{ "cells": [ { "cell_type": "code", "execution_count": 142, "id": "e501f69c", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy.optimize import curve_fit, fsolve\n", "import pandas as pd" ] }, { "cell_type": "markdown", "id": "505ed473", "metadata": {}, "source": [ "# question 2" ] }, { "cell_type": "code", "execution_count": 2, "id": "b2baaf03", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3200000.0000000005" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "u = 2\n", "nu = 1e-6\n", "l = 1.6\n", "\n", "re = (u*l)/nu\n", "re" ] }, { "cell_type": "markdown", "id": "0fe6c3dd", "metadata": {}, "source": [ "this shows that the flow is probably turbulent" ] }, { "cell_type": "code", "execution_count": 3, "id": "b5543777", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.0304" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "delta = (l * 0.38)/re** 0.2\n", "delta" ] }, { "cell_type": "markdown", "id": "e580f779", "metadata": {}, "source": [ "the boundary layer is 30mm. This needs a margin of error becuase it is an empirical guess" ] }, { "cell_type": "markdown", "id": "3219ab49", "metadata": {}, "source": [ "# question 3" ] }, { "cell_type": "code", "execution_count": 4, "id": "e93da678", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 5.58060331 -4.38330176]\n" ] }, { "data": { "text/plain": [ "[]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAo9klEQVR4nO3deXxU5d3+8c83GwlrkE0I+74TVhUXcKvghgsquIOKuLQufar2aWu3p6392T51rRQRhaKCIiq2qI/aqlQEEvZNFpElrIFAgISQ7f79cSIECGQCM3MyM9f79eIFM+dk5joGL07O3Oe+zTmHiIhEvji/A4iISHCo0EVEooQKXUQkSqjQRUSihApdRCRKJPj1xg0bNnStW7f26+1FRCLSggULdjnnGlW0zbdCb926NZmZmX69vYhIRDKzjSfapksuIiJRQoUuIhIlVOgiIlFChS4iEiVU6CIiUaLSQjeziWa208yWn2C7mdlzZrbOzJaaWZ/gxxQRkcoEcob+GjDkJNuHAh3Kfo0BXjr9WCIiUlWVFrpz7ksg5yS7DAMmO89cINXMmgYroIhEr79/vYGv1u3yO0bVrP0U5r4ExYV+JzlOMK6hpwGbyz3OKnvuOGY2xswyzSwzOzs7CG8tIpFq1rJtPDlzBVMzNle+c3Uy+88wbxzE+XZf5gkFo9CtgucqXDXDOTfeOdfPOdevUaMK71wVkRiQuSGHh6ctpneLVJ4e3tPvOIHbsRI2zYF+oyGu+o0pCUaiLKBFucfNga1BeF0RiULrsw9w9+RM0lJTmHBHf5IT4/2OFLjMVyC+BqTf6neSCgWj0GcCt5eNdjkbyHXObQvC64pIlNl14BB3vppBvBmvjerPGbWS/I4UuEMHYMk06HYN1Grgd5oKVXoRyMzeBAYDDc0sC/glkAjgnBsHzAIuB9YB+cCoUIUVkchVWFzKfVMWsGNfAVPHnE2rBrX8jlQ1y96Cwv3Q/26/k5xQpYXunBtZyXYHPBC0RCISlX79wQoyNuzh2RHp9G5Z3+84VeMcZLwCTXpA8/5+pzmh6ndVX0SizpS5G3l93ibGDmrHsPQKB8FVb5vnw47l0P8usIrGgVQPKnQRCan53+Xwq5krGNypET+5rJPfcU5N5iuQVAd63OB3kpNSoYtIyGTvP8QDbyykxRk1eXZEb+Ljqu/Z7Qnl7YIV70KvEVCjtt9pTqr6jYwXkahQWup49K3F7DtYxOTRA6iXkuh3pFOzaAqUFHqXW6o5FbqIhMRfP1/H7LW7+MN1PejStK7fcU5NaSlkToRW50LjLn6nqZQuuYhI0M1dv5v//WQNw9KbMaJ/i8q/oLr69jPYuzEizs5BhS4iQZZ7sIhHpi2mVYNa/O7aHlg1HhVSqYxXoFZj6HyV30kCokIXkaD69Qcr2Ln/EH+5KZ3aNSL4qu7eTbD2Y+hzGyRExh2tKnQRCZqPlm9nxsItPDC4HektUv2Oc3oWvOb93vdOP1NUiQpdRIJi14FD/OzdZXRrVpcHL+rgd5zTU1wICydDh8sgtaXfaQIWwT8PiUh18usPVrK/oJg37kknKSHCzxW/+QDysqv1vC0VifD/6iJSHXy+eicfLNnKAxe2p9OZdfyOc/oyXoH6raHdRX4nqRIVuoicloOFJfzi/eW0bVSLsYPb+h3n9O1cBRu/gr6jquUiFiejSy4iclqe+9daNuccZOqYs6mREEGLVZxI5kRvEYvet/mdpMoi658fEalW1mcf4OUv1zO8b3PObls9F32okoJ9sPiNar2Ixcmo0EXklP1+1jfUSIjj8SGd/Y4SHEumQuEBGHCv30lOiQpdRE7JnHW7+HTVDu6/sD2N6tTwO87pcw7mj4e0vtC8r99pTokKXUSqrKTU8dt/riItNYW7zmvjd5zgWP9v2L0WBozxO8kpU6GLSJXNXLKFVdv28fjQziQnRsEHoQDzX4aaDaHbtX4nOWUqdBGpkuKSUp79dC1dmtblyh5N/Y4THHs2wOoPvdv8EyL38pEKXUSq5N1FW9iwO59HLulAXCSuQFSRjFfA4qDfaL+TnBYVuogErKiklOf/tY7uaXW5tGsTv+MER2G+N29LlyuhXgQuYF2OCl1EAjZz8VY25eTz8MUdI3ue8/KWT4eCvRE7VLE8FbqIBMQ5x4T/fEfHJrW5uEtjv+MEh3Mwbzw07gatBvqd5rSp0EUkIHO+3c2qbfu4+7y20XN2vmku7FgGZ42BKDgmFbqIBOTl2etpWDuJq9Ob+R0leOb/DZLrQY8b/E4SFCp0EanUd7vy+Hx1Nred3Tp6xp3v2wqrPvAm4Uqq5XeaoFChi0ilpmVsJj7OGDmghd9RgmfBa1BaAv3v8jtJ0KjQReSkikpKmb4gi4s6N6Zx3WS/4wRHcSFkvgodfgBnRMEc7mVU6CJyUp+t2smuA4cY0T+Kzs5Xvg95O70PQ6OICl1ETmr6gs00qVuDQR0b+R0leOb/Dc5oB20ja4m5ygRU6GY2xMxWm9k6M3uigu31zOwDM1tiZivMbFTwo4pIuOUeLOLLNbu4qmczEuKj5Pxvy0LIyvBmVYywJeYqU+nRmFk88CIwFOgKjDSzrsfs9gCw0jnXCxgM/NnMkoKcVUTC7NOVOygsKeWKnlEyCRd4syom1oL0kX4nCbpA/nkaAKxzzq13zhUCU4Fhx+zjgDrm3W1QG8gBioOaVETC7p/LtpGWmkJ6i1S/owTHoQOw/B3oNcIbfx5lAin0NGBzucdZZc+V9wLQBdgKLAMecs6VHvtCZjbGzDLNLDM7O/sUI4tIOBw4VMzstdkM7X5m9NwZWngASg7Bmd39ThISgRR6Rd9Jd8zjy4DFQDMgHXjBzOoe90XOjXfO9XPO9WvUKIo+YBGJQnPW7aKoxHFxlyiZVTEGBFLoWUD58UrN8c7EyxsFzHCedcB3QJSsGisSm75Yk02tpHj6tqrvdxQJUCCFngF0MLM2ZR90jgBmHrPPJuBiADNrAnQC1gczqIiEj3OOL9ZkM7B9Q5ISomskSDSr9DvlnCsGHgQ+BlYBbznnVpjZWDMbW7bbb4GBZrYM+Ax43Dm3K1ShRSS0NuzOJ2vPQS6IprHnMSAhkJ2cc7OAWcc8N67cn7cCPwhuNBHxS+aGHADObnOGz0mkKvSzlIgcZ+GmPdRNTqBdo9p+R5EqUKGLyHEWbNxD31b1o2cR6BihQheRo+wrKGLNjgP0aanRLZFGhS4iR1mzfT8A3dKOu5VEqjkVuogc5ZuyQu90pgo90qjQReQoq7fvp06NBJrVi5LFLGKICl1EjrJmx346NKkdPfO3xBAVuogcZXNOPq0bRMeiybFGhS4ihxWVlLJ9XwHN66f4HUVOgQpdRA7bnltAqYM0FXpEUqGLyGFb9h4EIC21ps9J5FSo0EXksJy8QgAa1tEKkpFIhS4ih+3J9wq9fk0VeiRSoYvIYXvziwCol5Loc5IQ2fAf7/fE6LykpEIXkcNyDxZRIyGO5MR4v6ME38Y58N790OIs6HrsOvfRQYUuIocVFJWQkhSFZb7zG3hzJKS2hJFTITE6R/Go0EXksKKSUhLjo6wW9m2FKddDQg249R2oGb2LdgS0YpGIxIaiEkdSNBV6QS68foP3+6hZUL+V34lCSoUuIocVlZSSEB8lc7gUF8K0WyH7G7jlbWja0+9EIadCF5HD4s0oKXV+xzh9paXw/v3w3Zdw7d+g3UV+JwqLKPrZSkROV1JCHEUlpX7HOH2f/hKWvQ2X/Ap6jfA7Tdio0EXksKSEOAqLI7zQ574Ec56DAWPg3If9ThNWKnQROSwpPo5DkVzoK96Dj34Kna+EIU9BjM3prkIXkcNqJyeQX1hCcSRedtnwFcwY4904dP0EiIvC8fSVUKGLyGHfz+Gy92CRz0mqaOcqmDrSG5Y48s2ovXGoMip0ETmsfq2yQi+bpCsi5G4pu3EoJepvHKqMhi2KyGH1a3qTcuXkRcgZ+uEbh/bB6A+9W/tjmApdRA5rUjcZgO37CnxOEoDiQzD1Fti1Bm6dDmf28DuR71ToInJYWqp37XnLnoM+J6lEaSm8dx9smA3XvQxtB/udqFrQNXQROaxWjQRSayaStSff7ygn98kvYPk7cMmvoeeNfqepNgIqdDMbYmarzWydmT1xgn0Gm9liM1thZl8EN6aIhEvz+ilkVecz9K//Cl+/AAPuhXMf8jtNtVLpJRcziwdeBC4FsoAMM5vpnFtZbp9U4K/AEOfcJjNrHKK8IhJirRvUYknWXr9jVGz5DPj4v6HL1TDkDzF341BlAjlDHwCsc86td84VAlOBY5f7uBmY4ZzbBOCc2xncmCISLh2b1GFzzkHyC4v9jnK0Df+Bd++Flud4181j8MahygRS6GnA5nKPs8qeK68jUN/MPjezBWZ2e0UvZGZjzCzTzDKzs7NPLbGIhFTHJrUBWLfzgM9JyslaAG+MgPptYMTrkJjsd6JqKZBCr+hnmmPn10wA+gJXAJcBvzCzjsd9kXPjnXP9nHP9GjVqVOWwIhJ6HZrUAWDNjmpS6NuXw5TroFYDuP29mL5xqDKBFHoW0KLc4+bA1gr2+cg5l+ec2wV8CfQKTkQRCafWDWpRMyme5Vty/Y4C2Wtg8jBIqgW3z4S6zfxOVK0FUugZQAcza2NmScAIYOYx+7wPnG9mCWZWEzgLWBXcqCISDvFxRve0eizavNffIHs2eGVucV6ZR/nyccFQaaE754qBB4GP8Ur6LefcCjMba2Zjy/ZZBXwELAXmAxOcc8tDF1tEQql3i1RWbd3HoeISfwLkboFJV0HxQe8yS8P2/uSIMAHdKeqcmwXMOua5ccc8fhp4OnjRRMQv6S1SKSwpZeXWffRuWT+8b35gJ0y+Gg7uhdvfhybdwvv+EUx3iorIcfq28ko8Y0NOeN84PwcmXwP7tsLNb0Fan/C+f4RToYvIcRrXTaZ949rM+XZ3+N60YJ83De7udTDiDWh1TvjeO0qo0EWkQgPbNWD+dznhWTS6MA/euBG2L4UbJ0G7C0P/nlFIhS4iFRrYrgH5hSUsCfVol6ICbxrczfO8O0A7DQ3t+0UxFbqIVOictg2JjzP+vTqEM3mUFMHbd8L6f8OwF6H7daF7rxigQheRCtWrmUi/VvX5bFWICr20xFvUec2HcPmfIP3m0LxPDFGhi8gJXdKlCd9s38/mnCDPj15aCjN/BCtmwKW/gQH3BPf1Y5QKXURO6JKuTQD4dNWO4L2oc/DR47B4Cgx6QnOaB5EKXUROqE3DWnRoXJsPl28Pzgs6B5/+CuaPh4E/hMEVrpcjp0iFLiIndVWvZmRsyGFbbhBWMfryafjqGeh3F1z6Wy1QEWQqdBE5qat6NcM5+OfSbaf3QnNegH//Dnrd7H0IqjIPOhW6iJxUm4a16JFWj5lLjp01uwoyJ8L//Qy6XgNXPw9xqp5Q0H9VEanUsPRmLM3KZe2O/VX/4iVT4R+PQofLvBuH4gOaE1BOgQpdRCp1be80EuONaRmbK9+5vBXvwnv3QZvz4cbJkJAUmoACqNBFJAANatfgki5NmLFoC4XFAc7tsmQaTB8NLc6CEW9qHdAwUKGLSEBu7N+CnLxCPgtkTPqC1+Dde6H1eXDLdKhRO+T5RIUuIgG6oEMj0lJT+PvcjSffce44+OAhaH+JN6e5yjxsVOgiEpD4OOPWs1sx59vdrN5+gg9H//MX7y7QzlfCiNchMSW8IWOcCl1EAjaifwtqJMQx6esNR29wDv79e+8u0O7D4YbXIKGGDwljmwpdRAJWv1YS16SnMWNhFnvzC70nnYNPnoQv/gjpt8J14yE+0d+gMUqFLiJVcue5rSkoKmXK3I3erImzfgJznoP+d5fdNBTvd8SYpUIXkSrp0rQugzs1YtJ/vqX4/R9CxstwzoPe7fy6A9RXumVLRKrsvvNbsW3SL0lYMgcueAwu/G/NzVIN6J9TEama4kIGLPgx18TPYVzCrRQN+qnKvJpQoYtI4IoKYNot2KoPWJ3+M546cDnvLtridyopo0IXkcAU5sEbN8LaT+DKZ+g47Cf0SKvHc5+tpagkwOkAJKRU6CJSuYJ9MOV62DAbrnkJ+o3CzHj00o5k7TnI9AVZficUVOgiUpn8HJg8DLIyYPhESB95eNPgTo3o3TKV5z9by6HiEh9DCqjQReRk8nbBpKthx3K48e/Q7dqjNpsZP760E1tzC5gyd5NPIeV7KnQRqdj+7fDq5bB7HYycCp0vr3C38zo05PwODXn+X2vJPVgU5pBSngpdRI63dzO8OhRys+DW6dD+4pPu/sTQzuQeLOKlz78NU0CpSECFbmZDzGy1ma0zsydOsl9/Mysxs+HBiygiYZWz3ivzvN1w+3venOaV6NasHtf2TmPiV9+xZe/B0GeUClVa6GYWD7wIDAW6AiPNrOsJ9vsj8HGwQ4pImGSvholDvSGKd8yEFgMC/tIf/6ATBjz14TehyycnFcgZ+gBgnXNuvXOuEJgKDKtgvx8C7wA7g5hPRMJlywLvmrkrgTv/Cc3Sq/TlaakpjB3Ujg+WbGXe+t2hySgnFUihpwHlV4bNKnvuMDNLA64Fxp3shcxsjJllmllmdnZ2VbOKSKh880949QpIrAmjPoQmx/0QHpCxg9qRlprCL2euoFg3G4VdIIVe0SQN7pjHzwCPO+dOOhDVOTfeOdfPOdevUaNGAUYUkZCa9zeYegs07gx3fwoNO5zyS6UkxfOzK7rwzfb9vDlfwxjDLZDZFrOAFuUeNwe2HrNPP2CqeRP0NAQuN7Ni59x7wQgpIiFQWgr/93OY+yJ0uhyunwBJtU77ZYd2P5OB7Rrw9MerGdK9KY3qaOWicAnkDD0D6GBmbcwsCRgBzCy/g3OujXOutXOuNTAduF9lLlKNFebD27d7ZT7gXrhpSlDKHLybjX4zrDsFRaX8zz9XBuU1JTCVFrpzrhh4EG/0yirgLefcCjMba2ZjQx1QRILsQDZMugpW/QMu+wMM/WPQVxlq37g29w1ux/uLtzJ7rT4vCxdz7tjL4eHRr18/l5mZ6ct7i8SsXevg9eu9u0Cvexm6Xh2ytyooKuHyZ2dT4hwfP3wByYlami4YzGyBc65fRdt0p6hIrNj4NbxyCRzaD3f8I6RlDpCcGM//XNudjbvz+csna0L6XuJRoYvEguXvwOSroWYDbyRLi/5heduB7RoyckALXp69nkWb9oTlPWOZCl0kmjkH//kLTB8NaX3hrk/gjLZhjfDTy7vQpG4yj01fqil2Q0yFLhKtSorhH4/Ap7+CbtfBbe9BzTPCHqNuciJ/uK4Ha3ce4LnP1ob9/WOJCl0kGh3aD2+OgAWvwnmPwPWvQGKyb3EGd2rM8L7NGffFehbq0kvIqNBFos2+bd6cLN/+C658Bi75FcT5/7/6k1d15cy6yTw6bTF5h4r9jhOV/P8ui0jw7FgBEy6G3d/CzdOg3yi/Ex1WNzmRP9/Yi405+fxu1iq/40QlFbpItPj23zBxCLhSGP0hdLjU70THObttA8ac35Y35m3is1U7/I4TdVToItFg0evw+nCo19wblti0l9+JTujRH3SkS9O6PDZ9KTv3FfgdJ6qo0EUimXPw79/D+/d7KwuN/sgr9WqsRkI8z49MJ6+wmEfeWkxpqT93q0cjFbpIpCouhHfHwhd/hPRb4ZbpkFzP71QBad+4Dr+6qhtfrdvNS19oHdJgUaGLRKKDe2HKdbB0Klz4cxj2AsQn+p2qSm7q34Irejblfz9Zw4KNOX7HiQoqdJFIs2cjTLwMNs2Fa8fDoJ+AVbQOTfVmZvzhuh40S03mh28sIiev0O9IEU+FLhIJCvO9+VjevBme7+uNNb9tBvS6ye9kp6VuciIv3tyHXQcKeXiarqefrkBWLBIRP5QUwfrPYdnb3pqfhQeg9pkwYAz0vwsatPM7YVD0bJ7Kk1d15efvLef5f63joUtOfQm8WKdCF6lOSkth8zyvxFe+B/m7vQ86u18H3Yd7I1mCvBhFdXDLWS1ZsHEPz3y2ht4tU7mgo9YcPhUqdBG/OQc7lsOy6d5lldzNkJACnYZCj+HQ/hJIiO51Oc2M313bnRVbc3lo6iJmPngeLc6o6XesiKMVi0T8kvMdLJ/uFXn2N2Dx0O4i6HEDdL4catTxO2HYfbcrj6tf+A8t6tfknfsGkpIUfT+NnK6TrVikM3SRcNq/A1a86xV5Vob3XMtz4Io/Q9droFZDX+P5rU3DWjw3ojejJ2Xw+DtLeXZEOhaBI3j8okIXCbWCXG9B5mVvw3dfeHOtNOkBl/zauzae2tLvhNXKhZ0b818/6MTTH6+mR1o97rkgvAtyRDIVukgoFBXA2o+9El/zf1ByCOq3hvMe9a6LN+7id8Jq7f7B7Vi+JZc/fLiKDk1qM7hTY78jRQQVukiwlBR7Z+DL34FVH8ChfVCrsTeFbY8bvCXgdPkgIGbGn27oxYbd+fzwjUXMuH8gHZrE3mcKVaUPRUVOh3OQlemdia+YAXnZUKMudLnaOxNvfT7E67zpVG3Ze5BhL3xFzaR43nvgXM6oleR3JN/pQ1GRYNu5yivxZdNh70aIrwGdhnhjxTv8wNfl3qJJWmoK42/vy4jxcxk7ZQFT7jqLpATd4H4iKnSRQO3Z6F1OWTYddq4Ai4O2F8LgJ6DzlZBc1++EUalPy/o8PbwnD01dzE9nLONPN/TUyJcTUKGLnMyBbO+OzWXTYfNc77nmA2Do09DtGqitD+vCYVh6Gt/tyuOZT9fS8oyamh7gBFToIsc6tN+bO2XZ296ybq4EGnWBi5+E7td7o1Uk7B66uAObcvL5y6draF4/hev7Vu+FPPygQhcBKD4Eaz8pG2b4ERQXQL2WcO6PvBEqTbr5nTDmmRlPXdeTbXsLeGLGUpqmJjOwXWzfiHUsjXKR2FVaAhtme5dTVs6EQ7lQsyF0u9Yr8RYDNMywGso9WMTwl+awfV8Bb489h85nxtZnFycb5aJCl9jiHGxdWDYR1gw4sB2SakOXq7xhhm0Ga5hhBMjak8/1L80B4J37BtK8fuxM5HXahW5mQ4BngXhggnPuqWO23wI8XvbwAHCfc27JyV5ThS5hlb3Gu5yyfDrkrIf4JG94YY8boONlkJjid0Kpom+27+OGcV/TqE4N3hk7kPoxMkb9tArdzOKBNcClQBaQAYx0zq0st89AYJVzbo+ZDQV+5Zw762Svq0KXkMvN8s7Cl70N25d6wwzbXOCNFe9yFaSk+p1QTtO89bu5beJ8ujWryxt3nx0TszOe7o1FA4B1zrn1ZS82FRgGHC5059yccvvPBfTxs/ijMB+WTvNKfONX3nNpfWHIU9618Tpn+ptPguqstg14bkQ697++kPteX8D42/rF9I1HgRR6GrC53OMs4GRn33cBH1a0wczGAGMAWrbUDHMSRIV5kPEKzHnOu/2+YUe48OfebIZRslSbVGxI96b87toe/HTGMn789hKeuSmd+LjY/DA7kEKv6L9MhddpzOxCvEI/r6LtzrnxwHjwLrkEmFHkxA4dgIwJMOd5yN8FbQfDoMe9OcY1QiVmjBzQktyDRTz14TfUSU7gd9d0j8m7SQMp9CygRbnHzYGtx+5kZj2BCcBQ59zu4MQTOYFD+2H+y/D1C966m+0ugkFPQMuTfnQjUWzsoHbszS9i3BffkpqSyGNDOvsdKewCKfQMoIOZtQG2ACOAm8vvYGYtgRnAbc65NUFPKfK9gn0wf7xX5Af3eOttDnoCWvT3O5lUA48P6cS+giL++vm31E5O4P7B7f2OFFaVFrpzrtjMHgQ+xhu2ONE5t8LMxpZtHwc8CTQA/lr2Y07xiT6FFTklBbkwr6zIC/Z6Qw4HPQHN+/qdTKoRM+O3w7qTd6iY//fRamokxHPXeW38jhU2Ad1B4ZybBcw65rlx5f58N3B3cKOJAAf3wry/wdwXvVLvOBQGPQZpffxOJtVUfJzx5xt6caiolN/+YyXJiXHcclYrv2OFhW6Jk+rp4B6YOw7mvuTdkt/pCq/Im6X7nUwiQEJ8HM+N7M29f8/kZ+8up0ZCPMNjYDIvFbpUL/k5XonPG+ct4db5Sm/UStOefieTCJOUEMdLt/blrkkZPDZ9CYnxxrD0NL9jhZQKXaqH/Bzv+vi88VC431vCbdBjcGYPv5NJBEtOjOfl2/sx6tUMHpm2GDPj6l7N/I4VMip08Vfebvj6eW8IYmEedB3mFbmmq5UgqZmUwKuj+nPnqxk8PHURBlwVpaWuQhd/5O3y7uqcPwGK8r3b8gc9Bo27+J1MolDNpARevbM/o17N4OFpi4kz44qeTf2OFXQqdAmvA9kw51nvNv3iAm8FoPP/CxrH3k0gEl61anx/pj6fH01dRKlzUXemrkKX8Ni/wzsjz3gFSg5509Ze8BNoqLUhJXy8Uh/A6NcyeGjqIopLS7m2d/SMflGhS2jt3w5fPQuZE6GkEHre5J2RN4ytO/ik+qhdI4HXRvXn7kmZPPrWEopKHDf2a1H5F0YAFbqExr5t8NUzsOA1KCmCXiPg/B9r5kOpFmomJTDxzv7cMzmTx6YvpbjEcfNZkT8DrApdgit3S1mRTwJXcqTIz2jrdzKRo3w/pPH+1xfy3+8uo6CohNERPk2ACl2CIzcLZv8vLPo7uFJIv9kr8vqt/U4mckLJifGMu7UvD01dxG/+sZK8Q8U8eFH7iJ16V4Uup2fvprIin+I97n0LnPco1I+NuTMk8iUlxPH8yN489s5S/vzJGg4UFvPEkM4RWeoqdDk1ezbC7D/D4je8hST63A7nPQKp0fHhksSWhPg4/jS8FzWT4vnbF+vJO1TMb67uTlyErXykQpfAlBTDrtWwdRF8NxuWT/cWXe57J5z3MNSLnqFfEpvi4rypd2vVSCgr9RL+3/CeJMZHzhqlKnQ5Xmkp5KyHrQu9At+yELYv9e7oBKhRF/rd5RV53ei6MUNim5nxxJDO1E1O5OmPV5N7sIgXb+5DSlK839ECokKPdc5B7mavtLcuKivxJd6UtQAJKd5Mh33ugGa9vXnIz2gHcZFz1iJSFWbGAxe2p15KIr94fzm3T5zHhDv6Uy8l0e9olVKhx5r9O44+8966yFtcGSAu0ZsUq8f1Xnk36wONOkO8/ppI7Ln17FbUS0nk0bcWM2L8XCaN7k/jOsl+xzop/Z8azfJzyp11L/YKfH/Z+t4W55V1xyGQ1tsr8CbdIaGGr5FFqpOrejWjbkoiY/++gBvGfc3k0QNo1aCW37FOyJxzvrxxv379XGZmpi/vHZUO7YdtS46+dLJnw5HtDdofOetu1tu7jJJUff9iilQnCzftYfRrGSTEGa+NGkD3tHq+ZTGzBSdas1mFHomKDsL25UdfOtm1Bij7XtZr6S3VlvZ9eadDSqp/eUWiwLqdB7hj4nz25hcy7ra+nN+hkS85VOiRrKQIdq48+sx75yooLfa212pcVtx9vN+bpkNtf/6iiUS7HfsKuGPifL7NPsCfbujly5J2Jyt0XUOvTkpLYNdar7S/L/Dty7zpZgGSU70z7nMfOnLppG4z78YeEQm5JnWTmXbvOYyZnMlDUxezY18B95zfttrcVapC94tzZWO9Fx35tW0JFB7wtifV9s62B9xz5NJJ/TYqbxGf1UtJZNLoAfz47SX8ftY3bNlzkCev6kZ8NbirVIUeDs7Bvi1HDxXcuggK9nrb42t4H1Km33zkzLthB4iLjJsZRGJNcmI8z4/oTbN6ybw8+zu25hbw3Ijevt+ApEIPhQPZR653f1/geTu9bXEJ0Lirtxjy99e+G3eB+Op/04KIHBEXZ/zsiq6kpabw63+sZOTLc3nljn40qO3f0F8V+uk6uBe2LS4r7rLx3rmbyzYaNOoE7S85cpdlk26QmOJfXhEJqjvPbUPT1BR+9OYirntpDhPv7E+7RrV9yaJRLlVRmOdd5y5/6STn2yPb67c5cr27WR/vMkqNOv7lFZGwWbhpD/dMyqS41DHu1r6c065BSN5HwxZPRfGho8d6b10E2d94izcA1E0rK+7eR4YL1jzD18gi4q/NOfnc+ep8NuXk89R1Pbm+b/BnIdWwxcqUFEP2qnJn3gthx0ooLfK212zolXaXq4+UeJ0m/mYWkWqnxRk1mXH/udw3ZQE/fnsJG3fn8cilHcM2rDH2Cr20FHavO2Zq2GVQfNDbXqOed5flwAePXDqp11zDBUUkIPVSEnlt1AB+/t4ynvvXOr7bnc/Tw3uSnBj6ETDRXejOwd6NRw8V3LoYCvd72xNrQtNe0G/0kUsn9dtoalgROS1JCXH88fqetGlYmz9+9A2bc/IZf3vfkM/WGFChm9kQ4FkgHpjgnHvqmO1Wtv1yIB+40zm3MMhZK7dv2/FTwx7M8bbFJ3mzCfa6qdzUsJ001ltEQsLMuG9wO9o0rMUj0xZzzQtfMeGO/nRtVjdk71lpoZtZPPAicCmQBWSY2Uzn3Mpyuw0FOpT9Ogt4qez30MnbXW5q2LICP7C9LHS8N7a78xVHRp007gYJSSGNJCJyrCHdz6R5/XO4Z3Imw8fN4Zmb0vlBtzND8l6BnKEPANY559YDmNlUYBhQvtCHAZOdN2RmrpmlmllT59y2oCde8zHM+i9vtfnvNegAbQcducvyzB6QVDPoby0iciq6p9Xj/QfO5Z6/L+DeKQv4xRVdGX1em6C/TyCFngZsLvc4i+PPvivaJw04qtDNbAwwBqBly5ZVzeqp3dgr7v53H5kaNjl0P8KIiARD47rJTBtzNo+/s5Q2jUKzFkEghV7R8I5jB68Hsg/OufHAePDGoQfw3sdr1htunHRKXyoi4qfkxHieHdE7ZK8fyHCOLKBFucfNga2nsI+IiIRQIIWeAXQwszZmlgSMAGYes89M4HbznA3khuT6uYiInFCll1ycc8Vm9iDwMd6wxYnOuRVmNrZs+zhgFt6QxXV4wxZHhS6yiIhUJKBx6M65WXilXf65ceX+7IAHghtNRESqQrdEiohECRW6iEiUUKGLiEQJFbqISJTwbYELM8sGNp7ilzcEdgUxTiTQMccGHXNsOJ1jbuWca1TRBt8K/XSYWeaJVuyIVjrm2KBjjg2hOmZdchERiRIqdBGRKBGphT7e7wA+0DHHBh1zbAjJMUfkNXQRETlepJ6hi4jIMVToIiJRoloXupkNMbPVZrbOzJ6oYLuZ2XNl25eaWR8/cgZTAMd8S9mxLjWzOWbWy4+cwVTZMZfbr7+ZlZjZ8HDmC4VAjtnMBpvZYjNbYWZfhDtjsAXwd7uemX1gZkvKjjmiZ201s4lmttPMlp9ge/D7yzlXLX/hTdX7LdAWSAKWAF2P2edy4EO8FZPOBub5nTsMxzwQqF/256GxcMzl9vsX3qyfw/3OHYbvcyreur0tyx439jt3GI75v4E/lv25EZADJPmd/TSO+QKgD7D8BNuD3l/V+Qz98OLUzrlC4PvFqcs7vDi1c24ukGpmTcMdNIgqPWbn3Bzn3J6yh3PxVoeKZIF8nwF+CLwD7AxnuBAJ5JhvBmY45zYBOOci/bgDOWYH1DEzA2rjFXpxeGMGj3PuS7xjOJGg91d1LvQTLTxd1X0iSVWP5y68f+EjWaXHbGZpwLXAOKJDIN/njkB9M/vczBaY2e1hSxcagRzzC0AXvOUrlwEPOedKwxPPF0Hvr4AWuPBJ0BanjiABH4+ZXYhX6OeFNFHoBXLMzwCPO+dKvJO3iBfIMScAfYGLgRTgazOb65xbE+pwIRLIMV8GLAYuAtoBn5jZbOfcvhBn80vQ+6s6F3osLk4d0PGYWU9gAjDUObc7TNlCJZBj7gdMLSvzhsDlZlbsnHsvLAmDL9C/27ucc3lAnpl9CfQCIrXQAznmUcBTzrvAvM7MvgM6A/PDEzHsgt5f1fmSSywuTl3pMZtZS2AGcFsEn62VV+kxO+faOOdaO+daA9OB+yO4zCGwv9vvA+ebWYKZ1QTOAlaFOWcwBXLMm/B+IsHMmgCdgPVhTRleQe+vanuG7mJwceoAj/lJoAHw17Iz1mIXwTPVBXjMUSWQY3bOrTKzj4ClQCkwwTlX4fC3SBDg9/m3wGtmtgzvcsTjzrmInVbXzN4EBgMNzSwL+CWQCKHrL936LyISJarzJRcREakCFbqISJRQoYuIRAkVuohIlFChi4hECRW6iEiUUKGLiESJ/w/pK+DRkN/cAAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# reads in file\n", "u = []\n", "y = []\n", "with open(\"laminar_profile.csv\", 'r') as file:\n", " for line in file:\n", " if line[0] == 'W':\n", " continue\n", " line = line.strip()\n", " data = line.split(',')\n", " u.append(float(data[1]))\n", " y.append(float(data[0]))\n", "\n", " \n", "#plotting and finding some things\n", "u=np.array(u)\n", "y=np.array(y)\n", "u_inf = np.array(u[-1])\n", "delta = np.interp(0.99,u/u_inf,y)\n", "\n", "\n", "# curve fitting\n", "def func(x, a, b):\n", " return a**x + b*x\n", "\n", "u=u[np.where(u" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "text/plain": [ "2.143944115339496" ] }, "execution_count": 87, "metadata": {}, "output_type": "execute_result" } ], "source": [ "delta = 5.9e-3\n", "U = 4\n", "dydelta = delta * 0.001\n", "y = np.arange(0, delta+0.001, dydelta)\n", "u = np.arange(0, delta+0.001, dydelta)\n", "u[np.where(u>=delta)] = U\n", "u[np.where(u" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "displacement thickness: 0.5409499999999999\n" ] } ], "source": [ "U_inf = u.max()\n", "delta = np.interp(0.99*U_inf, u, y)\n", "print(f\"delta: {delta}\")\n", "plt.plot(u, y)\n", "plt.plot(0.99*U_inf, delta, \"ro\")\n", "plt.show()\n", "delta_star = np.trapz(1-(u/U_inf), y)\n", "print(f\"displacement thickness: {delta_star}\")" ] }, { "cell_type": "markdown", "id": "57ff2d69", "metadata": {}, "source": [ "# q4" ] }, { "cell_type": "code", "execution_count": 113, "id": "957d66de", "metadata": {}, "outputs": [], "source": [ "u = 6\n", "chord = 4\n", "x_t = 1\n", "nu = 3.75e-5\n", "rho = 1.23\n", "re_c = 64e4" ] }, { "cell_type": "code", "execution_count": 120, "id": "7acf95d0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "31.03469822371708" ] }, "execution_count": 120, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_o = virtual_origin(1, re(u, x_t, nu))\n", "drag(rho, u, x_o)" ] }, { "cell_type": "markdown", "id": "81c9ead8", "metadata": {}, "source": [ "# q6\n" ] }, { "cell_type": "code", "execution_count": 122, "id": "52b5106f", "metadata": {}, "outputs": [], "source": [ "chord = 3\n", "U = 6\n", "rho = 1.2\n", "nu = 1.48e-5\n", "x_t = 0.7 * chord" ] }, { "cell_type": "code", "execution_count": 123, "id": "6a8caeab", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.2315109525128017" ] }, "execution_count": 123, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_o = virtual_origin(1, re(u, x_t, nu))\n", "x_o * 0.3" ] }, { "cell_type": "markdown", "id": "6a6d0eee", "metadata": {}, "source": [ "# q5" ] }, { "cell_type": "code", "execution_count": 124, "id": "d18e0bf6", "metadata": {}, "outputs": [], "source": [ "U = 98\n", "nu = 0.000013\n", "x = 1\n", "y.plus = 5" ] }, { "cell_type": "code", "execution_count": 133, "id": "e850a5d1", "metadata": {}, "outputs": [], "source": [ "reynolds = re(U, x, nu)\n", "coefficient = C_F(x, reynolds)\n", "U_t = U_tau(U, coefficient)" ] }, { "cell_type": "code", "execution_count": 134, "id": "3ed4fbca", "metadata": {}, "outputs": [], "source": [ "l = nu / U_t" ] }, { "cell_type": "code", "execution_count": 135, "id": "914da35e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "5.3126926430504054e-05" ] }, "execution_count": 135, "metadata": {}, "output_type": "execute_result" } ], "source": [ "5 * l" ] }, { "cell_type": "markdown", "id": "aac15ef7", "metadata": {}, "source": [ "# q8" ] }, { "cell_type": "code", "execution_count": 149, "id": "6c59cc2d", "metadata": {}, "outputs": [], "source": [ "chord = 0.5\n", "re_t = 3e5\n", "rho = 1.225\n", "nu = 1.5e-5" ] }, { "cell_type": "code", "execution_count": 150, "id": "e6ab0b04", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 150, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAcNklEQVR4nO3deXRW9b3v8fc3A2QAwpAAYUjCEEAEEYyAgggo1qHV2tueo62dK6dza3vae+ztXac9Pfeu3tVbT9vVrp5Sh2pVvGrVshxBZVZQRpnDHKbkSQghCSHJkyff+0cCpR6UBPJk7yf5vNZikZCHvT+E5MPmt3+//TN3R0REwisp6AAiIvLhVNQiIiGnohYRCTkVtYhIyKmoRURCLiUeB83OzvaCgoJ4HFpEpEtav359hbvnnO9jcSnqgoIC1q1bF49Di4h0SWZ28IM+pqEPEZGQU1GLiIScilpEJORU1CIiIaeiFhEJuTbN+jCzA0ANEAOa3L0onqFERORv2jM9b467V8QtiYiInJeGPkREOsCS7WX85/K9cTl2W4vagcVmtt7M5p/vBWY238zWmdm68vLyjksoIpIAlu6K8ODK/XE5dluLeoa7TwFuAb5hZrPe/wJ3X+DuRe5elJNz3lWQIiJyEdpU1O5+tPXnCPA8MDWeoURE5G8uWNRmlmlmvc+8DdwEbI13MBERadGWWR+DgOfN7Mzrn3T3V+OaSkREzrpgUbv7PmBSJ2QREZHz0PQ8EZGQU1GLiIScilpEJORU1CIiIaeiFhEJORW1iEjIqahFREJORS0iEnIqahGRkFNRi4iEnIpaRCTkVNQiIiGnohYRCTkVtYhIyKmoRURCTkUtIhJyKmoRkZBTUYuIhJyKWkQk5FTUIiIhp6IWEQk5FbWISMipqEVEQk5FLSIScipqEZGQU1GLiIScilpEJORU1CIiIaeiFhEJORW1iEgHcI/fsVXUIiIdoLnZSY5To7b5sGaWbGYbzezF+EQREUlc0eZmUpLi09TtOep3gB1xSSEikuCaYk5qssXl2G0qajMbBtwGPBiXFCIiCa6puZmUOI19tPWovwJ+CDR/0AvMbL6ZrTOzdeXl5R2RTUQkYTREm0lLDaiozeyjQMTd13/Y69x9gbsXuXtRTk5OhwUUEUkEp6Mx0lOT43LsttT/DOB2MzsAPAXMNbPH45JGRCRBnY7GSAuqqN39fncf5u4FwF3Am+5+T1zSiIgkqNONARa1iIhcWE19E73TUuJy7HYd1d2XAcvikkREJIGdPB2lb3qPuBxbV9QiIpcoGmumtqGJrPTUuBxfRS0icolOno4CkJUen6EPFbWIyCUqPVkPwKA+aXE5vopaROQSHWst6iF90+NyfBW1iMglOlp1GoDcvrqiFhEJpaNVp+mRnER2Zs+4HF9FLSJyiYrLahiZk0lSUoBPzxMRkQ9WXFbL2MG943Z8FbWIyCWoro9ypOq0ilpEJKx2HqsBYOwgFbWISCi9e6ASgMl5/eJ2DhW1iMglePdAJYUDe9E/Mz7P+QAVtYjIRYs1O+sPnGDqiP5xPY+KWkTkIm09cpKahiYVtYhIWL2+o4zkJGNWYXy3H1RRi4hcpCXbyyjK70e/OI5Pg4paROSiHKqsY2dpDfPGD4r7uVTUIiIX4aUtxwC4afzguJ9LRS0i0k7uztPvHuLqgn7kDciI+/lU1CIi7bR2fyX7Kk5x19V5nXI+FbWISDs99U4JvdNSuHVibqecT0UtItIOkZp6Xt5ayp2Th5LeI7lTzqmiFhFph4dW7acp1syXZozotHOqqEVE2ujk6ShPrCnh1om5FGRndtp5VdQiIm30+JqD1DY08bXZozr1vCpqEZE2qKpr5I8r9zF7bA6XD8nq1HOrqEVE2uA/lhRTfTrKv9wyrtPPraIWEbmA4rIaHl9bwmem5TNucJ9OP7+KWkTkQ7g7P3txO5k9krlv3phAMqioRUQ+xAubjrBydwX3zRsT111cPswFi9rM0szsHTPbbGbbzOynnRFMRCRoZdX1/Otft3FVfj8+d01BYDlS2vCaBmCuu9eaWSqwysxecfc1cc4mIhIYd+f+57bQGGvmF5+8guQkCyzLBa+ovUVt67uprT88rqlERAL2zPrDvLkzwg8/Mo6ROb0CzdKmMWozSzazTUAEWOLua8/zmvlmts7M1pWXl3dwTBGRzlNcVsNPFm1j2oj+fOHagqDjtK2o3T3m7lcCw4CpZjbhPK9Z4O5F7l6UkxPf/cNEROKlpj7KV/+8noweKfzm7skkBTjkcUa7Zn24exWwDLg5HmFERILk7vzgmfc4WFnHbz89mUF90oKOBLRt1keOmfVtfTsduBHYGedcIiKd7g8r9vHqtlLuv2Uc00cOCDrOWW2Z9ZELPGpmybQU+9Pu/mJ8Y4mIdK6X3jvG/3l1J7dNzOXLMzvvEaZtccGidvf3gMmdkEVEJBBr9h3nvv+3iavy+vHLf5iEWfDj0ufSykQR6dZ2llZz72PryBuQwYOfLyIttXN2bWkPFbWIdFtHqk7zhYffJaNHMo9+aSp9M4JZIn4hbRmjFhHpcg6fqOPuP67hVGMTT//TNQztmx50pA+kohaRbudQZR13LVhDTX2UJ74yjctyO//Rpe2hohaRbqXkeMuVdG1DE0/eO50JQzt3t5aLoaIWkW5jf8UpPv3HNZyOxnjiK9MSoqRBRS0i3cSGkhN8+U/vkmTGk1+Zzvgh4R7uOJeKWkS6vNe3l/HNhRsY1CeNR784lYLszKAjtYuKWkS6tCfWHuR/vrCViUOzeOgLV5Pdq2fQkdpNRS0iXVJzs/PAkmJ+u3QPc8bm8LvPTCGjR2JWXmKmFhH5ENX1Ue57ahNv7Ixw99Th/OyOCaQkJ+76PhW1iHQpeyI1zH9sPSWVdfzsjsu5Z3p+6J7d0V4qahHpMl7bVsr3n95MWmoST947nakj+gcdqUOoqEUk4TXFmvnV67v57dI9TBqWxX9+9ipys8K7JLy9VNQiktAOVdbxnac2sqGkin8sGs5P77g8lE/AuxQqahFJWIs2H+V/PLcFgN/cPZnbJw0JOFF8qKhFJOHUNjTxk0XbeHb9Yabk9eXXd01meP+MoGPFjYpaRBLK+oMn+P7TmyiprOPbc0fz7RsKE3rqXVuoqEUkIdRHYzywpJgHV+4jNyudhfdOZ1qINqCNJxW1iITe+oMn+MGzm9lXfopPT8vjR7deRq+e3ae+us+fVEQSTn00xi8X7+LBVfsZkpXO41+exszC7KBjdToVtYiE0lt7K/jx81vZV9E9r6LP1T3/1CISWpGaev73Szt4YdNRhvfvvlfR51JRi0goxJqdJ9Ye5Bev7aIh2sy35o7m67NHk96jay1euRgqahEJ3OZDVfz4ha1sOXKSGaMH8G93TGBUTq+gY4WGilpEAlNR28ADS4pZ+E4J2b168pu7J/OxK3IT/ml3HU1FLSKdrj4a45HVB/jd0j3UR2N84doC7ps3hj5pqUFHCyUVtYh0GnfnpS3H+PkrOzl84jQ3XjaQ+2+9TMMcF6CiFpFOselQFf/+4nbWHTzBuMG9NZujHVTUIhJXBypO8cCSYhZtPkp2r578/BMT+VTRcJKTNA7dVipqEYmLsup6fv3Gbp5+9xCpyUl8Y84ovjZ7dLddtHIpLvgZM7PhwGPAYKAZWODuv453MBFJTFV1jfx+2V7+9NYBmt359LQ8vjl3NAN7pwUdLWG15Z+2JuD77r7BzHoD681sibtvj3M2EUkgpxqaeGT1fv6wfB+1jU3ceeVQ7ps3pks/J7qzXLCo3f0YcKz17Roz2wEMBVTUIkJdYxOPrznIghX7qKhtZN74QfzzTWMZO7h30NG6jHYNFplZATAZWHuej80H5gPk5eV1RDYRCbHahiYee/sAD67cT+WpRmaOzuZ7N41hSl6/oKN1OW0uajPrBfwF+K67V7//4+6+AFgAUFRU5B2WUERCpbo+yqOrD/DQ6v1U1UWZPTaHb80t5Kp8FXS8tKmozSyVlpJ+wt2fi28kEQmjk3VRHl69n0dW76e6vokbLxvIt+YWMml436CjdXltmfVhwEPADnd/IP6RRCRMItX1PLR6P0+uKaGmoYmPXD6Ib80tZMLQrKCjdRttuaKeAXwW2GJmm1p/7Ufu/nLcUolI4PaW17Jg+T6e33iEpuZmbp2Yy9dnj2b8kD5BR+t22jLrYxWgJUQi3cSGkhP8YfleFm8vo0dyEv9w9TDuvW4k+QMyg47WbWmJkIjg7izbVc7vl+/lnf2VZKWn8s05o/n8tQVk9+oZdLxuT0Ut0o3VR2M8v/EIj6zeT3FZLblZafz4tsu4e2oemVrqHRr6mxDphkpP1vPnNQd4cm0JJ+qijM/twy8/NYnbrxxCanJS0PHkfVTUIt3IpkNVPLxqPy9vOUbMnZvGD+JLM0YwdUR/7aoSYipqkS4uGmvm1a2lPLJ6PxtKqujdM4XPX1vA568pIG+AnsORCFTUIl1UpLqehe8cYuE7JZRW15M/IIOffGw8nywarkeNJhj9bYl0Ie7Omn2VPL7mIK9tK6Wp2Zk1Jod///gE5owbqIf1JygVtUgXUF0f5fkNR/jzmoPsidSSlZ7KF2cU8Jlp+RRka/5zolNRiySwHceq+fOag7yw8Qh1jTEmDcviF5+8go9NGkJaanLQ8aSDqKhFEkxdYxMvbj7GwndL2FhSRc+UJG6fNIR7pufrAUldlIpaJEFsOXyShe+WsGjTUWobmhiVk8mPb7uMT141jL4ZPYKOJ3GkohYJsZr6KH/ddJSF75Sw7Wg1aalJ3Doxl7un5lGU309zn7sJFbVIyLg7G0qqeOqdEl587xinozEuy+3Dv91xOXdcOZSs9NSgI0onU1GLhERZdT3PbTjCs+sPsbf8FJk9kvn45CHcdXUeVwzL0tVzN6aiFglQfTTGGzsiPLP+ECuKy2l2uLqgH/NnjeS2K4ZoYYoAKmqRTufubDlykmfWHWbR5qOcPB0lNyuNr88ezX+7ahgjNO9Z3kdFLdJJIjX1/HXjUZ5Zf4jislp6piTxkcsH88mrhjFjdLZWDcoHUlGLxFFdYxOLt5Xx3MYjrNrdMrQxOa8v/+vOCXz0iiG6MShtoqIW6WBNsWZW7z3OCxuP8Nq2UuoaYwztm87XZo/izslDGT2wd9ARJcGoqEU6wJlx5xc2HmXR5qNU1DbQJy2FO64cyp2Th1KU348kDW3IRVJRi1yCQ5V1/HXTEZ7feIS95afokZzE3HED+fjkocwZl0PPFD1vQy6dilqknSLV9bz43jEWbT7KpkNVAEwt6M9XrhvJrRNyycrQuLN0LBW1SBucrIvy6raWcn5773GaHcYN7s0Pbx7Lx64YwvD+2ilF4kdFLfIB6hqbeH1HhEWbjrK8OEI05uQPyOAbc0Zz+6QhFA7STUHpHCpqkXM0NMVYWVzBos1HWbK9jNPRGIP7pPH5awq4/cohTByqpdzS+VTU0u01NMVYtbuCl7YcY8n2Mmrqm+iXkcqdU4Zy+6QhTC3orxkbEigVtXRLjU3NrNpTzovv/a2c+6SlcPPlg7n1ilxmjs4mNTkp6JgigIpaupEz5fzSe6Us3l56tpw/cvlgbrsilxmjsumRonKW8FFRS5fW0BRj9Z4KXnqvlCXbS6mub6L3mXKemMuM0SpnCT8VtXQ5pxtjLC+O8MrWUt7cEaGmoaWcbxo/mNuuGMzM0TkqZ0koFyxqM3sY+CgQcfcJ8Y8k0n7V9VGW7ozwypZSlhVHqI820y8jlVsmDubmCYOZMTpbqwQlYbXlivpPwG+Bx+IbRaR9Kk818vr2Ml7ZeozVe47TGGtmYO+efOqq4dwyYTBTR/QnRTcEpQu4YFG7+wozK+iELCIXVHqyniXbS3llaylr91cSa3aG9Uvnc9fkc8vEwUwerocfSdfTYWPUZjYfmA+Ql5fXUYcVYU+klte2lbJ4exmbW5+tMTInk69eP5JbJuRy+ZA+WoQiXVqHFbW7LwAWABQVFXlHHVe6n+ZmZ9PhKhZvK2Px9lL2lZ8CYNKwLH7wkbHcNH6Qlm9Lt6JZHxIKjU3NvL3vOIu3lbJkexmRmgZSkozpIwfwhWsLmDd+ELlZ6UHHFAmEiloCU1MfZXlxOYu3lbF0Z8s0uvTUZGaPzeGmywcxd+wgPTJUhLZNz1sIzAayzeww8K/u/lC8g0nXdKTqNG/sKGPJ9jLW7DtONOb0z+zBLRMHc9P4wcwszCYtVdPoRM7Vllkfd3dGEOma3J1tR6tZsr2lnLcfqwZgRHYmX5wxgnnjBzElr5924Bb5EBr6kA7X0BRjzb5Klmwv5Y0dEY6drMcMrsrrx/23jOPG8YMYldMr6JgiCUNFLR2i8lQjy3ZFeH1HGct3lXOqMUZ6ajKzxmTzvXljmDtuIAN69Qw6pkhCUlHLRXF3istqeWNnGW/uiLCh5ATNDjm9e3L7lUOZN34g147SeLNIR1BRS5vVR2Os3V/JmzvKeGNnhMMnTgMwYWgfvjm3kBsvG8iEIVlaGSjSwVTU8qEiNfUs3RnhjR0RVu2poK4xRlpqEjNH5/CNOaOZM3Ygg7PSgo4p0qWpqOXvNDe3zNJ4c2eEN3eWsfnwSQCGZKXxiSlDuWHcIK4ZNUBDGiKdSEUtVNdHWbW7gqU7IywrLqe8pgEzuHJ4X/75pjHccNkgxg3uredpiARERd0NuTt7IrUs3RXhzZ0R1h04QVOz0ycthVljcpg7biDXj8nRLA2RkFBRdxP10Rhv7z1+tpzP3AgcN7g3984ayZyxA5mS11fPbxYJIRV1F1ZyvI5lxRGW7ozw1t7jNDQ1k56azIzR2Xxt9ijmjB3IkL560JFI2Kmou5D6aIx39leybFc5y3ZF2FfR8njQ/AEZ3D01jznjBjJtRH/dCBRJMCrqBHeoso5luyIs3VXO23uPczoao0dKEtNHDuCe6fnMGTeQEdmZQccUkUugok4wf3fVXBw5+1D9vP4ZfKpoGHPGDmT6yAGk99BVs0hXoaJOACXH61heHGHZrnLeOueqedqI/twzLZ/ZY3MYkZ2p6XMiXZSKOoRON8ZYs/84y3eVs7y4nP2tY83D+6fzqaJhzB6bw/SRA8joob8+ke5A3+kh4O7sLT/F8uKWYl67r2WGRs+UJK4ZNYDPXZPP9WN01SzSXamoA1Lb0MRbeyrOlvOZec2jcjL5zLR8rh+boxkaIgKoqDuNu7P9WDUriitYUVzOuoOVRGNOZo9krh2dzVevH8X1Y3IY3j8j6KgiEjIq6jg6XtvAqj0VLN9VzordFVTUNgAtqwG/NHME14/JoSi/Pz1StBpQRD6YiroDRWPNbDh4ghW7y1lRXMHWoydxh34ZqcwszGFWYTazxuQwqI8eCyoibaeivkQlx+tYvrucFcUtC05qG5pITjKm5PXlezeOYdaYHCYMzdLmrSJy0VTU7XSqoYk1+46zorhlOOPM1LmhfdP52KQhXD8mh2tHD6BPWmrASUWkq1BRX0Bzc8tNwOXF5azcXc76gyeIxpz01GSmj+zP567JZ9aYHEZq6pyIxImK+jwi1fWs2F3Byt3lrNpdwfFTjQBcltun5SZgYQ5XFfSjZ4qmzolI/KmoaXl+xrsHKlm5u2Xq3M7SGgCye/Vg1pgcrivMZmZhNgN76yagiHS+blnU7s7uSC0ristZubuCtfuPUx9tJjXZKMrvz3+/eRzXFWYzPrePdtQWkcB1m6KuPNXIqj0VrGwt59LqegBGZmdy19V5zBqTzbQRA8js2W0+JSKSILpsKzU2NbOh5MTZq+Yzc5r7pKUwszCbWYU5zCzMZlg/rQQUkXDrMkXt7uyrOHX2ivntfcepa4ydndN8341juK4wmyuG9dWcZhFJKAld1FV1jazec5xVe1pWAh6panmwUf6ADD4xZSjXFeZwzSjNaRaRxJZQRR2NNbOxpIqVu1sWm7x3uAp36N0zhemjBvDV2aOYVZhN/gBtPSUiXUebitrMbgZ+DSQDD7r7z+OaqpW7s7/iFCtb5zS/vfc4pxpjJBlcObwv355byKwx2Uwa1peUZD3YSES6pgsWtZklA78D5gGHgXfNbJG7b49HoKq6Rt7ae7zlqvmc4Yy8/hl8fPLfhjOy0jWcISLdQ1uuqKcCe9x9H4CZPQXcAXRoUddHY9y1YA3vHa6iuXU449rRA/ja7FFcp+EMEenG2lLUQ4FD57x/GJj2/heZ2XxgPkBeXl67g6SlJjMiO5PZY1tWAmo4Q0SkRVuK+nxz2fy//IL7AmABQFFR0X/5eFv8xz9eeTG/TUSkS2vLJethYPg57w8DjsYnjoiIvF9bivpdoNDMRphZD+AuYFF8Y4mIyBkXHPpw9yYz+ybwGi3T8x52921xTyYiIkAb51G7+8vAy3HOIiIi56FpFSIiIaeiFhEJORW1iEjIqahFRELO3C9qbcqHH9SsHDh4kb89G6jowDgdRbnaR7naR7napyvmynf3nPN9IC5FfSnMbJ27FwWd4/2Uq32Uq32Uq326Wy4NfYiIhJyKWkQk5MJY1AuCDvABlKt9lKt9lKt9ulWu0I1Ri4jI3wvjFbWIiJxDRS0iEnKhKWozu9nMdpnZHjP7l6DznGFmD5tZxMy2Bp3lDDMbbmZLzWyHmW0zs+8EnQnAzNLM7B0z29ya66dBZzqXmSWb2UYzezHoLOcyswNmtsXMNpnZuqDznGFmfc3sWTPb2fq1dk0IMo1t/Tyd+VFtZt8NOheAmd3X+nW/1cwWmllahx07DGPUrRvoFnPOBrrA3fHaQLc9zGwWUAs85u4Tgs4DYGa5QK67bzCz3sB64ONBf77MzIBMd681s1RgFfAdd18TZK4zzOx7QBHQx90/GnSeM8zsAFDk7qFawGFmjwIr3f3B1mfRZ7h7VcCxzmrtjSPANHe/2AV2HZVlKC1f7+Pd/bSZPQ287O5/6ojjh+WK+uwGuu7eCJzZQDdw7r4CqAw6x7nc/Zi7b2h9uwbYQcveloHyFrWt76a2/gj+SgAws2HAbcCDQWdJBGbWB5gFPATg7o1hKulWNwB7gy7pc6QA6WaWAmTQgTthhaWoz7eBbuDFkwjMrACYDKwNOApwdnhhExABlrh7KHIBvwJ+CDQHnON8HFhsZutbN4kOg5FAOfBI63DRg2aWGXSo97kLWBh0CAB3PwL8X6AEOAacdPfFHXX8sBR1mzbQlb9nZr2AvwDfdffqoPMAuHvM3a+kZW/NqWYW+HCRmX0UiLj7+qCzfIAZ7j4FuAX4RutwW9BSgCnA7919MnAKCNO9ox7A7cAzQWcBMLN+tIwCjACGAJlmdk9HHT8sRa0NdNupdQz4L8AT7v5c0Hner/W/ycuAm4NNAsAM4PbWseCngLlm9niwkf7G3Y+2/hwBnqdlKDBoh4HD5/yP6FlaijssbgE2uHtZ0EFa3Qjsd/dyd48CzwHXdtTBw1LU2kC3HVpv2j0E7HD3B4LOc4aZ5ZhZ39a302n54t0ZaCjA3e9392HuXkDL19ab7t5hVzuXwswyW28I0zq0cBMQ+Awjdy8FDpnZ2NZfugEI/Ob+Oe4mJMMerUqA6WaW0fr9eQMt9446RJv2TIy3MG+ga2YLgdlAtpkdBv7V3R8KNhUzgM8CW1rHgwF+1Lq3ZZBygUdb78YnAU+7e6imwoXQIOD5lu9tUoAn3f3VYCOd9S3gidaLp33AFwPOA4CZZdAyQ+yfgs5yhruvNbNngQ1AE7CRDlxOHorpeSIi8sHCMvQhIiIfQEUtIhJyKmoRkZBTUYuIhJyKWkQk5FTUIiIhp6IWEQm5/w/e/mhiztR86QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "laminar = pd.read_excel(\"LBLdata2.xlsx\")\n", "aa, ab = laminar.columns\n", "y=laminar[aa]\n", "u=laminar[ab]\n", "plt.plot(u, y)" ] }, { "cell_type": "code", "execution_count": 152, "id": "ba82cd75", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.492929975\n" ] }, { "data": { "text/plain": [ "38.645710040000004" ] }, "execution_count": 152, "metadata": {}, "output_type": "execute_result" } ], "source": [ "U_inf = u.max()\n", "frac = u/U_inf\n", "\n", "theta = np.trapz(frac * (1-frac), y)\n", "print(theta)\n", "drag(rho, U_inf, theta)" ] }, { "cell_type": "code", "execution_count": null, "id": "85cf6665", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 5 }