
#IP #gigatrack designed for abitrary nnumber of cameras, each
patricle has diameter/brightness and velocity

flow from https://turbulence.pha.jhu.edu/

make sure flow matches up with stuff form JHU

fun asides

f stop
resolving power is decreased, larger f-stop means more diffraction
computational power vs cost very low computational demand,
so not really a worrt ## can run on lyceum maybe can probably
just run on my PC, dont need to worry about RAM VRAM might
be an issue for STB, we’ll see # JHU scripts pull data from
database and convert into a form that can be used as an input input
parameters in the input area L drive for stuff, can use it but its slow
kinda ignore them, can just have the input data

calibration scripts
TCF calib(2)
have to define the setup (where are cameras, what can they see,
apeture) uses JHU data to create a long strip of cameras
need to do stuff for chromatic aberration, colour spill saves
stuff for synthetic image generation ### OTF Optical Transfer
Function is how a point source of light appears to the camera plots
show the focus of the point source of light at different depths from
the focal plane
stored as a look up table discretisation for integration of brightness,
fairly obvious

cross contamination
there is already a bit projects geometric centre onto the pixels in
code, it is just an identity matrix bayer filter is tranfer matrix
multiplied by the red, green and blue layers
think of each channel as a matrix transfer function is identity matrix
multiply the channel with the transfer function to get the output
with identity matrix as transfer funtion, this is a 1-1 mapping
not implemented too well only implements one camera model, no
space for chromatic aberration might be easy to add aberration

adjacency matrix
checking if cameras have overlapping fields of view speeds up PTV
later

plot_syn_calib
plots the calibration, along with particle density in the volume good
way to review the configuration ive just made shows where the
cameras can see

synthetic image generation (RGB folder)

rgb_sig_init
writes everything to a calibration file give it a camera model give it
all the particles

rgb_sig
reads stuff from [[#rgb_sig_init]] and does the generation similar to
mandelbrot-adjuster vs mandelbrot-renderer
gives stuff without going through a bayer filter

processing
proc_rgblpt
similar to the way [[#synthetic image generation]] works, makes a
calibration file for low density stuff uses stuff similar to star tracking,
assumes that local areas stay mostly the same

batch_rgblpt
actually does the lpt is a wrapper that calls rgblpt, makes
everything (embarrasingly) parallel takes less time than the image
generation assume that the acceleration is mostly small saves stuff
that looks bad ### path estimation do a taylor expansion of the
path ∆t is very short, so this is a reasonable assumption know
typical displaceemnt from characteristic velocity and ∆t typical
acceleration is a′ × δt2 because ∆t is small, it is assumed that
acceleration is negligible ## plot_{} ### plot_snapsho plots the
channel flow form a certain number can show the ones that look
bad crom [[#batch_rgblpt]]

STB
rgbipr files as opposed to rgblpt try to reconstruct entire position
and velocity thing at once STB does it in timesteps
big least squares fit, position is

tcf_mean
finds the means and the variance of the velocity at different points
between the wall not going to vary streamwise or perpendicular
because the flow is tiled, only varies vertically from the wall good for
chekcing for ghost particles, if its in the reconstruction but not in
the reference its a ghost particle # camera calibration can look at
checkerboard, has imformation on spacing of camera mostly to be
aware of for now, will be more relevant for the experimental stuff
tcf_generate_synthetic_calibration_images generates images
of the target for a camera array

qrcode_calibration
searches through the images for the qr code finds the coordinate of
the corners dewards the QR code from the views ##
multicamera_calibration takes in the files from
[[#qrcode_calibration]] and does the calibration figures out the
position and rotations between the cameras uses standard stuff in
matlab easy to do bwtween two cameras, needs more work to get it
between 3 or more

test_

basically like unit tests

todos

git repo will be updates with EVERYTHING i will get access to the
NAS

wrapping up

PHD students
will join me in january they will be doing other things, will be useful
to be able to talk to them january gets scary

test data
will be on the NAS already has some data on the colour spill
demosaicing done in matlab dont bother with the demosaiced data,
just use the raw files to find the transfer function

better to discuss in meetings
can send prep docs before meetings
less text on slides remember that the audience knows nothing

