{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "dd43aab3-57f6-4c52-a9f2-34fcd2c77a42", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "id": "696e6ca4-af8f-4288-911d-a4690cc8ac3e", "metadata": {}, "outputs": [], "source": [ "r = a = 6945e3\n", "mu_e = 398600e9\n", "m=250" ] }, { "cell_type": "markdown", "id": "b016073f-a560-4524-8718-3136c2a20428", "metadata": {}, "source": [ "# finding inclination" ] }, { "cell_type": "code", "execution_count": 3, "id": "2ec84963-2255-4d37-bc9b-d31bf61e92a5", "metadata": {}, "outputs": [], "source": [ "alpha_dot = 360/365.25" ] }, { "cell_type": "code", "execution_count": 4, "id": "a7d243f6-5dfe-4905-978d-ff48eddab270", "metadata": {}, "outputs": [], "source": [ "def time(a, mu):\n", " return 2*np.pi*np.sqrt(np.power(a, 3)/mu)" ] }, { "cell_type": "code", "execution_count": 5, "id": "97a8ed9f-4635-4f5b-aa3c-d350533a7a94", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "15.000099718506572" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hours = time(a, mu_e)/60/60\n", "24/hours" ] }, { "cell_type": "markdown", "id": "2faaae5f-0dab-4e7f-9211-0674af454423", "metadata": {}, "source": [ "# worst case cross section" ] }, { "cell_type": "code", "execution_count": 6, "id": "42e29e98-2f6c-4d60-8e24-d51e030b3aa7", "metadata": {}, "outputs": [], "source": [ "theta = np.linspace(0, np.pi/8)\n", "\n", "# height and width of solar panels\n", "h_p = 6.6\n", "w_p = 2.2\n", "\n", "#height and width of bus\n", "h_b = 1.63\n", "w_b = 3.25" ] }, { "cell_type": "code", "execution_count": 7, "id": "caa03332-a9f5-4b7b-a77f-109405aa969a", "metadata": {}, "outputs": [], "source": [ "a_p = h_p*np.cos(theta) * w_p\n", "\n", "a_b = h_b * np.sin(theta) * w_b" ] }, { "cell_type": "code", "execution_count": 