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Overview

The following document provides a series of tutorial examples covering the
mathematical modelling aspects of SESA6085. This is intended to act as
an aid to preparation for any summative assessment and to further your
understanding of the material.

Basic Probability Theory

Q1.1:
A test set has a 98% probability of correctly classifying a faulty item as de-

fective and a 4% probability of classifying a good item as defective. If in a
batch of items tested 3% are actually defective, what is the probability that
when an item is classified as defective, it is truly defective?

Q1.2:

In the test firing of a missile, there are some events that are known to cause
the missile to fail to reach its target. These events are listed in Table 1
together with their approximate probabilities of occurrence during a flight
and the probability of failure if each event occurs. Calculate the probability
of each of these events being the cause in the event of a missile failing to
reach its target.

Table 1:
Event Probability P(A4;) | P(F|A;)
Cloud reflection (A;) 0.004 0.06
Precipitation (Asg) 0.011 0.03
Target evasion (Aj) 0.007 0.09
Electronic countermeasures (Ay) | 0.05 0.07

Continuous Distributions

Note that Table 12 in the Appendix contains the standard normal distribu-
tion which can be used to help solve some of the below equations.



Q2.1:
Using Excel, Matlab, Python or similar, create a plot of the PDF, CDF and

reliability function of normal distribution with a g = 5 and ¢ = 1 between
t =0 and t = 10.

Q2.2:

The life of an incandescent lamp is s normally distributed, with mean 1200hrs
and standard deviation 200hrs. Calculate the probability that a lamp will
last (a) at least 800hrs (b) at least 1600hrs.

Q2.3:

A designer could replace the incandescent bulb from the previous question
with a different bulb. He has three options with lives described by the fol-
lowing normal distributions.

e 11 = 1300, oy = 400
o /1o = 1600, o9 = 400
e 13 = 1300, o3 = 200

If the aim is to improve reliability at 800hrs which bulb should the designer
select?

Q2.4:

After a turbine blade has been manufactured the angle of its firtree face is
measured. Previous data suggests that the angle of the face varies according
to a three parameter Weibull distribution with § = 3.5, n = 6.0 and v = 15°.
A turbine blade is rejected if the angle of it’s firtree is less than 18°and greater
than 23°. What is the probability that a turbine blade is rejected?

Q2.5:

The reliability of a communications satellite is described by a Weibull dis-
tribution with parameters, g = 1.75, n = 4.0 and v = 9, with units of years.
The satellite operator intends to replace the system when it’s reliability drops
to 30%. How many years after the system is first launched should it be re-
placed?



Q2.6:

A number of servos have been tested and MLE used to fit a log-normal dis-
tribution to the failure data. The resulting distribution has 4 =5 and o = 1,
calculate the probability that a servo will last for 40 hours.

Parameter Estimation

Q3.1:

Use maximum likelihood estimation to fit a log-normal PDF to the failure
data provided in Table 2. Calculate the 95% confidence bounds in the MLE
estimates and the probability that the component will fail between 30 and
55 years.

Table 2: Failure times, ¢, in units of years.

49.5742
25.07

49.9091
21.0974
33.0662
16.6716
32.7493
18.6928
5.44084
15.0325

39.0231
16.3242
10.9584
13.3389
19.2535
40.6632
18.8793
13.4246
6.10256
25.5701

28.241

7.1327

22.0764
12.4727
13.5511
18.8055
15.8212
38.2967
20.3197
20.1378

15.4782
24.5379
20.182

14.2646
20.9923
12.6727
6.69836
32.851

8.4967

26.1686

16.6129
95.74

19.9721
17.2633
16.0762
11.24

11.7989
13.5905
35.7099
12.1678

56.0018
13.3444
14.9876
14.3847
24.9305
21.6383
27.7205
30.0529
11.3333
38.3752

39.1695
45.9901
12.6724
17.5576
12.2074
14.7064
18.9279
15.1524
31.722

13.6005

23.3995
22.8084
17.3804
25.6905
5.23867
17.601

72.2692
60.4526
18.1207
6.39596

9.34463
45.0592
5.13221
7.18939
18.3745
15.0596
8.4983

18.3166
11.6619
10.8213

Q3.2:

15 components are tested, 12 of which have failure times recorded while 3
did not fail during the 24 hours in which the experiment was run. Failures
are assumed to follow an exponential distribution and those failure times
recorded are presented in Table 3 below. Using all of the data (censored and
uncensored) calculate 5\, assuming the data follows an exponential distribu-
tion.

