
EVALUATION OF BLOCK ENCODING FOR SPARSE MATRIX
INVERSION USING QSVT

Leigh Lapworth

Rolls-Royce plc
Derby, UK

February 28, 2024

leigh.lapworth@rolls-royce.com

ABSTRACT

Three block encoding methods are evaluated for solving linear systems of equations using QSVT
(Quantum Singular Value Transformation). These are ARCSIN, FABLE and PREPARE-SELECT. The
performance of the encoders is evaluated using a suite of 30 test cases including 1D, 2D and 3D
Laplacians and 2D CFD matrices. A subset of cases is used to characterise how the degree of the
polynomial approximation to 1/x influences the performance of QSVT. The results are used to guide
the evaluation of QSVT as the linear solver in hybrid non-linear pressure correction and coupled
implicit CFD solvers. The performance of QSVT is shown to be resilient to polynomial approximation
errors. For both the pressure correction and coupled solvers, error tolerances of 10−2 are more than
sufficient in most cases and in some cases 10−1 is sufficient. The pressure correction solver also
allows subnormalised condition numbers, κs, as low as half of the theoretical values to be used. This
resilience reduces the number of phase factors needed and, in turn, reduces the time to generate
the factors and emulate QSVT. PREPARE-SELECT encoding relies on a unitary decomposition, e.g.
Pauli strings, that has significant classical preprocessing costs. Both ARCSIN and FABLE have much
lower costs, particularly for coupled solvers. However, their subnormalisation factors, which are
based on the rank of the matrix, can be many times higher than PREPARE-SELECT leading to more
phase factors being needed. For both the pressure correction and coupled CFD calculations, QSVT
is more stable than previous HHL results due to polynomial approximation errors only affecting
long wavelength CFD errors. Given that lowering κs increases the success probability, optimising
the performance of QSVT within a CFD code is a function of the number QSVT phase factors, the
number of non-linear iterations and the number of shots. Although phase factor files can be reused,
the time taken to generate them impedes scaling QSVT to larger test cases.

1 Introduction

With national quantum computing programmes, e.g. [1], increasing their focus on error-corrected devices, it is important
for end-users to characterise and understand the likely performance of universal quantum algorithms. Previous work
[2, 3] emulated the performance of the HHL (Harrow-Hassidim-Lloyd) algorithm [4] for two classes of Computational
Fluid Dynamics (CFD) solver. Both involve the solution of a sequence of linear systems that dominate the run-time of
classical solvers and are the most likely candidates for quantum advantage. With the appropriate number of eigenvalue
qubits, HHL was shown to reproduce the classical solutions. However, the decomposition of the CFD matrices into
Linear Combinations of Unitaries (LCU) [5] based on tensor products of Pauli operators required classical preprocessing
with high computational costs - much higher than the classical CFD code. The classical preprocessing costs were most
significant for the implicit CFD solver which transfers all matrix solutions to the quantum computer, leaving only matrix
assembly on the classical computer.

ar
X

iv
:2

40
2.

17
52

9v
1

 [
qu

an
t-

ph
]

 2
7

Fe
b

20
24

Block encoding for sparse matrix inversion using QSVT A PREPRINT

An alternative to Trotterisation [6] used in the HHL evaluations is qubitization [5, 7, 8, 9]. Here, the LCU is used to
encode the CFD matrix, A, by loading the LCU coefficients into a PREPARE register and the unitaries into a separate
SELECT register. The benefit of qubitization is that it gives an exact encoding of the CFD matrix up to a scale factor,
thus, avoiding the approximation errors of Trotterization [10]. Whilst qubitization can be used in Quantum Phase
Estimation [7] and, hence, HHL, the additional qubits needed for the prepare register add a significant overhead.

Quantum Singular Value Transformation (QSVT) [11, 12, 13] directly applies a polynomial function to the encoded
matrix. If a sufficiently good polynomial approximation of 1/x is used then QSVT can encode A−1 to within a
user-defined accuracy and condition number. The asymptotic query complexity of QSVT, O(κ log(κ/ϵ)) is better than
the computational complexity of HHL, O(log(N)s2κ2/ϵ). QSVT also has the advantage of needing a single additional
qubit for the signal processing register.

Whilst QSVT performs well with PREPARE-SELECT encoding, as will be shown, it does not address the explosion in
the number unitaries for implicit CFD matrices and the resulting classical preprocessing costs. Direct encoding of a
matrix uses a query oracle to load the entries in the matrix [14, 15, 9, 16, 17]. These have small classical preprocessing
costs but encoding circuit depths can scale with O(MN) for an M ×N matrix. The circuit depths can be significantly
reduced for encoders that target matrices with specific structures [18, 19]. The FABLE scheme [20] provides a general
algorithm for reducing circuit depth which relies on transformation and then cancellation of rotation gates. Matrices
that have a pattern of repeated values can be efficiently loaded using oracles based on indexing the entries according to
how many times they have been repeated [21].

This work examines three matrix encoding techniques within the framework of QSVT as the linear equation solver for
a non-linear CFD solver. The first is an ARCSIN variant of the matrix query oracle that uses sin−1 rather than cos−1

based encoding. This only encodes the non-zero elements of the matrix. The second is the FABLE encoding [20] and
the third is PREPARE-SELECT encoding. Future work will consider encoding based on repeated values. In addition
to the CFD matrices, the encoders are investigated using a range of 1D, 2D and 3D Laplacian operators. These give
matrices with a range of condition numbers that are used to characterise the properties of the different encoders.

The work is presented as follows. The test cases and their condition numbers are presented first as an area of interest is
how the subnormalisation of each encoder affects the effective condition number, κs, for the QSVT phase factors. The
encoding techniques are then described and their high-level circuit costs are evaluated. Next the QSVT algorithm is
described, including the subnormalisation of the encoded matrix and the calculation of the phase factors. The influence
of the subnormalisation on the number of phase factors is assessed. The influence on the precision of the phase factors
on the accuracy of the QSVT solution relative to the classical solution is evaluated for a subset of the matrices. Finally,
results for QSVT as a linear solver within a non-linear CFD solver are presented and conclusions drawn. All circuit
diagrams use big-endian ordering.

2 Test cases

1

2

4

8

16

32

64

128

256

512

1,024

4 16 64 256 1024 4096

C
o

n
d

it
io

n
 n

u
m

b
er

Full matrix rank

Original matrix condition numbers

1D Laplacian

2D Laplacian

3D Laplacian

2D CFD

Figure 1: Condition numbers for the test matrices. Computed for original non-Hermitian matrices using GSL [22].

2

Block encoding for sparse matrix inversion using QSVT A PREPRINT

The focus of this evaluation is the solution of a linear system within an outer non-linear solver for applications such as
Computational Fluid Dynamics (CFD). Three types of test case are used:

• Laplacian - 1, 2 and 3 dimensional Laplacian matrices generated using the L-QLES 1 framework [23].
• Semi-Implicit CFD - 2D pressure correction matrices 2 from the SIMPLE CFD cavity solver [2].
• Implicit CFD - 2D implicit matrices from the coupled CFD cavity solver [3].

Figure 1 shows the condition numbers for a range of matrices. The values plotted are listed in Table 3 in Appendix A.
Whilst CFD matrices can be generated for a range of meshes, there is limited control over the resulting condition
numbers. The Laplacian cases allow a wider range of condition numbers and matrix dimensions to be generated. This
assists in the evaluation of matrix inversion using QSVT where the condition number is the primary factor in the number
of phase factors needed.

In some of the small circuit illustrations in Section 3, the following matrix is used. This can be generated by the
L-QLES framework but is degenerate and, hence, does not appear in Figure 1.

1

2



2 −1 0 0 0 0 0 −1
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1

−1 0 0 0 0 0 −1 2


(1)

3 Block encoding

Block encoding a matrix A ∈ RN×N with N = 2n entails creating a unitary operator such that:

UA =

(
A/s ∗
∗ ∗

)
(2)

where s is the subnormalisation constant [15, 14]. The blocks denoted by ∗ are a result of the encoding and are
effectively junk. Note that the encoding requires ||A||max ≤ 1, any scaling to achieve this is independent of the
subnormalisation factor. The application of the encoding unitary is such that:

A

s
= (⟨0m| ⊗ In)UA(|0m⟩ ⊗ In) (3)

Direct matrix encoders rely on a QUERY-ORACLE, OA that returns the value for each entry (i, j) in the matrix [14]:

OA |0⟩ |i⟩ |j⟩ =
(
aij |0⟩+

√
1− |aij |2 |1⟩

)
|i⟩ |j⟩ (4)

A circuit implementation of the block encoding unitary is shown in Figure 2 from [20].

|b〉
|0〉⊗n

|0〉
H⊗n OA H⊗n

A|b〉
||A|b〉||
0

0

Figure 2: Schematic of block encoding circuit for A/s from [20].

The QUERY-ORACLE consists of row and column registers, each with n = log2N qubits. Multi-controlled rotations are
applied to an ancilla qubit. The multiplexing of controls are such that the correct entry aij is loaded into the encoding

1https://github.com/rolls-royce/qc-cfd/tree/main/L-QLES
2https://github.com/rolls-royce/qc-cfd/tree/main/2D-Cavity-Matrices

3

https://github.com/rolls-royce/qc-cfd/tree/main/L-QLES
https://github.com/rolls-royce/qc-cfd/tree/main/2D-Cavity-Matrices

Block encoding for sparse matrix inversion using QSVT A PREPRINT

block and
√
1− |aij |2 is loaded into the junk block. Appendix B gives an explicit derivation of the block encoding of a

2x2 matrix. Figure 3 shows the full encoding circuit for a 4x4 matrix.

|c0〉
|c1〉
|r0〉
|r1〉
|a0〉

H

H

00

Ry

01

Ry

02

Ry

03

Ry

10

Ry

11

Ry

12

Ry

13

Ry

20

Ry

21

Ry

22

Ry

23

Ry

30

Ry

31

Ry

32

Ry

33

Ry

H

H

Figure 3: Block encoding circuit for a 4x4 matrix. Labels below the circuit indicate the row and column indices for the
controlled rotations.

For this encoding circuit, the subnormalisation factor is s = 2n and the probability of measuring all the ancilla qubits in
the |0⟩ state is [14]:

P (0n+1) =
1

s2
||A |b⟩ ||2 =

1

s2
⟨b|A†A |b⟩ (5)

where |b⟩ is the right hand side (RHS) state of the linear system A |x⟩ = |b⟩ to be solved.

3.1 ARCSIN encoding

In order for the circuit in Figure 3 to correctly encode A, the rotation angles, θ must be set so that: θij = 2 cos−1(aij).
For sparse matrices, this leads to a large circuit overhead as all the zero entries have rotation angles of π. Sparse
matrix encoders can be thought of as equivalent to the Compressed Sparse Row (CSR) storage format. If Sr is the
maximum number of entries per row, the column oracle must convert the CSR index 0 ≤ s ≤ Sr for each row into the
corresponding column index. This generally requires an additional work register [14].

An alternative approach is presented in Appendix B where the rotation angles are calculated by θij = 2 sin−1(aij).
This requires only the addition of a Pauli X gate on the ancilla rotation qubit at the end of the encoding circuit. This is
equivalent to projecting the ancilla qubit into the |1⟩ computational basis and the encoding oracle, with angles based on
ARCSIN, becomes:

OA |0⟩ |i⟩ |j⟩ =
(√

1− |aij |2 |0⟩+ aij |1⟩
)
|i⟩ |j⟩ (6)

There are now only as many multi-controlled rotations as there are non-zeros in the sparse matrix. However, the column
indexing requires the same number of qubits in the column register.

3.1.1 Circuit trimming

ARCSIN encoding enables two options for reducing the depth of the encoding circuit. The first is to set rotation angles
below a small threshold to zero, hence removing the corresponding operation from the ciruit. This is the same as setting
small entries in the matrix to zero.

|q0〉
|q1〉
|q2〉
|q2〉

Ry Ry

=

Ry

Figure 4: Coalescing multi-qubit controlled gates with a Hamming distance of 1 where the Ry gates have the same
rotation angle.

The second approach is to coalesce two multi-controlled operations which have the same rotation angle and where the
two multiplexing strings are identical except for one qubit where they are bit-flipped. As shown in Figure 4 this is
equivalent to the bit patterns for the multiplexing strings having a Hamming distance of 1. Since the multi-controlled

4

Block encoding for sparse matrix inversion using QSVT A PREPRINT

rotations commute, the circuit can be reordered to find pairs that can be coalesced. The pairing can also applied
recursively to pair previously coalesced operations.

Figure 5 shows a trimmed encoding circuit for the matrix in Equation (1). For example, on the second row of the matrix,
the entries 1,0 are 1,2 are both equal and 1 bit flip apart. These are coalesced into the entry at 1,0. The subsequent rows,
except the last, can be similarly trimmed. The current implementation always retains the operation with the lowest bit
value. For this matrix, retaining entry 1,2 on row 2 and entry 3,2 on row 4 would allow further trimming.

More generally, approximations can be used to set values that are sufficiently close to have the same value. Caution is
needed when approximating small values by zero. The value may be small because it makes a negligible contribution,
or it may be zero because it represents a small scale in a multiscale discretisation.

|c0〉
|c1〉
|c2〉
|r0〉
|r1〉
|r2〉
|a0〉

H

H

H

00

Ry

01

Ry

07

Ry

10

Ry

11

Ry

21

Ry

22

Ry

32

Ry

33

Ry

43

Ry

44

Ry

54

Ry

55

Ry

65

Ry

66

Ry

70

Ry

76

Ry

77

Ry X

H

H

H

Figure 5: ARCSIN encoding circuit for 8x8 tri-diagonal matrix with coalesence of equal valued off-diagonal rotations on
rows 1 to 6.

An advantage of the ARCSIN encoding is that trimming operations involve a direct correlation between the matrix entries
and the rotation angles. Whilst setting matrix entries to zero or equal to others may assist FABLE and PREPARE-SELECT
encoding, their routes to circuit trimming involved derived quantities. More importantly, the changes to the matrix
are known a priori and some of the effects may be able to be mitigated. For example, matrices resulting from a finite
volume discretisation have a conservation property where the sum of the entries on a row is zero. Where matrix entries
have been modified to reduce the circuit depth, additional changes can be made to recover the conservation property.

3.2 FABLE encoding

The FABLE method [20] is derived from the matrix QUERY-ORACLE in Equation (4) and illusrated in Figure 3. The key
insight in FABLE is to re-express the multi-controlled rotations as an interleaving sequence of uncontrolled rotations and
CNOT gates in Gray code ordering. Further, if θ is the N dimensional vector of rotation angles used in QA, and θ̂ the
angles for the uncontrolled rotations in Gray code order, Then the angles are related by:

θ = 2nH⊗2nPGθ̂ (7)

Where H is the Hadamard gate and PG is the permutation matrix that transforms binary ordering to Gray code ordering.
Equation (7) can be rewritten as:

θ̂ =
1

2n
P †
GH

⊗2nθ (8)

Since the inverse mapping P †
G can be easily computed, the angles θ̂ can be directly evaluated.

The premise of FABLE is that the solution of Equation (8) leads to a large number of angles that are zero or close to
zero. Removing all angles with θ̂j ≤ δc leads to a block encoding error [20]:

||A− sÂ||2 ≤ N3δc +O(δ3c) (9)

where Â is the encoding from Equation (3) with UA based on the thresholding of small angles.

Each rotation gate that is removed brings two CNOT gates together. Where there are sequences of zero-valued rotations,
the resulting string of CNOTS may enable cancellation of pairs that operate on the same qubits. See Section B of [20].
Figure 6 shows the FABLE circuit for the same 8x8 tridiagonal matrix as shown in Figure 5.

Note that the 8x8 matrix used in the figures has entries of 1 along the diagonal and -0.5 along the off diagonals, resulting
in 52 of the 64 values of θ̂ being zero, without the need for thresholding small values. When the number of zeros in θ̂

5

Block encoding for sparse matrix inversion using QSVT A PREPRINT

|c0〉
|c1〉
|c2〉
|r0〉
|r1〉
|r2〉
|a0〉

H

H

H

Ry Ry Ry Ry Ry Ry Ry Ry Ry Ry Ry Ry

H

H

H

Figure 6: FABLE encoding circuit for 8x8 tri-diagonal matrix.

is small, the conversion from multi-controlled rotations to uncontrolled rotations and CNOT gates may have benefits
when the circuit is transpiled to native gates.

3.3 PREPARE-SELECT encoding

PREPARE-SELECT encoding follows from expressing the matrix to be encoded as a Linear Combination of Unitaries
(LCU) [5, 8, 24, 25, 7, 9]:

AH =

M−1∑
i=0

αiUi (10)

Where M is the number of entries in the LCU and AH is bipartite Hermitian matrix with A in the top right block and
A† in the bottom left block. If A is already Hermitian, AH = A. Typically, each unitary is a product of Pauli matrices.
PREPARE-SELECT encoding requires αi > 0 which can be achieved by taking the signs of any negative coefficients into
the corresponding unitary Ui. The resulting encoding unitary is:

UA = (P † ⊗ In)S(P ⊗ In) (11)

The prepare operator, P , is defined by its action of the |0⟩ state:

P |0⟩ =
M−1∑
i=0

√
αi
s

|i⟩ (12)

where s = ∥α∥1 =
∑M−1
i=0 |αi| is the L1 norm of the coefficients and is the subnormalisation constant. Essentially, P

is a state loader for the coefficients
√

αi

s . In this work, the a binary tree data loader is used [26, 27]. In gereral, the
number of unitaries, M , in the LCU is not a power of 2 and the vector of coefficients passed to the state loader must be
padded with zeros.

The select operator, S is:

S =

M−1∑
i=0

|i⟩ ⟨i| ⊗ Ui (13)

Figure 7 shows the PREPARE-SELECT circuit for encoding a 4x4 matrix with 4 entries in its LCU.

|b〉

|0〉
Ry(α0)

Ry(α1) Ry(α2)

U0 U1 U2 U3

Ry(−α2) Ry(−α1)

Ry(−α0)

1
sAH |b〉

|0〉

Figure 7: Circuit for encoding a 4x4 matrix using PREPARE-SELECT.

