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THIS LECTURE

• Introduction to compressible flow

• Simplifications

• Stagnation properties

• Speed of sound and Mach number

• Critical properties
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FROM INCOMPRESSIBLE TO COMPRESSIBLE

Mass conservation:

Momentum conservation:

Energy conservation:

Equation of state:
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SIMPLIFICATIONS

• One-dimensional flow 

• Steady flow (no time dependence)

• Inviscid flow

• No thermal diffusion
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SIMPLIFIED EQUATIONS
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WHAT WE WILL ACTUALLY BE DEALING WITH…

Compressible Incompressible
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STAGNATION PROPERTIES
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SPEED OF SOUND
From mass and momentum conservation:

Assuming isentropic flow:
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MACH NUMBER
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EXAMPLE: MACH NUMBER
A supersonic jet is flying at Ma = 1.1, where the local temperature is 220 K.
Keeping the same flight speed, but at a temperature of 300 K, what is the Mach 
number?
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CRITICAL PROPERTIES
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SUMMARY
• Difficulty with compressible flows
• Assumptions and simplifications for steady 1D inviscid flow
• Define stagnation properties

– Enthalpy, temperature, pressure, and density at zero velocity
• Speed of sound

– Temperature dependence, Mach number
• Critical properties

– Temperature, pressure, and density at Ma = 1
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THIS LECTURE

• Introduction to shocks

• Analysis outline

• Shock relations

• Shock properties
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NORMAL SHOCKS AND OBLIQUE SHOCKS
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NORMAL SHOCK ANALYSIS
Mass conservation

Momentum conservation

Energy conservation

Perfect gas

Not isentropic!
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SHOCK RELATIONS

Ma1 Ma2
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EXAMPLE
An airflow T = 250 K, P = 0.5 bar, U = 600 m/s, encounters a shock. 
What is the stagnation temperature and pressure before and after the shock?

𝑈 1
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SHOCK PROPERTIES
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ENTROPY CHANGE Impossible!
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SHOCK RELATIONS
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SHOCK TABLES
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SUMMARY
• What is a shock, how is it formed

• A shock converts a supersonic flow to a subsonic flow

• Entropy increases across a shock

• The Mach number determines change in speed, pressure, temperature and 
density

• Shock relations

– Equations

– Tables
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THIS LECTURE

• Nozzle applications

• Nozzle analysis assumptions

• Limitations of converging nozzles

• Converging-diverging nozzles

• Mass flow rate
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NOZZLE APPLICATIONS
Goal: accelerate flows to increase thrust. Ideally to supersonic speeds.
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ANALYSIS AND ASSUMPTIONS
• Steady Flow
• Quasi 1D: Gradual changes in area
• No friction
• Adiabatic
• Isentropic (except for shocks!)

Mass and momentum 
conservation:
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LIMITATIONS OF CONVERGING NOZZLES
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CONVERGING-DIVERGING NOZZLES
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EXAMPLE: ISENTROPIC NOZZLE
Reservoir conditions: air at p0 = 10 bar, T0 = 400 K. 
What is the exit pressure for Mae= 2.0?

𝑃0 𝑃𝑏𝑃 𝑡

𝑃𝑒

Throat
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MASS FLOW RATE
From mass flow rate and isentropic relations:

For choked flow we know that at the throat:

So mass flow rate is limited by:
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EXAMPLE: THRUST
For the nozzle from the previous example, what is the thrust generated if the 
throat area is 0.1 m2?

𝑃0 𝑃𝑏𝑃 𝑡

𝑃𝑒

Throat
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SUMMARY
• Nozzle applications
• Converging nozzles

– Acceleration for Ma < 1
– Deceleration for Ma >1

• Choked flow
– Critical conditions (Ma = 1) at throat

• Converging-diverging nozzles for supersonic exit velocity
– Performance with changing back pressure

• Mass flow rate, area-pressure relation
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