Q3.3:

A technician performs a series of 25 failure tests on a component. The tests
are run for a total of 7 hours. At the end of the test 1 component has not
yet failed. The technician also did not record an exact failure time for 4
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Table 3: Failure times, t, in units of hours.
5.9653 | 2.3421 | 0.7956 | 0.1604 | 0.0151 | 3.0238
4.2605 | 1.2375 | 8.6255 | 6.8242 | 0.7645 | 5.8619

components which failed during the first 0.25 hours of the test. Given the
20 recorded failure times (in hours) presented in Table 4 and the knowledge
that 4 components failed before 0.25 hours and 1 component hadn’t failed
after 7 hours calculate the maximum likelihood estimate of A assuming that
the distribution is exponential in nature.

Table 4: Failure times, ¢, in units of hours.
0.2967 | 0.9752 | 1.6013 | 3.1594 | 4.6646
0.3594 | 1.3873 | 1.6849 | 3.4113 | 5.0373
0.406 | 1.4796 | 2.2832 | 3.6384 | 5.0554
0.5223 | 1.5322 | 2.7337 | 3.7169 | 6.4226

Q3.4:

A component is tested 100 times and found to fail via two different modes.
Only the failure times were recorded and not the method of failure. Use the
provided in Table 5 failure data to determine maximum likelihood estimates
of the parameters for the two failure modes. Assume that both modes are
described by a normal distribution.

Table 5: Failure times, ¢, in units of hours.

18.535 | 22.285 | 24.571 | 10.066 | 13.913 | 18.24 | 13.212 | 14.701 | 3.244
20.815 | 20.745 | 23.06 | 13.545 | 14.013 | 20.095 | 19.904 | 20.618 | 17.545

24.038 | 22.995 | 13.089 | 17.644 | 18.303 | 15.742 | 17.465 | 16.507 | 19.377

20.169 | 12.192 | 4.014 | 22.486 | 12.649 | 14.417 | 18.51 | 15.565 | 16.24
15.477 | 24.023 | 24.262 | 21.442 | 12.734 | 22.303 | 16.669 | 19.36 | 17.681
23.683 | 21.824 | 21.54 | 10.255 | 3.535 | 16.264 | 5.495 | 22.827 | 9.165
22.194 1 6.539 | 19.132 | 23.186 | 13.552 | 20.489 | 18.067 | 2.62 11.679
20.5 22.055 | 16.361 | 19.213 | 20.673 | 12.763 | 23.324 | 22.802 | 13.702
23.366 | 22.875 | 9.023 | 22.969 | 17.805 | 18.051 | 22.667 | 12.448 | 21.383
15.697 | 22.388 | 20.439 | 11.142 | 17.911 | 22.624 | 16.549 | 22.821 | 15.19

24.081
19.91

6.892

16.048
14.762
19.672
17.566
17.186
14.231
18.581




Multi-variate Distributions

Q4.1:
Consider the observations in Table 6 below. Fit a two dimensional normal
distribution to the data set. What are the MLE parameters?

Table 6:
T T2
0.8265 | 1.7644
0.8576 | 1.661
1.7552 | 2.3293
1.0233 | 2.3513
1.3421 | 1.5131
0.8821 | 2.2614
0.7454 | 1.7379
1.0525 | 1.1175
1.238 | 1.3376
1.0518 | 2.3298
1.5904 | 1.8017
1.071 | 1.8711
0.9222 | 1.183
0.6637 | 2.019
1.1401 | 1.8232

Q4.2:

Consider the manufacture of the flange highlighted in Figure 1 below. Upon
manufacture measurements are taken of the width and height of a series
of flanges and a two dimensional normal distribution is fitted to the data
with the following parameters, where parameter one defines the height of the
flange and parameter two defines the width of the flange.

