf u U8( / )B
2.

Using the velocity profile given by equation (7.37), which is only valid for laminar
flow, it is straightforward to show that, in that case, =f 64/Re. Reynolds’ early
experiments in the 1880s (see section 2.8) suggested that transition to turbulence
begins at an Re of around 2000, but even after 140 years there remains much
discussion both about the precise values of what are usually called the lower critical
Reynolds number (below which turbulence cannot be maintained) and the upper
critical Reynolds number (above which laminar flow cannot be maintained). Indeed,
Reynolds himself recognised that no unique value delineates the laminar and
turbulent states. It is now known that the parabolic velocity profile of equation
(7.37) remains linearly stable to infinitesimally small perturbations up to infinite Re ,
so the value of the upper critical Re can, in fact, be made very high if the natural
perturbations in the experiment are sufficiently small.

We do not discuss the fascinating topic of turbulent transition anywhere in this
book, but in the context of pipe flows, the interested reader would profit from
perusing [30] and Eckhardt’s selection of papers [12] published as a thematic volume
marking the 125th anniversary of the publication of Reynolds’ historic paper, which
together cite a small fraction of the thousands of papers which have addressed the
topic. It is sufficient to point out, first, that uncertainties remain in trying to assign
precise values to both the lower and the upper critical Reynolds numbers but,
second, in practically all industrial circumstances, the ‘natural’ disturbances are
sufficiently large and Re sufficiently high to ensure that the flow is fully turbulent. In
practice, ≈Re 2300 remains a reasonable value at which the flows in a typical
(undergraduate student demonstration) experiment or an industrial gas line, for
example, become turbulent. We thus turn to a consideration of fully turbulent pipe
flow, recognising that this topic has also attracted huge numbers of researchers and
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continues to do so. Figure 7.11 shows snapshots of pipe turbulence, from a video
which the reader may like to explore.

7.4.2 The friction factor

Not surprisingly, perhaps, there is an enormous literature on turbulent pipe flows.
As in the laminar case, these are in some ways simply the axisymmetric equivalent of
turbulent planar channel flows, depending, as they both do, only on the applied axial
pressure gradient and a characteristic Reynolds number. However, there are
significant differences that arise from the nonzero transverse curvature of the
cross-stream coordinate in pipe flows and, consequently, the fact that there are
‘side walls’ whatever the value of +y . From a practical perspective, the most
important requirement is to know what the friction factor f is for a given
Reynolds number (the only parameter on which it depends), for that will determine
the power that is necessary to drive the fluid through the pipe. Those familiar with
undergraduate texts or, indeed, industrial design codes for pipework, will be aware
that for values of Re up to about 105, the very early relation of Blasius [6] provides a
good fit, even to the subsequent large body of data not then available. Defining f by
equation (7.38), his result was

=f 0.316 Re . (7.39)1 4

Integrating πUr r2 d across the pipe to obtain the bulk velocity UB in the usual way
(replacing r by R and y with ymeasured from the pipe wall), and using the fact that f
can also be written as τu U8 / B

2 2 (compare equations (7.36) and (7.38)), leads
immediately to

∫= = −
τ

+
+

+

+

+f
U
u

U
y
R

y
R

8
2 1 d . (7.40)B

1 2
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This shows that the variation of f with Re depends only on the form of the velocity
profile. (Note that = τ τU uRe 2( / )ReB , with ν=τ τRuRe / .) Blasius deduced equation
(7.39) using an assumption of a one-seventh power law for the velocity profile and
on the basis of many extant measurements, not least the extraordinarily meticulous
data produced by Saph and Schoder [39] in the first decade of the 20th century.
(Readers might find a recent historical review of interest in this regard [44].)

