#maths #vectors # surfaces $\vec{r}(s, t) = \left(x(s, t), y(s, t), z(s, t) \right)$ when using the tuple $(s, t)$ to define a surface, the surface is given by functions in $x, y, z$ of that tuple if the surface is a rectangle, this means that $a\leq s\leq b$ and $c\leq t \leq d$ the lines $s=\text{const}$ and $t = \text{const}$ are coordinate lines on the surface if the surface is a cylinder of radius $h$, $\vec{r}(s, t) = a\cos(s)\vec{i} + a\sin(s)\vec{j} + t\vec{k}$, $-\pi \leq s < \pi$, $0\leq t \leq h$ the lines $t=\text{const}$ are circles and $s=\text{const}$ are vertical lines on the surface of the cylinder if the surface is a sphere of radius a with a circle at the origin $\vec{r}(s, t) = a\cos s\sin t \vec{i} + a\sin s\sin t \vec{j} + a \cos t \vec{k}$, $-\pi \leq s< \pi$, $0\leq t \leq \pi$ $s=\text{const}$ are lines of longitude and lines $t=\text{const}$ are lines of latitude $s$ is $\phi$ and $t$ is $\theta$ in spherical polar coordinates ## normals to any surface $\frac{\partial \vec{r}}{\partial s}$ is tangent to $t=\text{const}$ and $\frac{\partial \vec{r}}{\partial s}$ is tangent to $s=\text{const}$ because $\vec{a}\times \vec{b}$ is perpendicular to both vectors, $\frac{\partial \vec{r}}{\partial s} \times \frac{\partial \vec{r}}{\partial t}$ is the normal to the surface, as is $\frac{\partial \vec{r}}{\partial t} \times \frac{\partial \vec{r}}{\partial s}$ ### example: normal of a cylinder $\vec{r}(s, t) = a\cos(s)\vec{i} + a\sin(s)\vec{j} + t\vec{k}$, $-\pi \leq s < \pi$, $0\leq t \leq h$ $\frac{\partial \vec{r}}{\partial s} = -a\sin s \vec{i} + a \cos s \vec{j}$ $\frac{\partial \vec{r}}{\partial t} = \vec{k}$ $\frac{\partial \vec{r}}{\partial s} \times \frac{\partial \vec{r}}{\partial t} = \left| \begin{align} \vec{i} && \vec{j} && \vec{k}\\ -a\sin s && a\cos s && 0 \\ 0 && 0 && 1 \end{align}\right| = a\cos s\vec{i} + a\sin s\vec{j}$ # areas The area of an infinitesimal element is $dA = \left|\frac{\partial \vec{r}}{\partial s} \times \frac{\partial \vec{r}}{\partial t} \right|ds dt$ the area of a surface is the infinite sum of the infinite areas for $a\leq t\leq b$ and $c\leq s \leq d$, $\int^d_{s=c} \int^b_{t=a} dA$ area of a cylinder is $2\pi a h$ area of a sphere of radius $a$ is $4\pi a^2$ # flux integrals these measure the flow of a vector field $\vec{F}$ through a surface $S$ it is given by $\int\int_s \vec{F}\cdot \hat n dA$ $d\vec{S} = \hat n dA$ $\int\int_S \vec{F}\cdot d\vec{S} = \int\int_s \left[\vec{F}(\vec{r}(s, t))\cdot \left( \frac{\partial \vec{r}}{\partial s} \times \frac{\partial \vec{r}}{\partial t} \right) \right]dsdt$