

SESA2023 Propulsion

Lecture 10: Ramjets Introduction

Ivo Peters i.r.peters@soton.ac.uk

PROPULSION CONTENT OVERVIEW

Section 1: Introduction and Fundamentals

3 weeks, Ivo Peters

Section 2: Ramjets, Combustion, Rockets

3 weeks, Ivo Peters

Section 3: Gas Turbines, Turbojets, and Turbofans

2 weeks, Ed Richardson

Section 4: Turbomachinery and Propellers

3 weeks, Ed Richardson

THIS LECTURE

- Problems with high-speed flight
- Concept of a ramjet
- Operating limitations of ramjets
- Ideal ramjet introduction

SOME FLIGHT SPEEDS

- Modern jet fighters: max speed just above Ma = 2
- Some jet fighters with max speed Ma > 3, but only for a short duration
- A few exceptions exist...

TEMPERATURE LIMITS

T-S DIAGRAM

TEMPERATURES: COMBUSTOR INLET

EXAMPLE: SR-71 BLACKBIRD

RAMJET CONCEPT

RAMJET CONCEPT: SUPERSONIC DIFFUSER

RAMJET CONCEPT

OPERATING LIMITATIONS: OPTIMAL RANGE

OPERATING LIMITATIONS: MA > 5

- Increased pressure losses
 - Reduced thrust
- Increased temperatures
 - Reduced combustion efficiency
 - Material limitations

RAMJET: PROPULSION SYSTEMS COMPARISON

Mach Number

IDEAL RAMJET Combustor: Diffuser: Nozzle: Isobaric, V = 0Isentropic Isentropic 3 2

Stagnation pressure is constant!

THRUST

SUMMARY

- Limitations of turbofan and turbojet engines
- Concept of a ramjet engine
 - Diffuser, combustor, nozzle
- Operational range and limitations of ramjet engines
- Ideal ramjet assumptions, thrust and analysis

SESA2023 Propulsion

Lecture 11: Ideal Ramjets

Ivo Peters i.r.peters@soton.ac.uk

THIS LECTURE

- Ideal ramjet component analysis
 - Diffuser
 - Combustor
 - Nozzle
- Example

DIFFUSER

COMBUSTOR

EXAMPLE

An ideal ramjet is operating at Mach 3. The local temperature is 250 K, and the local pressure is 10 kPa. With a maximum temperature of 2500 K and a fuel LCV of 42 MJ/kg, determine the specific thrust produced.

THRUST VS MACH NUMBER

SUMMARY

- Analysis of an ideal ramjet
- Diffuser: isentropic
- Combustor: isobaric
- Nozzle: isentropic
- Fuel consumption, thrust

SESA2023 Propulsion

Lecture 12: Non-ideal ramjets and scramjets

Ivo Peters i.r.peters@soton.ac.uk

THIS LECTURE

- Non-ideal ramjets
- Influence on performance
- Scramjets

LOSSES IN REAL RAMJETS

NON-IDEAL DIFFUSER

NON-IDEAL COMBUSTOR

NON-IDEAL NOZZLE

REMINDER: OPERATING LIMITATIONS: MA > 5

- Increased pressure losses
 - Reduced thrust
- Increased temperatures
 - Reduced combustion efficiency
 - Material limitations

SCRAMJET: SUPERSONIC COMBUSTION RAMJET

NASA X-43A

34

NASA X-43A

SUMMARY

- Efficiency parameters for non-ideal ramjets
 - Stagnation pressure ratios
 - Combustion efficiency
- Influence on performance
 - Reduced exhaust velocity
 - Reduced heat input
- Scramjets
 - Operation at higher Mach numbers