
#IP #gigatrack
designed for abitrary nnumber of cameras, each patricle has
diameter/brightness and velocity

flow from https://turbulence.pha.jhu.edu/

make sure flow matches up with stuff form JHU

fun asides

f stop
resolving power is decreased, larger f-stop means more diffraction

computational power vs cost
very low computational demand, so not really a worrt

can run on lyceum maybe
can probably just run on my PC, dont need to worry about RAM
VRAM might be an issue for STB, we'll see

JHU scripts
pull data from database and convert into a form that can be used as
an input
input parameters in the input area
L drive for stuff, can use it but its slow
kinda ignore them, can just have the input data

calibration scripts

https://turbulence.pha.jhu.edu/


TCF calib(2)
have to define the setup (where are cameras, what can they see,
apeture)
uses JHU data to create a long strip of cameras

need to do stuff for chromatic aberration, colour spill
saves stuff for synthetic image generation

OTF

Optical Transfer Function is how a point source of light appears to the
camera
plots show the focus of the point source of light at different depths
from the focal plane

stored as a look up table
discretisation for integration of brightness, fairly obvious

cross contamination

there is already a bit
projects geometric centre onto the pixels
in code, it is just an identity matrix
bayer filter is tranfer matrix multiplied by the red, green and blue
layers

think of each channel as a matrix
transfer function is identity matrix
multiply the channel with the transfer function to get the output
with identity matrix as transfer funtion, this is a 1-1 mapping

not implemented too well
only implements one camera model, no space for chromatic
aberration
might be easy to add aberration



adjacency matrix

checking if cameras have overlapping fields of view
speeds up PTV later

plot_syn_calib
plots the calibration, along with particle density in the volume
good way to review the configuration ive just made
shows where the cameras can see

synthetic image generation
(RGB folder)

rgb_sig_init
writes everything to a calibration file
give it a camera model
give it all the particles

rgb_sig
reads stuff from rgb_sig_init and does the generation
similar to mandelbrot-adjuster vs mandelbrot-renderer

gives stuff without going through a bayer filter

processing

proc_rgblpt
similar to the way synthetic image generation works, makes a
calibration file



for low density stuff
uses stuff similar to star tracking, assumes that local areas stay
mostly the same

batch_rgblpt
actually does the lpt
is a wrapper that calls rgblpt, makes everything (embarrasingly)
parallel
takes less time than the image generation
assume that the acceleration is mostly small
saves stuff that looks bad

path estimation

do a taylor expansion of the path
Δt is very short, so this is a reasonable assumption
know typical displaceemnt from characteristic velocity and Δt

typical acceleration is a′
× δt

2

because Δt is small, it is assumed that acceleration is negligible

plot_{}

plot_snapsho

plots the channel flow form a certain number
can show the ones that look bad crom batch_rgblpt

STB
rgbipr files as opposed to rgblpt
try to reconstruct entire position and velocity thing at once
STB does it in timesteps

big least squares fit, position is



tcf_mean
finds the means and the variance of the velocity at different points
between the wall
not going to vary streamwise or perpendicular because the flow is
tiled, only varies vertically from the wall
good for chekcing for ghost particles, if its in the reconstruction but
not in the reference its a ghost particle

camera calibration
can look at checkerboard, has imformation on spacing of camera
mostly to be aware of for now, will be more relevant for the
experimental stuff

tcf_generate_synthetic_calibration_ima
ges
generates images of the target for a camera array

qrcode_calibration
searches through the images for the qr code
finds the coordinate of the corners
dewards the QR code from the views

multicamera_calibration
takes in the files from qrcode_calibration and does the calibration
figures out the position and rotations between the cameras
uses standard stuff in matlab
easy to do bwtween two cameras, needs more work to get it between
3 or more



test_{}
basically like unit tests

todos
git repo will be updates with EVERYTHING
i will get access to the NAS

wrapping up

PHD students
will join me in january
they will be doing other things, will be useful to be able to talk to
them
january gets scary

test data
will be on the NAS
already has some data on the colour spill
demosaicing done in matlab
dont bother with the demosaiced data, just use the raw files to find
the transfer function

better to discuss in meetings
can send prep docs before meetings

less text on slides
remember that the audience knows nothing