6

Block encoding for sparse matrix inversion using QSVT A PREPRINT

3.4 Comparison of encoding techniques

Performing a like-with-like comparison of the three encoding schemes is not straightforward as they result in different
styles of circuits. Hence, only an order of magnitude analysis is undertaken. For both ARCSIN and FABLE encoding, the
number of rotation gates is used. This ignores the fact that ARCSIN uses multi-controlled rotations and FABLE uses
single qubit rotations. The number of CNOT gates in FABLE circuit is also ignored. For PREPARE-SELECT, the number
of terms in the LCU is used. This is multiplied by a factor of 3 as the Prepare circuit, its adjoint and the Select circuit
have the same number of operations. Hadamard and swap gates that scale with the number of qubits are not counted.

8

16

32

64

128

256

512

1,024

2,048

4,096

8,192

16,384

32,768

65,536

131,072

262,144

524,288

1,048,576

4 16 64 256 1,024 4,096

N
u

m
b

er
 o

f
o

p
er

at
io

n
s

Full matrix rank

Raw gate count

Prep-Select

FABLE

ARCSIN

Figure 8: Number of encoding operations. Rotation gates for FABLE and ARCSIN encoding and number of unitaries in
the LCU for PREPARE-SELECT.

Figure 8 shows the operation counts for each of the cases in Figure 1. The plotted values are listed in Table 4 in
Appendix A.2. By construction, the number of operations in the ARCSIN encoding scales with the number of non-zeros
in the matrix. Most of the PREPARE-SELECT cases have similar scaling except for those for the coupled CFD matrices
which have close to O(N2) scaling. The FABLE results show the largest scatter.

0

20

40

60

80

100

120

140

4 16 64 256 1,024 4,096

N
u

m
b

er
 o

f
o

p
er

at
io

n
 (

%
)

Full matrix rank

Normalised gate count

Prep-Select

FABLE

ARCSIN

Figure 9: Normalised operation counts for the data in Figure 8.

An alternative view of the number of operations is shown in Figure 9. Here, the PREPARE-SELECT and ARCSIN
encodings are normalised by the number of non-zeros and the FABLE encoding by N2. For the Laplacian cases, FABLE
encoding is very effective on the larger cases - although the raw number of operations remains very high. The ARCSIN

7

Block encoding for sparse matrix inversion using QSVT A PREPRINT

circuit trimming reduces the operation count for many but not all of the Laplacian cases. However, it is not as effective
as FABLE at doing so. As with FABLE, there are Laplacian cases where PREPARE-SELECT encoding uses only a small
percentage of Pauli strings. There are also cases where the number of PREPARE-SELECT operations far exceeds the
number of non-zeros. Several of these are not shown in Figure 9 including all of the coupled CFD matrices. For the
CFD matrices, the number of FABLE and ARCSIN operations are both close to 100%. By construction, they cannot be
larger. As shown in Figure 9 this does not mean they have the same number of operations.

Applying the FABLE mapping, Equation (8), to the ARCSIN encoding is possible if all the zero angle rotations are
included to enable the Gray coding step to be completed. This was tested and found to produce very similar operation
counts to the FABLE scheme. Whether the initial vector of angles, θ, contained a large number of zeros or a large
number angles equal to π, had only a small effect on the number of non-zero angles in the output vector θ̂.

Demultiplexing the multiplexed rotations [28, 29] in the ARCSIN and PREPARE-SELECT encoding increases the number
of rotation gates by a factor of O(log2N). This has not been done as multiplexed operators are efficient to implement
in emulation.

Since, without any approximations, ARCSIN and FABLE encoding result in the same unitary and have the same
subnormalisation factor the following analysis will omit FABLE, as ARCSIN encoding is more efficient to emulate. The
results labelled ARCSIN can also be read as being FABLE results.

4 Quantum Singular Value Transformation

Quantum Singuar Value Transformation (QSVT) derives from Quantum Signal Processing [11, 30, 12, 13] and applies
a polynomial function P to the encoded block in Equation (2):(

A/s ∗
∗ ∗

)
QSV T7−−−−→

(
P (A/s) ∗

∗ ∗
)

(14)

The Polynomial is implemented by interleaving applications of UA and U†
A with projector controlled phase shifts as

shown in Figure 10. For an odd polynomial of degree d, the transformation is:

Sϕ⃗ = Πϕ1
U

(d−1)/2∏
k=1

Πϕ2k
U†
AΠϕ2k+1

UA

 (15)

where Πϕ is a projector controlled phase shift operator: Πϕ = ei2ϕΠ. The implementation of the desired polynomial
transformation depends of the the phase factors, ϕk for k = 0, . . . , d− 1.

|b〉

|0〉⊗m

|0〉 H

UA

e−iφd−1Z

U†A

e−iφd−2Z

AAA UA

e−iφ0Z H

P (A) |b〉

|0〉⊗m

|0〉

Figure 10: QSVT circuit for the transformation in Equation (15) for 8x8 matrix and a degree-d odd polynomial.

4.1 Subnormalisation

The subnormalisation constant, s depends on the method of block encoding. For PREPARE-SELECT, s = ∥α∥1 =∑M−1
i=0 |αi| where α is the vector of coefficients in the LCU decomposition. For the query oracles, FABLE and ARCSIN

encoding, s = N .

In addition, for QUERY-ORACLESs, it must also be ensured that ||A||max ≤ 1. For solving linear systems, this is applied
as an external scaling prior to QSVT:

A

||A||max
|x⟩ = 1

||A||max
|b⟩ (16)

8

Block encoding for sparse matrix inversion using QSVT A PREPRINT

Scaling both A and |b⟩ ensures that the solution to the original system is recovered.

When computing the phase factors for the matrix inversion it is the condition number κs of A/s that should be used.
Due to the subnormalisation, if the encoded matrix is square, this gives:

κs =
1

|λmins | (17)

where λmins is the smallest eigenvalue of A/s. If A/s is not square, then λmins is the smallest singular value. Note that
while λmins = λmin/s this does not, in general, mean that κs = sκ. However, it does give:

κs
s

=
1

|λmin| (18)

For ARCSIN encoding, if ||A||max < 1, it is beneficial to apply the scaling in Equation (16) as this increases λmins and
reduces κs since the subnormalisation constant is unchanged. For PREPARE-SELECT encoding this is not needed as
the scaling increases both the minimum eigenvalue and the LCU coefficients and does not affect the subnormalisation
constant.

1

2

4

8

16

32

64

128

256

512

1,024

2,048

4,096

8,192

16,384

4 16 64 256 1024 4096

C
o

n
d

it
io

n
 n

u
m

b
er

Full matrix rank

Sub-normalisied condition number for Prepare-Select

1D Laplacian

2D Laplacian

3D Laplacian

2D CFD

Figure 11: Condition numbers for subnormalised matrix using PREPARE-SELECT encoding.

Figure 11 shows the subnormalised condition numbers for all the test cases using PREPARE-SELECT encoding. For the
Laplacian and pressure correction CFD matrices the scaling relative to the original matrices is O(1). For the coupled
CFD matrices the scaling is O(10) due to far greater number of unitaries in the LCU.

Figure 12 shows the subnormalised condition numbers using ARCSIN encoding. Here, the scaling is equal to the rank of
the matrix. Note that this is not a direct scaling of the original condition number as κs depends on |λmins |. Note also that
the ranks for coupled CFD matrices are for the encoded block for which the rank is a power of 2. The subnormalised
condition numbers for both encoding methods are listed in Table 3 in Appendix A.1.

4.2 Scaling the QSVT solution

As with all QLES methods, the normalised solution state |x̂⟩ must be scaled to return the correct solution to the original
matrix equation. As the matrix being scaled by subnormalisation factor, the polynomial being applied is also scaled.
For the Dong et al. [13] Remez approximation used here, the polynomial being approximated is:

P (x) =
1

4κsx
(19)

Hence, if QSVT has accurately implemented P , the state at the end of QSVT is:

∣∣0m+1
〉
⊗
∣∣∣b̂〉 QSV T7−−−−→

∣∣0m+1
〉
⊗ s

4κs
A−1

∣∣∣b̂〉+
∣∣Φ⊥〉 (20)

9

Block encoding for sparse matrix inversion using QSVT A PREPRINT

1

2

4

8

16

32

64

128

256

512

1,024

2,048

4,096

8,192

16,384

32,768

65,536

131,072

262,144

524,288

4 16 64 256 1024 4096

C
o

n
d

it
io

n
 n

u
m

b
er

Full matrix rank

Sub-normalisied condition number for Query Oracle

1D Laplacian

2D Laplacian

3D Laplacian

2D CFD

Figure 12: Condition numbers for subnormalised matrix using ARCSIN encoding.

Where
∣∣Φ⊥〉 is the orthogonal junk state. The expectation, E, of measuring all the m+ 1 flag qubits in the |0⟩ state is:

E =

(
s

4κs

)2

||A−1||22 (21)

And the post measurement state in the encoding qubits is:

1√
E

s

4κs
A−1

∣∣∣b̂〉 =
1√
E

s

4κs
|x̂⟩ (22)

If the normalised input state is
∣∣∣b̂〉 = |b⟩ /|| ⟨b| ||2, the re-dimensionalised output state is:

|x⟩ = 4κs
s

√
E|| |b⟩ ||2 |x̂⟩ (23)

Whilst the expectation Equation (21) has no explicit dependence on ϵ, the analysis has not accounted for the degree to
which P approximates A−1. This influence will be analysed Section 4.4.