For >Re 105, the Blasius relation fails to describe the data and another well-
known relationship was derived by Prandtl, who assumed a log-law velocity profile.
The result is known as Prandtl’s friction law for smooth pipes; he adjusted the
constants slightly so that the relation agreed well with the extant friction factor data
obtained by Nikuradse [33]. The result is

= −
f

f
1

2.0 log(Re ) 0.8, (7.41)
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to be compared with Blasius’ law and the laminar result, =f 64/Re. Schlichting [41]
believed this result to be valid to arbitrarily high Re (and therefore thought that
measurements at higher Re were not required!). Figure 7.12 shows the two relations
and the laminar flow result, connected by a transitional region (marked in red). The
latter should be taken as approximate; whilst there are some extant measurements
covering that regime for particular experimental setups, e.g. [40], the significant
uncertainties about transition that were mentioned earlier suggest that it would be
unwise to attempt precision in this range of Re. Figure 7.11 includes some much
more recent data obtained from the Princeton superpipe experiments. This facility
was specifically designed to achieve very much higher Re than ever before by using
highly pressurised air so as to increase its density (and hence Re) by more than an
order of magnitude. Although, unlike the Blasius relation, the Prandtl one works
well up to nearly ×2 106, it deviates noticeably from the data beyond that point.
Superpipe data for ⩾Re 104 and further careful study [27, 55], led to a modification
of the two constants in equation (7.41) from 2.0 and 0.8 to (eventually [28]) 1.93 and
0.537, respectively, providing a good fit over more than a decade of the highest Re as
well as for lower Re, as evident in the figure. At the time of writing, therefore, the
best attested friction law for turbulent flow in smooth pipes at Re values in the range
of × ⩽ ⩽ ×3 10 Re 3.5 105 7 is

= −
f

f
1

1.930 log(Re ) 0.537. (7.42)

At lower Reynolds numbers (but above the fully developed turbulence state),
Prandtl’s friction law applies, and the Blasius relation is also adequate at Re values
up to =Re 105.

Figure 7.12. Friction factor for pipe flow. The approximate transitional region is shown as a dashed red line,
rising up from the laminar result (dashed black line). The other lines are the relations of Blasius, Prandtl, and
Zagarola and Smits, equations (7.39), (7.41) and (7.42), respectively. The symbols are data values given by
McKeon et al [27], obtained in the Princeton superpipe.

Turbulent Flows: an Introduction

7-24

 EBSCOhost - printed on 1/29/2024 5:45 AM via UNIVERSITY OF SOUTHAMPTON. All use subject to https://www.ebsco.com/terms-of-use



The differences between these various relationships essentially result from differ-
ences in the assumed velocity profiles. At asymptotically large Reynolds numbers, for
which there is sufficient separation in scales between the near-wall viscous-dominated
region (where =+ +U y with = −y R r) and the outer flow, one can deduce the well-
known log law in essentially the same way as discussed for channels in section 7.3.2
(and used by Prandtl to obtain his friction law, (equation (7.41)). One of the early
findings, however, was that the log-law regime, in terms, say, of its range of +y at a
given Re, is not as extensive as it is in a channel flow at the same Re, even when this is
well above 3000. (Recall from section 7.3.2 that the log law fits the extant channel
data very well nearly up to the centre of the channel.) This difference between pipe
flows and channel flows was perhaps first noted by Patel and Head [34].

7.4.3 The velocity profile

Figure 7.13 shows a selection of the mean velocity profiles obtained in the Princeton
superpipe. These are similar to channel flow profiles (figure 7.7(a)), although in each
case there is a more significant (‘core’) region between the upper end of the log-law
range and the pipe centreline. The profiles collapse where they overlap in the log-law

+y range. Note that the measured profiles extend beyond the centreline, so that the
value of +Uc for each case can conveniently be deduced as the maximum in the
profile. This clearly increases as Re increases, as does the extent of the log-law
region.