8, "id": "46899560-3013-4b54-9fc2-ffe3592b06bc", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "22.5" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAggklEQVR4nO3deXxU9b3G8c83JCSBBAgk7MSwr4YtglsVt4rUSq1L64ZYrNSqVWu9tdqqtfdqtS69rZaKCrjigmstel2quNQKCTuEJeyBkAQCWQjZZn73j0SLNCEh25mced6vV16ZOXNm8nCcPDn+5nfOMeccIiLiXxFeBxARkZalohcR8TkVvYiIz6noRUR8TkUvIuJzkV4HqE1iYqJLSUnxOoaISJuRkZGxxzmXVNtjIVn0KSkppKenex1DRKTNMLNtdT2moRsREZ9T0YuI+JyKXkTE51T0IiI+p6IXEfE5Fb2IiM+p6EVEfC4k59GLiDRWVSBIUVkV+0or2F9aycGKAAcrq7/KDrldFQjiHAQdOBzOgXMOM6N9ZATRX3+1o31kBDFREXSKiaJTbFTN90jiY6JoF2Fe/5PrpaIXkTahrDJA9r6D5BaVkVNYRm5RGbsLy9hdVEZeURn7SivZX1pBUVlVq+aKj44kMT6apLhokjpVf+9e871PQiz9EjrQq3MMke28G0BR0YtIyKgMBNmcf4DN+SVs3VvKtr0H2Lr3ANv2lpJTWPYf63eOjaJnpxi6d4omJbEjCR3a0zk2ioQOUSR0bE+n2CjioiOJjWpHTFQ7Ytu3q7kdQVS7CAyIMMMMzKr3zINBR0UgSHlVkIqqIOVVASqqghysDFBcVkXRwUqKvv5eyf7SSvaUlJNXXE7mriIWFZdTUv7NPzaREUavLjEkd+1Av4QOpCR2ZHD3OAZ3j6dvQiwRLfx/BSp6EWl1zjl27j9IZk4xG3KLWbe7mA27i9m8p4TKwL+vepcYF80x3TpwwsBupHTrSL+usfTqHEvPTjH06BRDbPt2zZ4tIsKIiaj+w9BYpRVV5BWVs3P/QXYUlLJjXynbC6pvf5CZy56Siq/XjYmKYGBSXHXx94jnp5MGfv1Hp7mo6EWkxe0pKWdl9n5W7ChkZfZ+VmYXsvfAv8uuT5dYhvWM5/Th3RnWM56BSXGkJHYkLrptVlSH9pGkJEaSktix1scLD1aSlVdCVl4xG3NL2JhXwpKt+8jYvo/rThvU7Hna5lYUkZDlnGPzngMs3lLw9dfO/QcBMIPB3eM4bVh3RvftzIjenRnSI474mCiPU7euzrFRjD8mgfHHJHxjeXlVoEV+nopeRJrEOUdWXgmfZe1h8ZYClmwt+HpoIjEumgn9E5h+YgqpfTszqk9nOrbRvfTWEB3Z/ENRoKIXkUYoOFDBZ1l7+HRDPp9u3MPuouoPSvsmxHLKkCQm9u/KhP7dSOnWodnHm+XoqehFpF7OOdbsKuK9tbl8vD6PVTsLca56COLkQYl8a3AiJw9OpG9CB6+jSi1U9CJSq8pAkC83F/D+2t28vzaXXYVlmMHYfl246YwhnDIkkdS+XdrEAUPhrt6iN7M5wLlAnnNuVM2yu4EfA/k1q93unFtYx/PbAenATufcuc0RWkRaRkVVkE835vP2yhw+yMyluKyKmKgIvjU4iZvOGsIZw7rTLS7a65hylBqyRz8PeBR45rDljzjnHmzA828EMoFORxdNRFpDVSDIF5v38rcVu3h39W6Kyqro0iGKySN78u2RPTl5UGKLzFeX1lNv0TvnPjGzlMa8uJn1Bb4D/A/w88a8hog0P+ccK7ILeTUjm4Wrcth7oIK46Ei+PbIH303tzUmDEmkfqXMe+kVTxuivN7NpVA/L3OKc21fLOn8E/guIr+/FzOwa4BqA5OTkJsQSkbrkFZXx2rKdLMjIJiuvhOjICM4c0YPzRvfm1CFJTToaVEJXY4t+FvA7wNV8fwj40aErmNlX4/oZZjapvhd0zs0GZgOkpaW5elYXkQaqqAry/tpcFmTsYNGGfIIOxh+TwO+/fyxTUnvRKcwOVgpHjSp651zuV7fN7Ang7VpWOwk4z8ymADFAJzN7zjl3eaOSishRyd5XyvzF23lpyQ72lFTQs1MM104ayAXj+jIgKc7reNKKGlX0ZtbLOZdTc/d8YPXh6zjnfgX8qmb9ScAvVPIiLSsQdCzakMdz/9rOR+vzMOD0Yd25bOIxnDIkSVMhw1RDplfOByYBiWaWDdwFTDKzMVQP3WwFZtas2xt40jk3pYXyikgtCg9W8tKS7TzzxTay9x0kKT6a608bxA8nJNOnS6zX8cRj5lzoDYenpaW59PR0r2OIhLxtew8w9/OtvJy+g9KKABP7d2XaCSl8e2QPojy80IW0PjPLcM6l1faYjowVaWOccyzZuo8nP93M+5m5REYY303tzY9O7s+oPp29jichSEUv0kYEg44PMnN57ONNrNixny4dovjppIFMOyGFHp1ivI4nIUxFLxLiqgJB3l6Zw18+zmJDbgn9usbyu++N4sJxfXXEqjSIil4kRJVVBnh1aTZ/XbSJHQUHGdIjjj/+YAznpvby9ELT0vao6EVCTHlVgJeX7ODRj7LILSpndL8u/OY7IzhzeI8Wv4i0+JOKXiREVAaCLMjI5tF/ZLFz/0HSjkngoYvGcNKgbrp4hzSJil7EY1WBIG8s38WfPtzI9oJSxvTrwn3fP5ZvDU5UwUuzUNGLeMQ5x7urd/OH99azOf8Ao/p0Ys70NE4b2l0FL81KRS/igcVbCrjvnUyWbd/P4O5xPH7FeL49oocKXlqEil6kFW3MLeb+d9fxQWYePTpFc/8Fx3LBuL6aRSMtSkUv0gryist4+L0NvJy+g47tI7n17KH86KT+mgcvrUJFL9KCyqsCzPlsK4/+YyMVgSDTT+zP9acPomvH9l5HkzCiohdpAc453luby70LM9m2t5Qzh/fgju8Mp39iR6+jSRhS0Ys0s/W7i7nn7TV8nrWXwd3jeHbGBL41OMnrWBLGVPQizaS4rJKH3tvAM19sJT4mit+eN5LLJibrg1bxnIpepImcc/xtZQ7//fZa8kvKuWxiMrecNZQEjcNLiFDRizTBpvwS7nxzNZ9n7eXYPp158so0Uvt28TqWyDeo6EUaoawywGMfZfH4os1ER0Xwu6kjuXTiMbomq4QkFb3IUfpn1h5+9foqtu0t5fyxfbh9ynCS4qO9jiVSJxW9SAMVllZy78JMXkrfwTHdOvDC1RM5cVCi17FE6qWiF2mAd1blcOdbayg4UMHMUwdw85lDiInSUa3SNqjoRY4gr6iM37y5mv9bk8uIXp2YO/04XYBb2hwVvUgtnHO8sXwnd725hvKqIL+cPIyrv9WfKM2JlzZIRS9ymPzicu54fRXvrc1l/DEJ/OHCVAYkxXkdS6TRVPQih1i4Kodfv7GakvIqbp8yjBknD9CUSWnzVPQiwP7SCu58cw1vrdhFat/OPHTRaAb3iPc6lkizUNFL2Fu0IZ9bX1lBwYEKbjlrCD+ZNFBj8eIrKnoJW2WVAR54dz1zPt/CkB5xzL3qOEb21owa8R8VvYSl9buLufHFZazbXcz0E1O47ZxhmhcvvqWil7DinGPeP7dy3zvr6BQTxdyrjuO0od29jiXSolT0Ejbyi8v5xSsrWLQhnzOGdef+C1NJjNM5asT/VPQSFj7P2sONLy6nuKyS331vFJdPTMZM0yYlPKjoxdcCQcf/friRP/9jIwOT4nj+6okM7alpkxJe6p1DZmZzzCzPzFYfsuxuM9tpZstrvqbU8rx+ZvaRmWWa2Rozu7G5w4scSW5RGZc+8S/+9OFGLhzXl7euP0klL2GpIXv084BHgWcOW/6Ic+7BIzyvCrjFObfUzOKBDDN73zm3tnFRRRru4/V5/PzlFZRVBnj44tF8f1xfryOJeKbeonfOfWJmKUf7ws65HCCn5naxmWUCfQAVvbSYQNDx8PvreeyjTQzrGc+jl45jUHedp0bCW1PG6K83s2lAOtV77vvqWrHmD8VY4MsjrHMNcA1AcnJyE2JJuNpbUs7PXlzG51l7+eFx/bj7vJGaGy9CA8bo6zALGAiMoXqv/aG6VjSzOOBV4CbnXFFd6znnZjvn0pxzaUlJSY2MJeFq2fZ9nPvnz0jfuo8HLkzl9xekquRFajRqj945l/vVbTN7Ani7tvXMLIrqkn/eOfdaoxKKHIFzjuf+tY173l5Lz84xvHrtibowiMhhGlX0ZtarZgwe4HxgdS3rGPAUkOmce7jxEUVqV1pRxR2vr+b1ZTs5fVh3Hrl4DJ07RHkdSyTk1Fv0ZjYfmAQkmlk2cBcwyczGAA7YCsysWbc38KRzbgpwEnAFsMrMlte83O3OuYXN+0+QcLSjoJQfP5PO+txibjlrCNedNogInTdepFYNmXVzSS2Ln6pj3V3AlJrbnwH6zZNm98+sPVz3wlICQcfc6ccxSeeqETkiHRkrbcZXJyT7779nMiCxI09MSyMlsaPXsURCnope2oSyygC/fmM1CzKyOWtEDx75wRjiovX2FWkI/aZIyMstKmPmsxks37Gfn50xmJvOGKzxeJGjoKKXkLYyez9XP51OSXkVf718HJNH9fI6kkibo6KXkPXOqhxufnk53TpG89pPT2RYz05eRxJpk1T0EnKcc/zl40384f/WMy65C7OnpekCISJNoKKXkFJeFeBXr63itaU7mTqmN/frVAYiTaail5BRcKCCmc+ms2TrPn5+1hBuOH2QrgIl0gxU9BISNuWXcNXcJeQWlfHopWM5N7W315FEfENFL55bsrWAq59OJ6qd8eI1xzM2OcHrSCK+oqIXT729chc/f3kFfRNiefqqCfTr2sHrSCK+o6IXTzjneOLTzdy7cB3HpSQw+4o0Ejq29zqWiC+p6KXVBYKO3/5tDc98sY3vpPbioYtGa2aNSAtS0UurOlgR4Ib5y/ggM5eZpwzgl5OH6XQGIi1MRS+tZn9pBVfNW8LyHfu5Z+pIpp2Q4nUkkbCgopdWsWv/QabNWcz2glJmXaZz1oi0JhW9tLisvGKueGoxJWVVPH3VBE4Y2M3rSCJhRUUvLSpj2z5mPL2EyIgIXpx5PCN768LdIq1NRS8t5qN1eVz7fAY9OsXw7I8mktxNc+RFvKCilxbx+rJsfvHKSob1jGfeVRNIitfZJ0W8oqKXZvfsF1v5zZtrOGFAN2ZPG098TJTXkUTCmopemtVfPs7igXfXc+bw7jx66TgdCCUSAlT00iycc9z/7nr+umgTU8f05sGLRhPVLsLrWCKCil6aQTDouPOt1Tz3r+1cOjGZ300dRTsd7SoSMlT00iSVgSC3vrKCN5bvYuapA7ht8jBdLEQkxKjopdHKqwLc8MIy3luby61nD+Wnkwaq5EVCkIpeGqWsMsC1z2Xw0fp87vruCK46qb/XkUSkDip6OWoHKwJc82w6n27cw73nH8ulE5O9jiQiR6Cil6NyoLyKGU8v4cstBTxwYSoXp/XzOpKI1ENFLw1WUl7FVXMXk7FtHw9fPJrzx/b1OpKINICKXhqk8GAl0+cuZmV2IX+6ZCznpvb2OpKINJCKXupVeLCSK576ksycIh67dByTR/X0OpKIHAUVvRxR4cFKpj31Jetyivnr5eM5Y3gPryOJyFGq9xh1M5tjZnlmtvqQZXeb2U4zW17zNaWO5042s/VmlmVmtzVncGl5RWWVTJuzmLU5Rcy6fJxKXqSNasjJSOYBk2tZ/ohzbkzN18LDHzSzdsBjwDnACOASMxvRlLDSeorKKpn21GLW7ipk1mXakxdpy+oteufcJ0BBI157ApDlnNvsnKsAXgSmNuJ1pJUVl1Vy5ZzFrN5ZyGOXjuPMESp5kbasKacXvN7MVtYM7STU8ngfYMch97NrlkkIKymv4so5i1mVXcijl47j2yP1watIW9fYop8FDATGADnAQ7WsU9tJT1xdL2hm15hZupml5+fnNzKWNMWB8iqmz1nMiuxCHr10rGbXiPhEo4reOZfrnAs454LAE1QP0xwuGzj0sMm+wK4jvOZs51yacy4tKSmpMbGkCcoqA8x4egnLduznz5eMZfKoXl5HEpFm0qiiN7NDW+B8YHUtqy0BBptZfzNrD/wQeKsxP09aVnlVgGuezeDLLQU8fPFophyrkhfxk3rn0ZvZfGASkGhm2cBdwCQzG0P1UMxWYGbNur2BJ51zU5xzVWZ2PfB/QDtgjnNuTUv8I6TxKgNBrn9hGZ9syOeBC1KZOkYfo4j4Tb1F75y7pJbFT9Wx7i5gyiH3FwL/MfVSQkMg6Lj5peW8vzaX3543kouP0wnKRPxIF/UMU8Gg45evruTtlTn86pxhXHliiteRRKSFqOjDkHPV13hdkJHNTWcOZuapA72OJCItSEUfZpxz/P6ddTz3r+3MPHUAN54x2OtIItLCVPRhZtaiTTz+yWYuPz5ZF/IWCRMq+jDy3L+28cC765k6pjf3nDdKJS8SJlT0YeLN5Tv5zZurOX1Ydx68aDQRESp5kXChog8DH63L45aXV3BcSlf+ctk4otrpP7tIONFvvM8t3lLAT57LYFiveJ66Mo2YqHZeRxKRVqai97HVOwuZMW8JfRJiefqqCcTHRHkdSUQ8oKL3qW17DzB97mLiYyJ5bsZEusVFex1JRDyioveh/OJyrnhqMYGg45kZE+ndJdbrSCLiIV0c3GeKyyqZPncx+cXlvPDjiQzqHud1JBHxmIreR8qrAvzkuQzW7S7mySvTGJtc24W/RCTcaOjGJ4JBxy0vr+DzrL08cEEqpw3t7nUkEQkRKnofcM5xz9treXtlDredM4wLxvf1OpKIhBAVvQ/MWrSJef/cyoyT+zPzlAFexxGREKOib+PeWLaTB95dz3mje3PHlOE6f42I/AcVfRv2z6w93LpgBccP6MofLkrV+WtEpFYq+jZq/e5iZj6bQf/Ejjx+RRrRkTq1gYjUTkXfBu0uLGP63MV0iG7H3Ksm0DlWpzYQkbqp6NuYrw6IKjpYyZzpx9FHR72KSD10wFQbUhkI8tPnl5KVV8Kc6ccxsndnryOJSBugom8jnHP86rVVfLpxD3+4MJVThiR5HUlE2ggN3bQRj/4jiwUZ2dx05mAuSuvndRwRaUNU9G3Am8t38tD7G/j+2D7ceMZgr+OISBujog9xGdsKuHXBSib078p9FxyrA6JE5Kip6EPYtr0H+PEzGfTuHMPjl4/XXHkRaRQVfYgqLK3kR/OWEHSOOdOPI6Fje68jiUgbpaIPQRVVQa59PoPtBaU8fvl4BiTp4iEi0niaXhlinHP8+o1V/HPTXh66aDQTB3TzOpKItHHaow8xsz/ZzMvp2dxw+iCdV15EmoWKPoR8sDaX37+7ju8c24ubzxzidRwR8QkVfYhYv7uYG19cxsjenXjwotE65bCINBsVfQjYW1LOjKeX0DE6kiempRHbXtMoRaT51Fv0ZjbHzPLMbHUtj/3CzJyZJdbx3JvNbI2ZrTaz+WYW0xyh/aSiKsi1zy0lv7ic2dPS6NVZZ6MUkebVkD36ecDkwxeaWT/gLGB7bU8ysz7Az4A059wooB3ww0Yn9aGvZtgs3lrAAxemMqZfF68jiYgP1Vv0zrlPgIJaHnoE+C/AHeHpkUCsmUUCHYBdjQnpV099tuXrGTZTx/TxOo6I+FSjxujN7Dxgp3NuRV3rOOd2Ag9SvcefAxQ65947wmteY2bpZpaen5/fmFhtysfr87h3YSZnj+yhGTYi0qKOuujNrANwB3BnPeslAFOB/kBvoKOZXV7X+s652c65NOdcWlKSv8+1vjm/hBvmL2Noz0488oMxmmEjIi2qMXv0A6ku7xVmthXoCyw1s56HrXcmsMU5l++cqwReA05sSlg/KC6r5MfPpBPVLoLZV4ynQ3sdnCwiLeuoW8Y5twro/tX9mrJPc87tOWzV7cDxNf8HcBA4A0hvfNS2Lxh03PzScrbuLeW5GRPp17WD15FEJAw0ZHrlfOALYKiZZZvZjCOs29vMFgI4574EFgBLgVU1P2t2s6Ruox75YAMfZOZx57kjOGGgzmEjIq2j3j1659wl9TyecsjtXcCUQ+7fBdzVhHy+sXBVDn/+RxYXp/Vl2gnHeB1HRMKIjoxtBZk5Rdzy8grGJnfhd98bpatEiUirUtG3sH0HKrjm2XQ6xUbqKlEi4glN+WhBVYEg189fSm5hOS/NPJ7unXQGCBFpfSr6FvTgexv4PGsvD1yYytjkBK/jiEiY0tBNC3lnVQ5/XbSJyyYmc3FaP6/jiEgYU9G3gI25xfzileoPX+/87giv44hImFPRN7OiskpmPptBbPt2zLpMH76KiPc0Rt+MgkHHLS+vYFtBKS9cPZGenfXhq4h4T3v0zWjWok28vzaXO6YMZ+IAHfkqIqFBRd9MFm3I58H31jN1TG+uOinF6zgiIl9T0TeDHQWl3PjiMob2iOe+7x+rI19FJKSo6JuovCrAdS8sJRBw/PVynXZYREKPWqmJ7vnbWlZmF/L4FeNJSezodRwRkf+gPfomeH1ZNs9/uZ2Zpwzg7JGHX3dFRCQ0qOgbaf3uYm5/bTUT+nfl1rOHeh1HRKROKvpGKCmv4trnM+gYHcmjl4wlsp02o4iELo3RHyXnHL9csJJte0t5/uqJOiOliIQ87Yoepbmfb+Xvq3K49eyhHK+DokSkDVDRH4Wl2/dx78JMzhrRg5mnDPA6johIg6joG2h/aQU3vLCMXl1iePCi0TooSkTaDI3RN4Bz1Scryysu49VrT6RzbJTXkUREGkx79A3w5Kdb+HBdHndMGU5q3y5exxEROSoq+npkbNvH/e+uY/LInlx5YorXcUREjpqK/gj2HajghheW0qtLDPdfmKpxeRFpkzRGX4dg0HHLKyvYU1KhcXkRadO0R1+HJz/bzD/W5XHHd4ZzbN/OXscREWk0FX0tqsfl13POqJ5MO+EYr+OIiDSJiv4whaWV/Gz+Mnp3ieH3F2hcXkTaPo3RH8I5x22vrSS3qIxXfnKCxuVFxBe0R3+IFxZv553Vu7n17KGMTU7wOo6ISLNQ0ddYt7uIe/62llOGJPHjb+k8NiLiHyp64GBFgOtfWEZ8TBQPXTSaiAiNy4uIf2iMHrjn7TVsyi/h2R9NJCk+2us4IiLNqt49ejObY2Z5Zra6lsd+YWbOzBLreG4XM1tgZuvMLNPMTmiO0M3pbyt2MX/xDq49dSAnD671nyEi0qY1ZOhmHjD58IVm1g84C9h+hOf+L/Cuc24YMBrIbETGFrOjoJTbX1vFuOQu3HzWEK/jiIi0iHqL3jn3CVBQy0OPAP8FuNqeZ2adgFOAp2pep8I5t7/RSZtZZSDIDfOXgcH//nAsUbruq4j4VKPazczOA3Y651YcYbUBQD4w18yWmdmTZtbxCK95jZmlm1l6fn5+Y2IdlT99uJHlO/Zz3/ePpV/XDi3+80REvHLURW9mHYA7gDvrWTUSGAfMcs6NBQ4At9W1snNutnMuzTmXlpSUdLSxjsriLQU89lEWF47vy7mpvVv0Z4mIeK0xe/QDgf7ACjPbCvQFlppZz8PWywaynXNf1txfQHXxe6qwtJKbXlxGctcO3H3eSK/jiIi0uKOeXumcWwV0/+p+TdmnOef2HLbebjPbYWZDnXPrgTOAtU3M2yTOOW5/YxV5xeW8eu2JxEVrdqmI+F9DplfOB74AhppZtpnNOMK6vc1s4SGLbgCeN7OVwBjg3ibmbZIFGdn8fWUON581hNH9ungZRUSk1dS7S+ucu6Sex1MOub0LmHLI/eVAWuPjNZ8tew5w11trOH5AV35y6kCv44iItJqwmFNYGQhy04vLiGoXwSM/GEM7neJARMJIWAxSP/L+BlZkFzLrsnH06hzrdRwRkVbl+z36xVsKmLVoEz9I68c5x/byOo6ISKvzddEXlVVy80vLSe7agTu/O8LrOCIinvD10M3db61hd83VojpqKqWIhCnf7tH/fWUOry3dyXWnDWKcrhYlImHMl0W/u7CM219fxeh+Xbjh9EFexxER8ZTvij4YdNy6YAUVVUH++IMxOiuliIQ937Xg019s5dONe/j1ucPpn1jnyTJFRMKGr4p+Q24x972zjjOGdefSCclexxERCQm+KfqKqiA3vbic+OhIfn9BKmY6+lVEBHw0vbIyEGR4r078/KwhusC3iMghfFP0HaMjeeji0V7HEBEJOb4ZuhERkdqp6EVEfE5FLyLicyp6ERGfU9GLiPicil5ExOdU9CIiPqeiFxHxOXPOeZ3hP5hZPrCtkU9PBPY0Y5y2TNvim7Q9vknb49/8sC2Occ4l1fZASBZ9U5hZunMuzescoUDb4pu0Pb5J2+Pf/L4tNHQjIuJzKnoREZ/zY9HP9jpACNG2+CZtj