4.3 Computing the phase factors

The phase factors are calculated via the Remez method [13, 31] using the open-sourced QSPPACK 3 software package.
Whilst the degree of the polynomial scales with O(κ log(1/ϵ)), setting the value of the degree can involve some trial
and error. Within the context of QLES, the required accuracy of solution state also has a bearing on the degree of the
polynomial. To investigate this, a tridiagonal Toeplitz matrix is used:

Tn(a, b, c) =



a c
b a c

b a c
.

b a c
b a

 (24)

For which, the eigenvalues are:

3https://github.com/qsppack/QSPPACK

10

https://github.com/qsppack/QSPPACK

Block encoding for sparse matrix inversion using QSVT A PREPRINT

λk = a− 2
√
bc cos

(
kπ

n+ 1

)
, k = 1, . . . , n (25)

Equation (25) enables a matrix with a specified condition number to be created. To make this easier, the settings a = 1
and b = c are used. Using PREPARE-SELECT encoding, a 32x32 Toeplitz matrix with κ = 28.8 gave a subnormalised
matrix with κs = 49.98. Using the error relative to the classical solution, QSPPACK was used to generate phase factors
for κs = 50 and L∞ errors of 10−1, 10−2 and 10−3. The degrees were adjusted to give approximately the same errors
in the L2 norms of QSVT solution of the Toeplitz matrix. The resulting degrees were 109, 229 and 359. For this
analysis, the amplitudes of right hand side vector, |b⟩ were set from: bi = 16x3i − 24x2i + 9xi for i = 0, N − 1 and
xi = 1/(N − 1).

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

Toeplitz k=27.5 k=48.0 k=51.3 k=54.7 k=62.3 k=77.2 k=100.5

L2
 e

rr
o

r

Condition Number

e=0.1 e=0.01 e=0.001

Figure 13: L2 errors for range of Laplacians and QSPPACK L∞ error tolerances. All with κs = 50 phase factors and
PREPARE-SELECT encoding.

κs Case name Case index

27.5 l2d_8x8_dddd 8
48.0 l3d_8x8x8_ddrrdd 19
51.3 l2d_8x8_ddrr 9
54.7 l2d_4x4_rrrr 7
62.3 l3d_4x8x8_dndddd 16
77.2 l2d_4x4_nnnn 6
100.5 l3d_4x8x8_dnrrdd 17

Table 1: Test cases order by subnormalised condition number using PREPARE-SELECT encoding. Case index refers to
position in Table 3.

Figure 13 shows the influence of QSPPACK L∞ tolerance on the Toeplitz matrix for the Laplacian cases listed in Table 1.
All the solutions are calculated using the same expression for |b⟩ as used in the Toeplitz calculations, and all were solved
using PREPARE-SELECT encoding. There is some variation in the L2 error levels between the cases. As expected, the
L2 solver errors increase for the cases with higher condition numbers and the benefits of more accurate phase factors
becomes more marginal. Further analysis using the RHS states generated by the L-QLES framework showed that the
L2 error levels are also influenced by the eigen spectrum of the input state which is dependent on the matrix.

Figure 14 compares the L2 errors with PREPARE-SELECT and ARCSIN encoding for the Toeplitz, l2d_4x4_nnnn,
l2d_4x4_rrrr and l3d_4x8x8_dndddd cases. All the PREPARE-SELECT cases use the κs = 50 phase factors as used
previously. For ARCSIN, the 32x32 Toeplitz matrix with κ = 2.125 gives an encoded matrix with κs = 50 allowing
a direct comparison with PREPARE-SELECT. For the larger condition numbers, the longer run times of QSPPACK
make it impractical to optimise the degree of the polynomial approximation. For the ARCSIN cases, phase factors for
subnormalised condition numbers 300, 1,000 and 2,500 were used. Whilst this does not give an exact back to back
comparison, it is indicative of how QSVT would be used in practice. QSPPACK reliably generated all the phase factors
used in this work with the largest set having 16,813 factors.

11

Block encoding for sparse matrix inversion using QSVT A PREPRINT

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

k=49.98 k=50 k=51.3 k=1,133.3 k=54.7 k=297.3 k=62.3 k=2,175.3

L2
 e

rr
o

r

Toeplitz l2d_8x8_ddrr l2d_4x4_rrrr l3d_4x8x8_dndddd

Subnormalised Condition Number

e=0.1 e=0.01 e=0.001

Figure 14: L2 errors compared to classical solutions. Comparison of PREPARE-SELECT (solid) and ARCSIN (hatched)
encoding for Toeplitz, l2d_8x8_ddrr, l2d_4x4_rrrr and l3d_4x8x8_dndddd cases. The condition numbers are the

subnormalised values for each encoding. Phase factors for L∞ = 0.001 and κs > 2000 were not available.

4.4 Success probability

Figure 15 shows the success probability of measuring the signal and encoding qubits in the |0⟩ state as in Figure 10,
using the same test cases as above. Apart from the Toeplitz matrix with PREPARE-SELECT encoding, the two encoding
methods have very similar success factors with small variations due to the different L∞ errors levels of polynomial
approximations.

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

k=49.98 k=50 k=51.3 k=1,133.3 k=54.7 k=297.3 k=62.3 k=2,175.3

Su
cc

e
ss

 P
ro

b
ab

ili
ty

Toeplitz l2d_8x8_ddrr l2d_4x4_rrrr l3d_4x8x8_dndddd

Subnormalised Condition Number

e=0.1 e=0.01 e=0.001

Figure 15: Success probabilities. Comparison of PREPARE-SELECT (solid) and ARCSIN (hatched) encoding for
Toeplitz, l2d_8x8_ddrr, l2d_4x4_rrrr and l3d_4x8x8_dndddd cases. The condition numbers are the subnormalised

values for each encoding. Phase factors for L∞ = 0.001 and κ > 1000 were not available.

Since the Toeplitz cases use different condition numbers to achieve the same κs, the subnormalisation constants for
PREPARE-SELECT and ARCSIN encoding are s = 3.34 and s = 32 respectively. From Equation (21), the scaling with
s2 results in the 2 orders of magnitude difference in the success probabilities. For the other cases Equation (18) shows
that, as long as κs is chosen according to Equation (17), the success probability is independent of the encoding method
shown.

An interesting observation on the expectations of the measurements is shown in Table 2. This is for the l3d_4x8x8_dnrrdd
test case with PREPARE-SELECT encoding, but the same observation is true for ARCSIN encoding. For this case, there
are 9 qubits in the Select register, 7 qubits in the prepare register and one signal processing qubit. With big endian
ordering, the default is to measure the qubits in ascending order, which measures the signal qubit last. The flag qubits
used in the encoding have expectations close to one but not exactly one. If, instead, the signal qubit is measured first
and is in the |0⟩ state, then all the flag qubits are also projected onto the |0⟩ state. At least, in the error-free simulations
used herein. As expected, the overall success probability is independent of the measurement order.

12

Block encoding for sparse matrix inversion using QSVT A PREPRINT

Measurement Qubit Expectation Qubit Expectation
order order order

E0 9 9.583055e-01 16 6.105163e-02
E1 10 8.883451e-01 9 1.000000e+00
E2 11 9.170198e-01 10 1.000000e+00
E3 12 9.430148e-01 11 1.000000e+00
E4 13 9.522488e-01 12 1.000000e+00
E5 14 9.626014e-01 13 1.000000e+00
E6 15 9.754071e-01 14 1.000000e+00
E7 16 9.275374e-02 15 1.000000e+00

E(Success) 6.105162e-02 6.105162e-02

Table 2: Influence of the measurement order on the expectation of success for the l3d_4x8x8_dnrrdd test case. Big
endian ordering, qubit 16 = QSVT signal qubit.

5 Results

These results focus on the use of QSVT as the linear solver within an outer non-linear Computational Fluid Dynamics
solver. Two types of linear system are considered. The first is the pressure-correction solver used within semi-implicit
CFD schemes. The second is the coupled matrix from an implicit CFD solver. Both are applied to the 2-dimensional
lid-driven cavity for which hybrid HHL solutions have been reported [2, 3]. The same hybrid methodology has been
used in this work. Convergence plots show the change in the flow variables between the start and end of each linear
QSVT solution. If the change is high, the non-linear set of equations are far from being satisfied. As the outer non-linear
iterations proceed, the changes reduce towards zero at which point the non-linear solution has been found.

All calculations were run on an Intel® Core© i9 12900K 3.2GHz Alder Lake 16 core processor with 64GB of 3,200MHz
DDR4 RAM.

5.1 Pressure correction equations

The smallest 2D pressure correction matrix is for a 5x5 CFD mesh that results in a 16x16 matrix. From Table 3, this has
subnormalised condition numbers of 133 and 850 for PREPARE-SELECT and ARCSIN encoding respectively.

0 10 20 30 40 50
Iteration

10 11

10 9

10 7

10 5

10 3

RM
S

ch
an

ge

dp_rms
Classical
PS-k50-e102-d229
PS-k80-e102-d499
PS-k100-e101-d331

(a) PREPARE-SELECT encoding

0 10 20 30 40 50 60
Iteration

10 11

10 9

10 7

10 5

10 3

RM
S

ch
an

ge

dp_rms
Classical
AS-k200-e102-d1659
AS-k400-e102-d3699
AS-k1000-e101-d3301

(b) ARCSIN encoding.