~ [8.0081
~ [1.9501

> 0.0737 0.0136
~10.0136 0.0714

If the flange width falls below 1.4mm or the flange height falls below 7.5mm
then the casing has to be scrapped. If the flange width is above 2.4mm or
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the flange height is above 8.5mm then the casing has to be machined again.
Calculate the probability of a casing being scrapped? Calculate the proba-
bility of a casing being reworked?

Figure 1: Gas turbine compressor intercasing with end flange highlighted.

Reliability Modelling

Q5.1:
Simplify the reliability block diagrams presented in Figure 2.

Q5.2:
Calculate the reliability of the system illustrated in Figure 3.

Q5.3:

Consider a microcar with the reliability block digram defined in Figure 4.
The reliability of each individual component is assumed to be approximated
by the Weibull reliability function,



-
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Figure 2: Reliability block diagrams for simplification.

when t > ~ and 1.0 otherwise. As usual § defines the shape parameter, n
the scale parameter and + is the failure free time. The parameters for each
component are given below in Table 7. Calculate the reliability of the car
and each sub-system in steps of 500 hours from ¢t = 1000 to ¢t = 10, 000.
Which sub-system drives the overall reliability? How would you improve the
reliability of the car?

Q5.4:

A single component sub-system can have redundancy introduced in one of
two ways, either active or inactive redundancy (i.e. hot or cold redundancy).
Calculate and compare the reliability of the system in these two configu-
rations and when there is no redundancy at ¢ = 750. The component is
assumed to have failures which are a function of ¢ and are described by a
normal distribution with g = 550 and o = 200.

Q5.5:



—
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Figure 3: Gas turbine compressor intercasing with end flange highlighted.
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Figure 4: A simple RBD for a microcar.
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Table 7: Microcar Weibul parameters.

Component | n v

Engine 3.25 | 5500 | 8500
Steering 3.7 | 3000 | 7500
Brakes 4 2250 | 7500
Transmission | 3.5 | 2500 | 9000
Tyre 2.6 | 1250 | 4250
Seat 1.9 | 2000 | 5500
Boot 1.4 | 4100 | 6000
Roof Rack 1.7 | 2300 | 4500
Tow Bar 3.1 | 2250 | 4200

The tracks, wheel and conveyor belts of a bucket excavator are powered by
a series of electric motors which require a total of 6.0MW of power to keep
running. The electricity for these motors is provided by 4 identical diesel
generators on board the excavator whose failures are a function of the power
they produce and described by a three parameter Weibull distribution with
8 =3.0,n=2.2and v = 0.5. Calculate the reliability of this system.

Q5.6:

The reliability of an unmanned system is assumed to be driven by four sub-
systems in series, the battery, speed controller, electric motor and propeller
pitch servo. For each sub-system the designer has a choice of components
which meet the performance requirements however, each component has a
different reliability and cost (see Table 8 below). What is the cost of the
most reliable system? What is the reliability of the cheapest system? What
is the most reliable system achievable for a maximum of £607

Robust Design
Q6.1:

A function f(x) is defined by two variables x; and xs via the following
equation,

51 , by 2 1
f(x) = .TQ——$1+7—6 +10 1_8_7r cos(xq) + by + 10,

472
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Table 8: Unmanned system component reliabilities and costs.