2/S9vg3X28L343Ri4jIN/lxj15ERA6hohcR8TnfFL2ZTTaz9WaWZWa3eZ3Ha2a21cxWmdlyM0v3Ok9rM7M5ZpZnZqsPWdbVzN43s4013xO8zNha6tgWd5vZzpr3x3Izm+JlxtZkZv3M7CMzyzSzNWZ2Y81y374/fFH0ZtYOeAw4BxgBXGJmI7xNFRJOc86N8fP84COYB0w+bNltwIfOucHAhzX3w8E8/nNbADxS8/4Y45xb2MqZvFQF3OKcGw4cD1xX0xe+fX/4ouiBCUCWc26zc64CeBGY6nEm8ZBz7hOg4LDFU4Gna24/DXyvNTN5pY5tEbaccznOuaU1t4uBTKAPPn5/+KXo+wA7DrmfXbMsnDngPTPLMLNrvA4TIno453Kg+pcd6O5xHq9db2Yra4Z2fDNMcTTMLAUYC3yJj98ffil6q2VZuM8bPck5N47q4azrzOwUrwNJSJkFDATGADnAQ56m8YCZxQGvAjc554q8ztOS/FL02UC/Q+73BXZ5lCUkOOd21XzPA16nengr3OWaWS+Amu95HufxjHMu1zkXcM4FgScIs/eHmUVRXfLPO+deq1ns2/eHX4p+CTDYzPqbWXvgh8BbHmfyjJl1NLP4r24D3wZWH/lZYeEt4Mqa21cCb3qYxVNfFVqN8wmj94eZGfAUkOmce/iQh3z7/vDNkbE108P+CLQD5jjn/sfbRN4xswFU78UDRAIvhNv2MLP5wCSqTz+bC9wFvAG8DCQD24GLnHO+/5Cyjm0xiephGwdsBWZ+NT7td2Z2MvApsAoI1iy+nepxel++P3xT9CIiUju/DN2IiEgdVPQiIj6nohcR8TkVvYiIz6noRUR8TkUvIuJzKnoREZ/7f6okiQTc0A7kAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "ar = a_p + a_b\n", "plt.plot(np.degrees(theta), ar)\n", "\n", "max(ar)\n", "\n", "np.degrees(np.interp(max(ar), ar, theta))" ] }, { "cell_type": "code", "execution_count": 23, "id": "7f9f1d43-1a0b-44ec-b964-a98bf90f5528", "metadata": {}, "outputs": [], "source": [ "def change_in_alt(rho, s, cd, m, a):\n", " frac = s*cd/m\n", " return -2*np.pi*rho*frac*np.power(a, 2)" ] }, { "cell_type": "code", "execution_count": 26, "id": "0a77b7a3-6948-456c-ac73-f4f549418a5f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "38449" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "alt = 567e3\n", "i=0\n", "while alt >= 565e3:\n", " alt = alt + change_in_alt(1.9e-13, max(ar), 2.2, m, alt)\n", " i+=1\n", "i" ] }, { "cell_type": "code", "execution_count": 27, "id": "54b42ee3-a6e2-4e15-8544-b23e259d4c09", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "15.4561328639594" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "max(ar)" ] }, { "cell_type": "code", "execution_count": null, "id": "87f92c83-b971-4a4a-ac18-64ab23cde1e8", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 5 }