Figure 16: Convergence history of the pressure correction updates for the 16x16 pressure correction using QSVT. k is
conditional number, e is precision (e.g. 102 = 10−2), d is the number of phase factors.

13

Block encoding for sparse matrix inversion using QSVT A PREPRINT

Figure 16a compares the classical solution with QSVT solutions for κs = 50, 80, 100 phase factors using PREPARE-
SELECT encoding. Even with κs = 50 and ϵ = 0.01, the QSVT convergence is almost identical to the classical one.
These are well below the expected condition number of 133. Figure 16b performs the same comparison for ARCSIN
encoding where the expected condition number is 850. Here, the κs = 1000, ϵ = 0.1 and κs = 400, ϵ = 0.01 phase
factors match the classical solution and have approximately the same number of phase factors. Even the κs = 200
solution is reasonable. Summed over all the non-linear iterations, it has a total of 107,835 phase rotations compared to
168,351 for κs = 1000.

0 20 40 60 80
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

RM
S

ch
an

ge

dp_rms
Classical
PS-k250-e102-d1401
PS-k500-e102-d2803
PS-k1000-e101-3301

(a) PREPARE-SELECT encoding

0 20 40 60 80 100
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

RM
S

ch
an

ge

dp_rms
Classical
AS-k3000-e102-d16813

(b) ARCSIN encoding.

Figure 17: Convergence history of the pressure correction updates for the 64x64 pressure correction using QSVT. k is
conditional number, e is precision (e.g. 102 = 10−2), d is the number of phase factors.

Figure 17 compares the encoding techniques on the 9x9 CFD mesh which has a 64x64 pressure correction matrix. From
Table 3, this has subnormalised condition numbers of 1,186 and 22,063 for PREPARE-SELECT and ARCSIN encoding
respectively. The PREPARE-SELECT results are similar to the results for the 16x16 matrix. For the ARCSIN results,
the highest number of phase factors available was for κs = 3000, ϵ = 0.01. It took QSPPACK 10.5 days to generate
the 16,813 phase factors. Most of this was applying the Remez algorithm to construct the approximating polynomial
[13]. The BFGS optimisation to get the phase factors took 5.5 hours, which could be reduced to less than an hour
with Newton optimisation [31]. Assuming that phase factors for κs = 12000 would be sufficient, the O(κ2) scaling of
QSPPACK [13] means that it would take over 5 months to generate them.

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

4x4 Prep-Sel 4x4 Arcsin 8x8 Prep-Sel 8x8 Arcsin

Su
cc

es
s

P
ro

b
ab

ili
ty

k=Low k=Medium k=High

Figure 18: Success probabilities for pressure correction solver. Colours and order match Figure 16 and Figure 17.

The QSVT results match previous findings for the effect of precision on HHL [3]. The early iterations are dominated by
high frequency error waves corresponding to the largest eigenvalues. These are accurately resolved by QSVT. However,
these error waves are quickly eliminated and low frequency waves, associated with the smaller eigenvalues, become

14

Block encoding for sparse matrix inversion using QSVT A PREPRINT

dominant. As with HHL, failure to model the effects of lowest eigenvalues leads to slow convergence rather than
divergence.

Figure 18 shows the success probabilities for matrices sampled at 10 iterations from each of the above cases. The
change in expectation with condition number is consistent with Equation (21). For the 4x4 case using ARCSIN encoding,
there is an extra benefit of using κs = 200 instead of κs = 1000 as it gives a factor 25 increase in success probability.

5.2 Implicit coupled equations

The smallest 2D implicit matrix is for a 5x5 CFD mesh that results in a 76x76 matrix which is padded with an identity
block to 128x128. From Table 3, this has subnormalised condition numbers of 331 and 900 for PREPARE-SELECT and
ARCSIN encoding respectively.

0 5 10 15 20 25 30
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

RM
S

ch
an

ge

du_rms
Classical-GSL
Classical-CG
PS-k300-e101-d897
PS-k300-e102-d1601

(a) PREPARE-SELECT encoding

0 5 10 15 20 25 30 35
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

RM
S

ch
an

ge

du_rms
Classical-GSL
Classical-CG
AS-k500-e101-d1651
AS-k1000-e101-d3301
AS-k1000-e102-d5649

(b) ARCSIN encoding.

Figure 19: Convergence history of the velocity updates for the 76x76 implicit matrix using QSVT. k is conditional
number, e is precision (e.g. 102 = 10−2), d is the number of phase factors.

Figure 19a compares the classical solution with QSVT solutions for κs = 300 and ϵ = 0.1, 0.02 phase factors using
PREPARE-SELECT encoding. There are two classical solutions included in the plots. The solution labelled ’GSL’ uses
an exact solver [22] and the solution labelled ’CG’ uses an iterative conjugate gradient solver [32]. The lower precision
QSVT solution matches the CG solution and the higher precision matches the GSL solution. The ARCSIN solutions in
Figure 19b show the same behaviour. For the ARCSIN encoding, the pressure correction and implicit matrices have
similar condition numbers, κs, of around 900. Whilst the pressure correction matrix can use phase factors for κs = 400
with no discernible effect, the implicit matrix has a near doubling of the number of non-linear iterations if phase factors
for κs = 500 are used.

Figure 20a compares the classical and QSVT coupled solutions for the 9x9 CFD mesh with PREPARE-SELECT encoding,
for which κs = 2, 407. Given the long run times for this case, see Section 5.2.1, only one QSVT calculation was
performed with phase factors for κs = 2, 500, ϵ = 0.1. The QSVT solution matches the Classical conjugate gradient
solution. Note that the CG and GSL classical solutions are more similar but the CG solver required a single SIMPLE
iteration at the start to prevent it diverging. The QSVT solution did not need this. A further indication that QSVT may
yield stability benefits. Figure 20b compares the classical and QSVT coupled solutions with ARCSIN encoding, for
which κs = 2, 824. Due to the time taken by QSPPACK to generate phase factors only two QSVT solutions are available
with κs = 3, 000 and ϵ = 0.01, 0.1. These show the same trends as for the 5x5 coupled calculations.

Figure 21 shows the success probabilities for coupled QSVT solutions. The scaling with κs shows the expected
behaviour. Of note is that the coupled solver has higher success probabilities than the pressure correction solver. This is
in part due to lower condition numbers, but also due to the fact that the pressure correction matrices have to be scaled
down to achieve |A|max = 1 whereas the coupled matrices can be scaled up. These differences are included in the
values in Table 3.

15

Block encoding for sparse matrix inversion using QSVT A PREPRINT

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iteration

10 11

10 9

10 7

10 5

10 3

10 1

RM
S

ch
an

ge
du_rms

Classical GSL
Classical CG
ps-k2500-e101-d7049

(a) PREPARE-SELECT encoding

0 5 10 15 20 25 30
Iteration

10 12

10 10

10 8

10 6

10 4

10 2

RM
S

ch
an

ge

du_rms
Classical GSL
Classical CG
AS-k3000-e101-d9907
AS-k3000-e102-d16813

(b) ARCSIN encoding.

Figure 20: Convergence history of the velocity updates for the 244x244 implicit matrix using QSVT. Labelling as
before.

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

5x5 Prep-Sel 5x5 Arcsin 9x9 Prep-Sel 9x9 Arcsin

Su
cc

es
s

P
ro

b
ab

ili
ty

k=Low k=Medium k=High

Figure 21: Success probabilities for implicit solver. Colours and order match Figure 19 and Figure 20.

5.2.1 Computational considerations

For the PREPARE-SELECT encoding of the 9x9 coupled case, the LCU contained 16,104 Pauli strings although the
time to compute these was less than a minute. The main computational consideration was that the LCU resulted in the
PREPARE register having 14 qubits compared to 8 in the equivalent ROW register. The PREPARE operations are the most
time consuming to emulate and, even with the optimisations described in Appendix C.1, each phase factor step took
2.4s, compared to 0.01s for ARCSIN. For the PREPARE-SELECT result in Figure 20a with 7,049 phase factors, each
complete QSVT solve took just under 5 hours compared to less than 3 minutes for ARCSIN with 16,183 phase factors.
Whilst classical emulation times should not be taken as indicative of the time on a physical quantum computer, the
difference in the operational intensity of the two encoding methods is likely to have some relevance.

6 Conclusions

A sparse matrix query oracle using ARCSIN encoding generates circuits that scale with the number of non-zeros in the
matrix. This has minimal classical preprocessing costs and addresses one of the major issues of PREPARE-SELECT
encoding based on Pauli strings - the classical preprocessing time to construct the LCU. The downside of the ARCSIN
encoding is that the subnormalisation constant s scales with the size of the matrix. For pressure correction based CFD
solvers this leads to an O(nd/N) overhead relative to PREPARE-SELECT encoding, where nd is the number of diagonals

16

Block encoding for sparse matrix inversion using QSVT A PREPRINT

in the matrix. However, for the implicit coupled CFD solver, the vastly increased number of Pauli strings in the LCU
gives greater parity in the subnormalisation constants.