Sub-system Option No. | Reliability | Cost (£)
Battery 1 0.89 5.50
2 0.91 8.50
3 0.975 11.00
4 0.8 3.50
Speed controller | 1 0.95 9.00
2 0.965 12.00
3 0.999 20.00
4 0.975 15.50
Electric motor 1 0.995 30.00
2 0.965 17.50
3 0.985 22.50
4 0.99 27.00
Servo 1 0.801 4.00
2 0.998 17.50
3 0.988 6.50
4 0.757 5.25

where x; € [—5,10] and z5 € [0,15]. Calculate the minimum of the above
function within the given bounds of z; and x5 and its location.

Q6.2:

In the previous question it was assumed that the values of x; and x, are
deterministic. Given that these variables are subject to variations defined by
normal distributions with ; = 3.0 and o5 = 1.5 respectively and with mean
corresponding to x; and x,. Determine the values of x; and x, which cor-
respond to a robust optimum where the mean of f(x) subject to the above
variations is to be minimised.

Optimal Maintenance Scheduling

Q7.1:
A solenoid valve in an aircraft fails according to a log-normal distribution
with # = 6 and o = 2. The cost of preventative replacement is $1000 and
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failure replacement is $10,000. Calculate the constant interval replacement
cost, c(t,), and replacement at predetermined age cost, ¢(t,,), at 2000 hours.

Q7.2:

Determine the optimal constant interval replacement policy for a single tur-
bine stage where one stage comprises of 30 turbine blades, one disc and 30
stator vanes. The failure probabilities for each component are described by
PDF parameters in Table 9. Assume that the cost of preventative replace-
ment is $11,000 and the cost of replacement upon failure is $200,000.

Table 9: Weibull parameters describing the failure probability of individual
components in a gas turbine stage.

Component I} n
Turbine Blade 2.55 | 115000
Turbine Disc 4.40 | 2.1 x 108
Turbine Stator Vane | 3.1 | 500,000

Project Uncertainty Management

Q8.1:

The manager of a small charter aircraft company is considering three bids
from separate maintenance providers for the contract to service his fleet of
aircraft. The terms of each of the three contracts are outlined below in Table
10. Each contract comprises of a fixed initial fee plus a fee per mile flown by
the aircraft. The final cost of maintaining a single aircraft will therefore be
the initial fee plus the fee due to the miles flown since the previous service.
The manager elicits information on the likely number of miles flown by an
aircraft resulting in a minimum (0%) mileage of 5,000 miles and a maximum
(100%) of 15,000 miles. Which contract should be accepted and why? As-
sume a uniform distribution function.

Q8.2:

The final assembly manager for a small satellite system has been asked to
assess the potential impact of a delay in final delivery. The contract to de-
liver the satellite system to the customer for launch stipulates that there is
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Table 10: Proposed contract terms.

Fixed fee ($) | $/mile
Company 1 | 7,500 5.00
Company 2 | 12,000 4.25
Company 3 | 30,000 2.00

a considerable penalty of $50k for every day the system is late. Eliciting his
team, the manager has determined that a minimum of delay of -2 days (i.e. 2
days ahead of schedule) and a maximum delay of 8 days. What is the prob-
ability of a delay occurring? What is the expected delay and the expected
cost to the satellite manufacturer? Assuming a uniform distribution function
is defined as part of the elicitation.

Q8.3:

The assembly process for a business jet comprises of four sequential tasks,
listed in Table 11. In order to meet the contracted delivery time the aircraft’s
assembly should be completed within 80 days. Any delay to delivery comes
at a penalty of $5k per day. Given the uncertainties for the completion times
defined in Table 11 (units of days) what is the expected delay cost? The as-
sembly manager has the option of crashing task D at a cost of $5k, the new
completion uncertainty is also indicated in Table 11. Comment, is crashing
worth it?

Table 11: Aircraft assembly tasks and their uncertainty.

Task Description Distribution

A Fuselage assembly | Uniform in the range 30-40

B Wing assembly Triangular, min at 18, peak at 20, max at 28
C Engine assembly Gaussian, =15, 0 = 2

D Avionics & interior | Triangular, min at 5, peak at 10, max at 12
Derashea | Avionics & interior | Triangular, min at 2, peak at 5, max at 6

Appendix
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