# lecture 0 80% in person exam # lecture 1 ## rockets \+ momentum out is all thrust \- you have to carry the oxidiser with you ## air breathing \+ don't have to carry oxidiser \- there is also momentum in too # lecture 2 ## momentum conservation ### theory using control volumes, resultant forces can be found ![[momentum conservation]] $\dot M_{x, out} - \dot M_{x, in} = \sum F_x$ $\dot M_2 V_2 - \dot M_1 V_1 = A_1 P_1 - A_2 P_2 + F$ This can be used to analyse engines ### applications #### rocket engine $V_{in} = 0$ $V_{out} = V_j$ $A_2$ is the area of the rocket exhaust $\dot m_p$ is the mass flow rate of the fuel $\dot M_{x, out} - \dot M_{x, in} = \sum F_x$ $\dot M_{x, in} = 0$ $\dot m_p V_j = p_1A_j - p_2A_j + F$ $P_1$ is the atmospheric pressure $P_2$ is the pressure of the exhaust $F = \dot m_p V_j + A_j(P_j-P_a)$ this shows that the force is strongly dependant on the altitude of the rocket #### gas turbine engine $V_{in} = V_o$, the speed of the aircraft $V_{out} = V_j$ $\dot m_{in} = \dot {m}_a$, the mass flow rate of air $\dot m_{out} = \dot m_a + \dot m_f$ the pressure at the front is just atmospheric pressure, but the pressure at the back is atmospheric pressure + pressure from the jet. To make things simpler, the area considered is just the area of the jet $V_j(\dot m_a + \dot m_j) - V_o \dot m_a = A_j(p_a - p_j) + F$ $p_j \approx p_a$ **assumption** the fuel to air ratio is $f =\frac{\dot m_f}{\dot m_a}$ $F = \dot m_a \left[(1+f)V_j - V_o \right]$ for many operations, $f \approx 0$ so $F = \dot m_a \left[V_j - V_o \right]$ ## breguet range equation assume steady level flight, so $L=W$, $T=D$ and $V_0 = \text{const}$ $W=L=D\frac{L}{D} = T\frac{L}{D}$ fuel consumption: $\frac{dW}{dt} = -\dot m_f g$ $TSFC = \frac{\dot m_f}{F}$, thrust specific fuel consumption rearrangements and insertions $\frac{dW}{dt} = -TSFC \cdot F \cdot g = -g\cdot TSFC \cdot \frac{W}{\frac{L}{D}}$ $\frac{dW}{W} = -g\frac{TSFC}{\frac{L}{D}} dt$ $ds = V_o dt$ $\frac{dW}{W} = -\frac{g}{V_o}\frac{TSFC}{\frac{L}{D}} ds$ integrate things $\int^{w_2} _{w_1} \frac{dW}{W} = -\frac{g}{V_o} \frac{TSFC}{\frac{L}{D}}\int_0^s ds$ $s=\frac{L}{D} \frac{V_o}{g\cdot TSFC} \ln \frac{w_1}{w_2}$ #### example: b777 Empty mass: $145,150kg$ fuel capacity: $145, 538kg$ cruise speed: $248m\ s^{-1}$ range: $15,843km$ L/D: $25$ estimate: fuel mass flow rate TSFC Thrust $TSFC = \frac{L}{D} \frac{V}{g\cdot s} \ln \frac{w_1}{w_2}$ $TSFC = 25 \frac{248}{9.81 \cdot 15843 \times 10^3} \ln 2 = 2.77\times 10^{-5}$ $\dot m_f = \frac{m_f}{\Delta t} = \frac{m_f}{\frac{s}{v}} = 2.282.28 kg\ s^{-1}$ $F=\frac{\dot m_f}{TSFC}$ = 82.3 kN # efficiency overall efficiency = propulsive efficiency $\times$ thermal efficiency $\eta_o = \eta_p \times \eta_{th}$ ## propulsive efficiency $\eta_p = \frac{\dot W_{aircraft}}{\dot W_{jet}}$ $\dot W_{aircraft} = F\times V_o$ $F=\dot m_a [(1+f) V_f - V_o]$ $\dot W_{jet} = \frac{d}{dt} (E_{k, out} - E_{k, in})$ $\frac{1}{2} (\dot m_a + \dot m_f) V_j^2 - \frac{1}{2} \dot m_a V_o^2$ things from before: $\frac{1}{2} \dot m_a[(1+f)V_j^2-V_o^2]$ $\eta_p = \frac{V_o [(1+f) V_f - V_o]}{\frac{1}{2}[(1+f)V_j^2-V_o^2]}$ assume $f<<1$ $\eta_p = \frac{2V_o[V_j - V_o]}{(V_j^2 - V_o^2)} \approx \frac{2V_o}{V_j + V_o} = \frac{2}{\frac{V_j}{V_o}+1}$ want to make $V_j$ as close as possible to $V_o$ for maximum efficiency ![[Pasted image 20230203141306.png]] Because $F=\dot m_a (V_j - V_o)$, big thrust means low efficiency and high efficiency means high thrust. little known life hack is increases mass flow rate of air while keeping $V_j - V_o$ good ## thermal efficiency $\eta_{th} = \frac{\dot W}{\dot Q_{in}}$ work transfer is known, it is $\dot W_{jet}$ from above $LCV$ is the lower calorific value $\dot Q_{in} = \dot m_f \times LCV$ $\eta_{th} = \frac{\frac{1}{2} \dot m_a (V_j^2 - V_a^2)}{\dot m_f \cdot LCV} = \frac{V_j^2 - V_o}{2\times f \times LCV}$ from thermofluids, best way to increase efficiency is to increase maximum temperature. This is done by increasing pressure ratio ![[Brayton cycle]] ## overall efficiency $\eta_o = \frac{(V_j - V_o)V_o}{f\times LCV}$ $\eta_o = \frac{V_o}{TSFC \times LCV}$ $\eta_o = \eta_p \times \eta_{th}$ ## Altitude tables The atmosphere is complicated, so just use one standard atmosphere # problem class 1 ## 1.2 ### a $TSFC = \frac{\dot m_f}{F} \to TSFC\times F = \dot m_f$ $\dot m_f = 2.38 \dot{kg}$ $\dot m_a = V\times A_1 \times \rho = 666\dot{kg}$ $f = \frac{\dot m_f}{\dot m_a} = 3.57\times 10^{-3}$ ### b $F=\dot m_a \left[(1+f) (V_j - V_0)\right] \to \frac{F}{\dot m_a(1+f)}+V_0 = V_j$ $V_j = 409$ ### c $\eta_p = \frac{\dot W_{aircraft}}{\dot W_{jet}}$ $\dot W_{aircraft} = F \times V_0 = 28\times 10^6$ $\dot W_{jet} = \frac{1}{2} (\dot m_a + \dot m_f) V^2_j - \frac{1}{2}\dot m_a V_0^2 = 43\times 10^6$