A key part of QSVT is setting κs to accurately resolve the influence of the eigenvectors with the lowest eigenvalues.
These are responsible for long-wavelength errors in the CFD flow field and setting κs too low slows the rate of
convergence but does not, generally, lead to divergence. Given that lowering κs increases the success probability,
optimising the performance of QSVT within a CFD code is a function of the number QSVT phase factors, the number
of non-linear iterations and the number of shots.

The L∞ approximation errors in the QSVT phase factors has been found to less impactful than the condition number.
Error tolerances of 10−2 were more than sufficient in most cases and in some cases 10−1 was sufficient. There are
some indications that QSVT is more robust in the first iterations of an implicit solver that often require special treatment
in classical solvers. However, the cases are orders of magnitude from industrial matrices results and these inferences
must be treated with caution.

With the goal of minimising the time spent on a classical computer using hybrid implicit CFD solvers, ARCSIN encoding
for the QUERY-ORACLE has shown that QSVT can be an effective linear solver. However, the time taken to generate the
QSVT phase factors remains a significant impediment to scaling QSVT to larger test cases. Unlike constructing a LCU,
the calculation of each set of phase factors is a one-off calculation separate from the CFD solver. The unifying nature of
QSVT means that a library of phase factors can be used to invert a wide range of matrix types.

7 Data availability

The L-QLES input files for the Laplacian test cases are available from https://github.com/rolls-royce/qc-cfd.

8 Acknowledgements

I would like to thank Christoph Sünderhauf of Riverlane for his guidance and many useful discussions on the implemen-
tation of QSVT. I would also like to thank Bjorn Berntson and Zal Nemeth of Riverlane for their help in choosing the
input parameters for QSPPACK. I would also like to thank Jarrett Smalley and Tony Phipps of Rolls-Royce for their
helpful comments on this work. This work would not have been possible without QSPPACK and I would like to thank
Yulong Dong of UC Berkeley for his advice at the outset of this work.

The permission of Rolls-Royce to publish this work is gratefully acknowledged. This work was completed under
funding received under the UK’s Commercialising Quantum Technologies Programme (Grant reference 10004857).

17

https://github.com/rolls-royce/qc-cfd

Block encoding for sparse matrix inversion using QSVT A PREPRINT

References

[1] D. for Science Innovation and Technology, “National quantum strategy missions.” https:
//www.gov.uk/government/publications/national-quantum-strategy/
national-quantum-strategy-missions, 2023. Accessed: 2024-02-15.

[2] L. Lapworth, “A hybrid quantum-classical cfd methodology with benchmark hhl solutions,” arXiv preprint
arXiv:2206.00419, 2022.

[3] L. Lapworth, “Implicit hybrid quantum-classical cfd calculations using the hhl algorithm,” arXiv preprint
arXiv:2209.07964, 2022.

[4] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear systems of equations,” Physical review
letters, vol. 103, no. 15, p. 150502, 2009.

[5] A. M. Childs and N. Wiebe, “Hamiltonian simulation using linear combinations of unitary operations,” arXiv
preprint arXiv:1202.5822, 2012.

[6] H. F. Trotter, “On the product of semi-groups of operators,” Proceedings of the American Mathematical Society,
vol. 10, no. 4, pp. 545–551, 1959.

[7] R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler, and H. Neven, “Encoding
electronic spectra in quantum circuits with linear t complexity,” Physical Review X, vol. 8, no. 4, p. 041015, 2018.

[8] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, “Simulating hamiltonian dynamics with a
truncated taylor series,” Physical review letters, vol. 114, no. 9, p. 090502, 2015.

[9] G. H. Low and I. L. Chuang, “Hamiltonian Simulation by Qubitization,” Quantum, vol. 3, p. 163, July 2019.
[10] N. Wiebe and S. Zhu, “A theory of trotter error,” Physical Review X, vol. 11, no. 011020, p. 26, 2021.
[11] J. M. Martyn, Z. M. Rossi, A. K. Tan, and I. L. Chuang, “Grand unification of quantum algorithms,” PRX Quantum,

vol. 2, p. 040203, Dec 2021.
[12] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, “Quantum singular value transformation and beyond: exponential

improvements for quantum matrix arithmetics,” in Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, pp. 193–204, 2019.

[13] Y. Dong, X. Meng, K. B. Whaley, and L. Lin, “Efficient phase-factor evaluation in quantum signal processing,”
Physical Review A, vol. 103, no. 4, p. 042419, 2021.

[14] L. Lin, “Lecture notes on quantum algorithms for scientific computation,” arXiv preprint arXiv:2201.08309, 2022.
[15] B. D. Clader, A. M. Dalzell, N. Stamatopoulos, G. Salton, M. Berta, and W. J. Zeng, “Quantum resources required

to block-encode a matrix of classical data,” IEEE Transactions on Quantum Engineering, vol. 3, pp. 1–23, 2022.
[16] A. M. Childs, R. Kothari, and R. D. Somma, “Quantum algorithm for systems of linear equations with exponentially

improved dependence on precision,” SIAM Journal on Computing, vol. 46, no. 6, pp. 1920–1950, 2017.
[17] S. Chakraborty, A. Gilyén, and S. Jeffery, “The power of block-encoded matrix powers: improved regression

techniques via faster hamiltonian simulation,” arXiv preprint arXiv:1804.01973, 2018.
[18] D. Camps, L. Lin, R. Van Beeumen, and C. Yang, “Explicit quantum circuits for block encodings of certain sparse

matrice,” arXiv preprint arXiv:2203.10236, 2022.
[19] D. Motlagh and N. Wiebe, “Generalized quantum signal processing,” arXiv preprint arXiv:2308.01501, 2023.
[20] D. Camps and R. Van Beeumen, “Fable: Fast approximate quantum circuits for block-encodings,” in 2022 IEEE

International Conference on Quantum Computing and Engineering (QCE), pp. 104–113, IEEE, 2022.
[21] C. Sünderhauf, E. Campbell, and J. Camps, “Block-encoding structured matrices for data input in quantum

computing,” arXiv preprint arXiv:2302.10949, 2023.
[22] B. Gough, GNU scientific library reference manual. Network Theory Ltd., 2009.
[23] L. Lapworth, “L-qles: Sparse laplacian generator for evaluating quantum linear equation solvers,” arXiv preprint

arXiv:2402.12266, 2024.
[24] R. Kothari, Efficient algorithms in quantum query complexity. PhD thesis, University of Waterloo, 2014.
[25] D. W. Berry, M. Kieferová, A. Scherer, Y. R. Sanders, G. H. Low, N. Wiebe, C. Gidney, and R. Babbush,

“Improved techniques for preparing eigenstates of fermionic hamiltonians,” npj Quantum Information, vol. 4, no. 1,
pp. 1–7, 2018.

[26] M. Mottonen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Transformation of quantum states using
uniformly controlled rotations,” arXiv preprint quant-ph/0407010, 2004.

18

https://www.gov.uk/government/publications/national-quantum-strategy/national-quantum-strategy-missions
https://www.gov.uk/government/publications/national-quantum-strategy/national-quantum-strategy-missions
https://www.gov.uk/government/publications/national-quantum-strategy/national-quantum-strategy-missions

Block encoding for sparse matrix inversion using QSVT A PREPRINT

[27] I. F. Araujo, D. K. Park, F. Petruccione, and A. J. da Silva, “A divide-and-conquer algorithm for quantum state
preparation,” Scientific Reports, vol. 11, no. 1, pp. 1–12, 2021.

[28] V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of quantum logic circuits,” arXiv preprint quant-
ph/0406176, 2004.

[29] V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of quantum logic circuits,” in Proceedings of the 2005
Asia and South Pacific Design Automation Conference, pp. 272–275, 2005.

[30] A. Gilyén, Quantum singular value transformation & its algorithmic applications. PhD thesis, University of
Amsterdam, 2019.

[31] Y. Dong, L. Lin, H. Ni, and J. Wang, “Robust iterative method for symmetric quantum signal processing in all
parameter regimes,” arXiv preprint arXiv:2307.12468, 2023.

[32] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press, 2013.

19

Block encoding for sparse matrix inversion using QSVT A PREPRINT

A Test case details

In the following tables, the naming convention for the Laplacian cases, those with ’l’ as the first character is:
dimension_mesh_bcs. The input files for these cases are available at github.com/rolls-royce/qc-cfd. For CFD
matrices labelled cavity-pc, the mesh dimensions are for the pressure correction mesh. For the cavity-cpl
matrices, the mesh dimensions are for the nodal mesh. For example, cavity-pc-4x4 and cavity-cpl-5x5 are
different solvers on the same mesh.

For the coupled CFD cases, the matrix dimension is that of the original CFD system. As described in [3], the matrix is
padded with a diagonal block to give a dimension that is the next largest power of 2.