One expects the existence of the log law to be most likely for higher Reynolds
numbers, but a careful inspection of the profiles (not really possible using this figure)

Figure 7.13. Mean velocity profiles obtained in the Princeton superpipe10. Reynolds numbers (Re) are shown
for alternate profiles and the dashed line is the classical log law with κ = 0.41 and =A 5.2.

10 Figure reprinted with permission from [55], copyright (1997) by the American Physical Society.
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contradicts this, unless the range of the log law is taken to be, say,
< < τ

+y600 0.07Re , which is significantly more restricted than the commonly
accepted limits ( < < τ

+y50 0.15Re ) [55]. With these more restricted limits, the
implication is that the log law cannot exist for < =τRe 600/0.07 8571, which
corresponds roughly to < ×Re 4 105. In that range, provided that Re is large enough
to ensure an overlap between inner and outer regions, it turns out that a power law
gives a better fit to the velocity profile, as found in the =Re 44000 DNS of Wu and
Moin [53], for example. (This is consistent with the Blasius frictional law, since he
assumed a power law.) It has therefore been argued that pipe flow velocity profiles
actually have a three-layer structure, in which the classic log law emerges at high
enough values of τRe , but above a power-law region which is always present just
above the near-wall viscous layer [11]. This latter work provides a useful entry to the
literature on the nature of pipe flow velocity profiles.

Incidentally, the value of the Kármán coefficient κ is about 0.41 for good log-law
fits to the profiles in figure 7.13, and this value was also found to be consistent with
the implications of the centreline velocity data [28]. It is noticeably different from the
value for channel flows (0.387, see section 7.3) and this issue will be discussed further
in section 8.3.2. It is also worth noting that direct numerical simulations have begun
to reach at least moderately high values of Re. Computations are now available at

=Re 44000 [53], which is higher than the lower end of the superpipe range of cases
but still significantly lower than the highest Reynolds numbers reached experimen-
tally at the Princeton superpipe facility. These produce data that agree with the
superpipe results at the same Reynolds number and yield a power law for the
velocity profile, in agreement with the Princeton findings. One can expect compu-
tations at significantly higher Re values in the future, to match the largest ones
obtainable in the specialist laboratory facilities typified by the Princeton superpipe.
Such computations avoid, among other things, the uncertainty about the develop-
ment length that is needed in a laboratory facility for fully developed conditions to
be reached. This has been a contentious issue, but there is some evidence that at least

d80 is necessary before the turbulence statistics become invariant with downstream
distance, significantly less than seems to be required for planar channels; see the
discussion by Marusic et al [24] and the references therein.

7.4.4 The turbulence

It remains to make a few comments about the fully developed turbulence statistics.
Recall first that the mean velocity profiles in pipes and channels are somewhat
different, not least because there is a more noticeable outer layer wake component in
the pipe flow case (see figures 7.7(a) and 7.13), which was actually noted as early as
the 1960s [34]. Nonetheless, more recent studies (e.g. [32]) making explicit compar-
isons of, for example, the Reynolds stress profiles at the same Re in pipes and
channels, have indicated that despite the differences in mean velocity profiles, the
stresses are very similar all across the flow – not just in the inertial layer. In the inner
region, the peak axial turbulence stress rises slowly with Re in both pipes and
channels (recall the channel case shown in figure 7.9(a)) and note that, anticipating
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our boundary layer discussion in section 8.3, the same happens in smooth wall
boundary layers. However, it is perhaps currently unwise to be too dogmatic about
this rise, and particularly whether or not it occurs up to the highest Re currently
achieved in laboratories, given the extreme difficulty in making accurate measure-
ments so near the wall (around =+y 15). There seems to be some evidence that it
does not [16, 51].