A.1 Condition numbers

Index Case name rank (A) κ (A) κ (AH) κ (PS) κ (QO)

1 l1d_8_dd 8 15.3 16.4 26.1 84.7
2 l1d_8_rr 8 25.3 26.0 41.8 105.1
3 l1d_16_dd 16 99.1 107.3 180.9 1,134.5
4 l1d_32_dd 32 698.3 735.8 1287.7 15,101.5

5 l2d_4x4_dddd 16 2.4 2.9 3.8 27.4
6 l2d_4x4_nnnn 16 25.7 41.3 77.2 213.8
7 l2d_4x4_rrrr 16 36.2 37.3 54.7 297.3
8 l2d_8x8_dddd 64 13.5 13.8 27.5 544.0
9 l2d_8x8_ddrr 64 33.1 33.3 51.3 1,133.3
10 l2d_8x8_nnnn 64 155.8 189.1 527.3 5,583.2
11 l2d_8x8_rrrr 64 199.5 200.4 346.9 6,416.1
12 l2d_16x16_dddd 256 62.0 67.0 196.7 12,151.6
13 l2d_16x16_ddrr 256 140.7 142.0 317.8 23,956.2
14 l2d_32x32_dddd 1,024 401.3 423.6 1,501.5 298,501.1

15 l3d_4x4x4_dndddd 64 3.2 5.5 5.9 113.2
16 l3d_4x8x8_dndddd 256 14.4 22.8 62.3 2,175.3
17 l3d_4x8x8_dnrrdd 256 32.6 50.0 100.5 4,405.3
18 l3d_8x8x8_dddddd 512 14.5 14.7 37.1 4,127.9
19 l3d_8x8x8_ddrrdd 512 24.6 24.7 48.0 6,752.8
20 l3d_8x8x8_dnrrdd 512 44.7 52.3 121.1 11,897.0
21 l3d_8x16x16_dndddd 2,048 62.4 93.1 422.8 95,420.9
22 l3d_8x16x16_dnrrdd 2,048 136.8 183.6 615.2 181,163.7
23 l3d_16x16x16_dddddd 4,096 82.7 98.1 301.7 171,397.3

24 cavity-pc-4x4 16 87.7 88.7 133.5 851.2
25 cavity-pc-8x8 64 567.3 568.3 1,186.2 22,063.6
26 cavity-cpl-5x5 76 18.3 20.9 331.4 900.3
27 cavity-cpl-6x6 109 28.2 28.2 583.4 1,021.1
28 cavity-cpl-9x9 244 30.5 72.8 2,407.4 2,823.5
29 cavity-cpl-13x13 508 105.7 205.9 11,707.9 24,374.5
30 cavity-cpl-17x17 868 275.5 483.8 - 156,973.6

Table 3: Full matrix rank and condition numbers κ for each case. A = original non-Hermitian matrix, AH =
symmetrised Hermitian matrix, PS = PREPARE-SELECT encoding using AH, QO = Query Oracle (ARCSIN and FABLE)

encoding using A.

Table 3 gives the condition numbers for all the cases used in this study. The condition numbers are computed using the
GNU Scientific Library [22]. There are 4 columns of condition number:

• κ (A) - the original non-Hermitian matrices.

20

https://github.com/rolls-royce/qc-cfd

Block encoding for sparse matrix inversion using QSVT A PREPRINT

• κ (AH) - the symmetrised Hermitian matrices.

AH =

(
0 A
A† 0

)
(26)

• κ (PS) - the sub-normalised matrices using PREPARE-SELECT encoding. The condition number for the 17x17
coupled matrix is absent as the time to compute the LCU was too excessive.

• κ (QO) - the sub-normalised matrices using ARCSIN and FABLE encoding.

A.2 Operation counts

Index Case name rank (A) #non-zeros (A) PREPARE-SELECT FABLE ARCSIN

1 l1d_8_dd 8 20 42 32 20
2 l1d_8_rr 8 22 57 42 18
3 l1d_16_dd 16 44 96 128 43
4 l1d_32_dd 32 92 216 512 88

5 l2d_4x4_dddd 16 32 60 64 32
6 l2d_4x4_nnnn 16 40 204 208 40
7 l2d_4x4_rrrr 16 76 195 166 53
8 l2d_8x8_dddd 64 208 288 1,024 208
9 l2d_8x8_ddrr 64 256 102 384 232
10 l2d_8x8_nnnn 64 232 864 3,328 232
11 l2d_8x8_rrrr 64 316 783 2,608 252
12 l2d_16x16_dddd 256 1,040 1,344 16,104 990
13 l2d_16x16_ddrr 256 1,152 360 5,632 1,013
14 l2d_32x32_dddd 1,024 4,624 6,141 188,825 4,384

15 l3d_4x4x4_dndddd 64 116 180 1,024 112
16 l3d_4x8x8_dndddd 256 724 816 16,332 686
17 l3d_4x8x8_dnrrdd 256 880 264 5,116 777
18 l3d_8x8x8_dddddd 512 1,808 1,629 31,919 1,808
19 l3d_8x8x8_ddrrdd 512 2,240 528 12,192 2,096
20 l3d_8x8x8_dnrrdd 512 2,288 540 20,477 2,288
21 l3d_8x16x16_dndddd 2,048 9,300 7,296 589,491 8,183
22 l3d_8x16x16_dnrrdd 2,048 10,336 1,704 198,452 8,588
23 l3d_16x16x16_dddddd 4,096 9,104 6,147 292,884 7,144

24 cavity-pc-4x4 16 62 189 256 62
25 cavity-pc-8x8 64 286 957 4,074 286
26 cavity-cpl-5x5 76 317 13,536 16,377 308
27 cavity-cpl-6x6 109 440 15,696 16,354 440
28 cavity-cpl-9x9 244 1,117 48,312 65,401 1,103
29 cavity-cpl-13x13 508 2,525 146,868 259,326 2,525
30 cavity-cpl-17x17 868 4,669 - 1,003,800 4,608

Table 4: Number of operations for each test case and encoding scheme.

In Table 4 the number of operations are counted as follows. For both ARCSIN and FABLE encoding, the number of
rotation gates is used. This ignores the fact that ARCSIN uses multi-controlled rotations and FABLE uses single qubit
rotations. The number of CNOT gates in FABLE circuit is also ignored. For PREPARE-SELECT, the number of terms in
the LCU is used. This is multiplied by a factor of 3 as the PREPARE circuit, its adjoint and the Select circuit have the
same number of operations. Hadamard and swap gates that scale with the number of qubits are not counted.

21

Block encoding for sparse matrix inversion using QSVT A PREPRINT

B Encoding a 2x2 matrix encoding

This section shows the assembly of the query oracle encoding of a 2x2 matrix as this may be of interest to some readers.
The encoding circuit is shown in Figure 22.

|c0〉
|r0〉
|a0〉

H

Ry(θ00) Ry(θ01) Ry(θ10) Ry(θ11)

H

A|ψ〉
||A|ψ〉||
0

0

Figure 22: Circuit for full encoding of a 2x2 matrix using big-endian indexing.

Each of the controlled rotations in Figure 22 can be written as:

Uij = I⊗3 + (Rij − I)⊗Mi ⊗Mj (27)

Where Rij is shorthand for R(θij) and i, j ∈ 0, 1. The M matrices are the single qubit measurement operators in the
computational basis:

M0 = |0⟩ ⟨0| =
(
1 0
0 0

)
(28)

M1 = |1⟩ ⟨1| =
(
0 0
0 1

)
(29)

Expanding for U00 gives:

U00 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0


+

(
c00 − 1 −s00
s00 c00 − 1

)
⊗

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (30)

Giving

U00 =



c00 0 0 0 −s00 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
s00 0 0 0 c00 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0


(31)

Performing the matrix products of the controlled rotations gives

UA =

1∏
i,j=0

Ui,j =



c00 0 0 0 −s00 0 0 0
0 c01 0 0 0 −s01 0 0
0 0 c10 0 0 0 −s10 0
0 0 0 c11 0 0 0 −s1,1
s00 0 0 0 c00 0 0 0
0 s01 0 0 0 c01 0 0
0 0 s10 0 0 0 c10 0
0 0 0 s11 0 0 0 c1,1


=

(
C −S
S C

)
(32)

22

Block encoding for sparse matrix inversion using QSVT A PREPRINT

Where cij = cos
θij
2 and sij = sin

θij
2 . Note that the controlled rotation operators commute and, hence, the ordering

of the products in Equation (32) is not important. The final matrix in Equation (32) contains the 4x4 cosine and sine
blocks. The following matrices will also be expressed in terms of 4x4 blocks.

The Hadamard operator on the row qubit is

I ⊗H ⊗ I =
1√
2



1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1


=

(
H̃ 0
0 H̃

)
(33)

The swap operator on the row and column qubits is:

I ⊗ SWAP =



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


=

(
SW 0
0 SW

)
(34)

Using the 4x4 block representations, accumulating the circuit operators gives:

(I ⊗H ⊗ I) (I ⊗ SWAP)UA (I ⊗H ⊗ I) =

(
H̃ 0
0 H̃

)(
SW 0
0 SW

)(
C −S
S C

)(
H̃ 0
0 H̃

)

=

(
H̃SWCH̃ −H̃SWSH̃
H̃SWSH̃ H̃SWCH̃

) (35)

Evaluating the upper left 4x4 block gives:

H̃SWCH̃ = 1
2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


c00 0 0 0

0 c01 0 0
0 0 c10 0
0 0 0 c11


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1



= 1
2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


c00 0 c00 0

0 c01 0 c01
c10 0 −c10 0
0 c11 0 −c11



= 1
2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


c00 0 c00 0
c10 0 −c10 0
0 c01 0 c01
0 c11 0 −c11



= 1
2

c00 c01 c00 c01
c10 c11 −c10 −c11
c00 −c01 c00 −c01
c10 −c11 −c10 c11



(36)

Setting θij = 2 cos−1(aij), the upper left 2x2 block contains the original matrix with a subnormalisation factor of 2.

23

Block encoding for sparse matrix inversion using QSVT A PREPRINT

B.1 Arcsin based encoding

If instead of I ⊗ SWAP in Equation (34), X ⊗ SWAP is used, see Figure 23, then Equation (35) becomes:

(I ⊗H ⊗ I) (X ⊗ SWAP)UA (I ⊗H ⊗ I) =

(
H̃ 0
0 H̃

)(
0 SW
SW 0

)(
C −S
S C

)(
H̃ 0
0 H̃

)

=

(
H̃SWSH̃ H̃SWCH̃
H̃SWCH̃ −H̃SWSH̃

) (37)

Following the same steps as Equation (36), the upper left block is now:

H̃SWSH̃ =
1

2

s00 s01 s00 s01
s10 s11 −s10 −s11
s00 −s01 s00 −s01
s10 −s11 −s10 s11

 (38)

Now, setting θij = 2 sin−1(aij) gives the original matrix, again with a subnormalisation factor of 2. This is significant
because sparse matrices with large number of zeros will generate zero angle rotations that can be removed directly
without the FABLE approximations. Indeed, the number of non-zero rotations is equal to the number of non-zero entries
in the original matrix.

|c0〉
|r0〉
|a0〉

H

Ry(θ00) Ry(θ01) Ry(θ10) Ry(θ11) X

H

A|ψ〉
||A|ψ〉||
0

0

Figure 23: Circuit for full encoding of a 2x2 matrix using big-endian indexing with flipping of encoding block and
θij = 2 sin−1(2aij).

C Emulating QSVT

Emulating QSVT on a classical computer can be somewhat frustrating as exactly the same unitaries UA and U†
A are

applied repeatedly. Computing and storing the unitaries is an effective strategy for small numbers of qubits but the
O(N2) scaling of the dense matrix-vector multiplication quickly obviates any advantage. For relatively short encoding
circuits, running the circuit in emulation creates the situation where a sequence of sparse matrix-vector multiplications
is faster than the corresponding single dense matrix-vector multiplication. In fact, this is always the case, but the cost
of circuit emulation soon becomes prohibitive too. Whilst each application of the unitary or its adjoint may not be
prohibitive, it is repeating them 100s, 1,000s or even 10,000s of times that becomes prohibitive. The highest degree
polynomial used herein had 16,813 phase factors.

The following sub-sections discuss approaches for accelerating QSVT emulators. Of course, QSVT will be run on the
quantum computer and the techniques discussed here have no bearing on the speed on a quantum computer. The aim is
to enable more rapid progress in algorithm and application development.

All of the following improvements are implemented using big endian ordering. Implementation in little endian ordering
is straightforward.

C.1 PREPARE-SELECT encoding

The first step to accelerate PREPARE-SELECT encoding is to utilise the fact that the SELECT operator, Equation (13),
produces a direct sum of the unitaries:

S =


U0

U1

. . .
UM−1

 (39)

24

Block encoding for sparse matrix inversion using QSVT A PREPRINT

Applying S to the qubits in QSVT circuit (assuming no other qubits) has the block structure:

I ⊗ S =

(
S 0
0 S

)
(40)

Further, each unitary, Ui, is a tensor product of 1-sparse Pauli matrices. Hence, S is also 1-sparse. If sij is the only
entry on the ith row of S then the application of the unitary maps:

ψi 7→ sijψj (41)
ψi+N 7→ sijψj+N

where N is the number of rows in S. This can be done as an efficient vector multiply using a temporary work vector.
Doing this using a sparse matrix data structure carries significant overheads. However, the column indices, which are
assumed to be a variable length list, but are actually just a vector, can be extracted to directly perform the vector-vector
multiplication.

If the encoding is used within a non-linear solver where the sparsity pattern of the matrix does not change then the
Select operator can be constructed once at the outset and reused. This cannot be done if unitaries with small coefficients
are trimmed as they is likely to remove different unitaries on each non-linear iteration.

As the PREPARE operator only acts on the PREPARE register, it is not initially a bottleneck until the SELECT operator
has been streamlined.

|0〉

|0〉

|0〉

|0〉 Ry(θ0)

Ry(θ1) Ry(θ2)

Ry(θ3) Ry(θ4) Ry(θ5) Ry(θ6)

Ry(θ7) Ry(θ8) Ry(θ9) Ry(θ10) Ry(θ11) Ry(θ12) Ry(θ13) Ry(θ14)

Figure 24: PREPARE circuit for loading 15 LCU coefficients, big endian ordering.

The PREPARE operator used here is a tree state loader [26]. The levels in the tree correspond to levels in the circuit, as
shown in Figure 24. Following Equation (32), the operator for the 2nd level in the circuit is:

U2 =



c3 −s3 0 0 0 0 0 0
s3 c3 0 0 0 0 0 0
0 0 c4 −s4 0 0 0 0
0 0 s4 c4 0 0 0 0
0 0 0 0 c5 −s5 0 0
0 0 0 0 s5 c5 0 0
0 0 0 0 0 0 c6 −s6
0 0 0 0 0 0 s6 c6


(42)

Applying U2 to full PREPARE-SELECT register requires the a unitary of the form:

I ⊗ U2 ⊗ I⊗m (43)

where m is the number of qubits preceding the tree level in the circuit. This unitary is 2-sparse for all the levels in
the tree loader and has the same block structure as Equation (40) when applied to the whole circuit. This can be
implemented using by extending the approach used for the SELECT operator:

ψi 7→ sijψj + sikψk (44)
ψi+N 7→ sijψj+N + sikψk+N

This can be applied to each level of the state loader, but is most beneficial for the lowest levels of the tree which have
large numbers of leaves. In practice, levels with small numbers of rotations are executed as a circuit, as this is more
efficient than accumulating the equivalent 2-sparse unitary using Equation (43).

25

Block encoding for sparse matrix inversion using QSVT A PREPRINT

Implementing Equation (44) and Equation (41) directly can lead to bespoke code that is harder to maintain. If U2 were
the full PREPARE-SELECT dense operator, then expanding Equation (43) to make a full circuit operator can require large
amounts of memory and be inefficient to apply. A common alternative is to perform in-situ matrix vector multiplication
which strides through the state vector and performs all the multiplications for each matrix entry. However, for 1-sparse
and 2-sparse matrices it is more efficient to create the full circuit operator.

C.2 Query Oracle encoding

Efficiently implementing query oracle encoding follows the same approach as separating the PREPARE and SELECT
registers. From Appendix B, the query oracle has a 2x2 block diagonal form:

OA =



c0 0 0 0 −s0 0 0 0
0 c1 0 0 0 −s1 0 0
0 0 c2 0 0 0 −s2 0
0 0 0 c3 0 0 0 −s3
s0 0 0 0 c0 0 0 0
0 s1 0 0 0 c1 0 0
0 0 s2 0 0 0 c2 0
0 0 0 s3 0 0 0 c3


(45)

When applied to the entire QSVT circuit it has the the 4x4 block diagonal structure:

I ⊗OA =

C −S 0 0
S C 0 0
0 0 C −S
0 0 S C

 (46)

This enables an efficient in-situ implementation using 4 local variables:

wi = ciψi − siψi+N/2 (47)

wi+N/2 = siψi + ciψi+N/2

wi+N = ciψi+N − siψi+3N/2

wi+3N/2 = siψi+N + ciψi+3N/2

ψi = wi
ψi+N/2 = wi+N/2

ψi+N = wi+N
ψi+3N/2 = wi+3N/2

where N is the number of rows in OA. An advantage of this formulation is that it is thread safe and it can be
easily parallelised using shared or distributed memory programming. The same is not true for the SELECT operator,
Equation (41), as the Pauli strings do not, in general, create a block diagonal structure. For ARCSIN encoding the Pauli
X gate s directly implemented in OA.

Each of the SWAP operations that follow the query oracle can be efficiently created as a 1-sparse permutation operator
acting on the whole circuit. These can be directly implemented as above. Finally, the Hadamard gates are best
implemented as individual operations. Assembling tensor products of Hadamard gates creates fully populated operators.
Each Hadamard gate is coded as a 2-sparse full circuit operator. Streamlining the SWAP and Hadamard gates may seem
like a small benefit, but once the oracle has been optimised, these further reduced the run-time by almost a factor of 4
on 9x9 coupled matrix. Of course, making a fast emulator does not translate to a fast implementation on a quantum
device; nor, bring the runtime anywhere near close to the original classical algorithm, but it does enable algorithm
research to progress.

26

	Introduction
	Test cases
	Block encoding
	arcsin encoding
	Circuit trimming

	fable encoding
	prepare-select encoding
	Comparison of encoding techniques

	Quantum Singular Value Transformation
	Subnormalisation
	Scaling the QSVT solution
	Computing the phase factors
	Success probability

	Results
	Pressure correction equations
	Implicit coupled equations
	Computational considerations

	Conclusions
	Data availability
	Acknowledgements
	Test case details
	Condition numbers
	Operation counts

	Encoding a 2x2 matrix encoding
	Arcsin based encoding

	Emulating QSVT
	prepare-select encoding
	Query Oracle encoding