At a sufficiently high Reynolds number, an outer peak in ′ +
u 2 also appears, as

illustrated in figure 7.14, which shows the ′ +
u 2 profiles for a range of Re from about

2000 up to 98000, corresponding to a Re range of around ×8 104 up to ×6 106.
A feature of these profiles is that, at least for the higher Re, the stress seems to fall
logarithmically in the outer region. In fact, it was suggested long ago [49], on the
basis of arguments related to those that lead to the log law in the mean velocity, that
streamwise and spanwise velocity fluctuations would display a similar log law so
that, for example,

′ = −+u B A
y
R

ln . (7.43)2
1 1

It was later demonstrated that such behaviour could be derived by building on
Townsend’s attached eddy hypothesis (see section 8.5) and considering the spectral
content of the fluctuation field [35]. Considerable attention has been paid to this
suggestion; some data sets are in apparent conformity with the logarithmic
behaviour, but others are not (in the context of boundary layers as well as channels

Figure 7.14. Axial Reynolds stress profiles for τRe values from 1985 to 98187. Princeton superpipe data11.

11 Figure reprinted with permission from [16], copyright (2012) by the American Physical Society.
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and pipes). More recently, it has become apparent that only for τRe in excess of
about 20000 can one really expect to see an extended region of such behaviour,
which occurs over the same inertial range (in +y ) in which the mean flow log law
applies, e.g. [51]. We discuss all this further in the context of boundary layers in
section 8.3. Note finally that the similarity in stress profiles for pipes and channels
also holds for the various spectra of the fluctuating velocity (and pressure); see [29],
for example. Given the similarities in the stresses, similarities in the spectra are
arguably not too surprising, although boundary layer spectral data are nonetheless
rather different; see section 8.4.

We have thus far made no comments about the dynamical features of these
various internal flows, but have merely presented time-averaged quantities.
However, it should be obvious that these time averages, as in any turbulent flow,
must depend on the nature of the structural features of the turbulence, whether those
are near the wall, within the inertial layer, or in the outer region. This whole issue is
discussed in the context of boundary layers in section 8.5, where we comment on the
extent to which the general features differ between internal and external flows. It is
worth saying here, however, that most of the important features do not differ very
markedly.

7.5 Subject giant: G I Taylor
Sir Geoffrey Ingram Taylor (7 March 1886–27 June 1975) was a true giant of the
field, having had a distinguished career as an English physicist and mathematician at
the University of Cambridge for over 60 years. He was described in his obituary by
Sir Brian Pippard as follows (quoted in [43]):

‘Sir Geoffrey Ingram Taylor, who died at the age of 89, was one of the great
scientists of our time and perhaps the last representative of that school of
thought that includes Kelvin, Maxwell and Rayleigh, who were physicists,
applied mathematicians and engineers – the distinction is irrelevant because
their skill knew no such boundaries. Between 1909 and 1973 he published
voluminously, and in a lifetime devoted to research left his mark on every
subject he touched and on every one of his colleagues … his outgoing manner
and complete lack of pomposity conveyed, as no formal exposition could have
done, the enthusiasm and intuitive understanding that informed all his work.’

Taylor was active in the field of turbulence, having multiple phenomena and
concepts named after him, including the Taylor microscale, Taylor’s frozen-flow
hypothesis, and Taylor dispersion (in pipe flow and elsewhere), to name a few, all of
which we touch upon in this text. His research spanned both fluid and solid
mechanics and he published widely over his more than 60 years of a dedicated
research career; his first paper appeared during his undergraduate years, studying
the interference fringes formed by light waves (1909), and the last (at the age of 83),
was on thunderstorms. During the First World War he contributed to the war effort,
working for the Royal Flying Corps at Farnborough and helping to design and
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improve the operation of aircraft. He also made significant contributions during the
Second World War, being called upon to be part of the British delegation to the
Manhattan Project. It was during this war, in 1944, that he received his knighthood.

Taylor corresponded with and influenced many of the other notable researchers in
turbulence of the time including Burgers, Richardson, Prandtl, and von Kármán,
notably reflected in the fact that Taylor published a bibliographical memoire of von
Kármán following his death. He also left his legacy as the supervisor of both
Batchelor and Townsend, who both went on to make substantial contributions of
their own to the turbulence field. It was Batchelor who compiled Taylor’s entire
collected works into four volumes and subsequently wrote a book on The Life and
Legacy of G.I. Taylor [4]. It is perhaps amusing for modern academics that for
almost all of his life at Cambridge, he held research posts and was thus free of

Figure 7.15. Portrait of Sir Geoffrey Ingram Taylor (7 March 1886–27 June 1975). Reproduced with
permission from [4], copyright Cambridge University Press.

Turbulent Flows: an Introduction

7-29

 EBSCOhost - printed on 1/29/2024 5:45 AM via UNIVERSITY OF SOUTHAMPTON. All use subject to https://www.ebsco.com/terms-of-use



routine teaching, administrative, departmental, or institutional tasks; Rutherford
once described Taylor as being ‘paid to do no work’. There is an interesting video of
G.I. (as he was affectionately known), filmed in 1967, in which he discusses low
Reynolds number flow; it is part of the National Committee for Fluid Mechanics
Films (NCFMF)12.

Sample exercises
7.1. Derive the total stress equation for Couette flow given by equation (7.2)

from the x-direction mean momentum equation. Are there any other flows
for which this would also be valid?

7.2. Assuming that turbulent Couette flow has an S-shaped velocity profile as
sketched in figure 7.2, sketch the expected shapes of the viscous stress (i.e.
μdU dy/ ), the turbulent stress (i.e. ρ ′ ′u v ), and the total stress (i.e. τ) profiles
over < <y h0 / 2. Compare your sketches with the results presented in
figure 7.3.

7.3. For a turbulent channel flow, sketch the expected shapes of the viscous
stress (i.e. μdU dy/ ), the turbulent stress (i.e. ρ ′ ′u v ), and the total stress (i.e. τ)
profiles over < <y h0 / 2. Contrast these with those for Couette flow from
the previous exercise.

7.4. The file ‘ChannelData.txt’13 contains the velocity profile within channel
flow at =τRe 2000 by Hoyas and Jiménez [14]. This exercise explores how
the velocity profile compares with the expected linear relationship in the
viscous sublayer and the logarithmic relationship in the inertial sublayer.

(a) Plot the velocity profile +U versus +y using linear axes. Zoom in to the
near-wall region and compare the profile with =+ +U y , which is
expected in the viscous sublayer. Over what range of +y is this valid?

(b) Zoom out and adjust the axes to display this plot of +U versus +y
using log-linear axes. Fit the log law, equation (7.28), using
κ = 0.387 and =A 4.5.

(c) Plot the Kármán measure Π (given by equation (7.32)) versus +y .
Confirm the approximate extent of the inertial sublayer and the
value of κ1/ indicated by the plateau.

7.5. The file ‘PipeData.txt’14 contains velocity data for a pipe flow at Re = 106

from the Princeton Superpipe by Zagarola and Smits [54]. This exercise
explores how the velocity profile compares with the expected logarithmic and
power law profiles.

(a) Plot the velocity profile +U versus +y using linear axes. Zoom in to
the near-wall region and compare the profile with =+ +U y , which
we expect to see in the viscous sublayer. Based on the location of the
closest measurement to the wall, estimate the extent (in physical
units) of the viscous sublayer in this experiment.

12 http://web.mit.edu/hml/ncfmf.html
13 https://github.com/cvanderwel/TurbulentFlows/blob/main/data/ChannelData.txt
14 https://github.com/cvanderwel/TurbulentFlows/blob/main/data/PipeData.txt
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(b) Zoom out and adjust the axes to display this plot of +U versus +y
using log-linear axes. Fit the log law, equation (7.28), using κ = 0.41
and =A 5.2.

(c) Adjust the axes to log-log scaling and consider whether a power law
of the form = γ+ +U C y( ) provides a better fit to the data in the near-
wall overlap layer.
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