/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | www.openfoam.com \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2007-2021 PCOpt/NTUA Copyright (C) 2013-2021 FOSS GP Copyright (C) 2019-2020 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . \*---------------------------------------------------------------------------*/ #include "incompressibleVars.H" #include "createZeroField.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // namespace Foam { // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // defineTypeNameAndDebug(incompressibleVars, 0); // * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * // void incompressibleVars::setFields() { setField(pPtr_, mesh_, "p", solverName_, useSolverNameForFields_); setField(UPtr_, mesh_, "U", solverName_, useSolverNameForFields_); setFluxField ( phiPtr_, mesh_, UInst(), "phi", solverName_, useSolverNameForFields_ ); mesh_.setFluxRequired(pPtr_->name()); // if required, correct boundary conditions of mean flow fields here in // order to have the correct bcs for e.g. turbulence models that follow. // NOTE: phi correction depends on the solver (includes for instance // Rhie-Chow interpolation). This needs to be implemented within // incompressiblePrimalSolver if (correctBoundaryConditions_) { correctNonTurbulentBoundaryConditions(); } laminarTransportPtr_.reset ( new singlePhaseTransportModel(UInst(), phiInst()) ); turbulence_.reset ( incompressible::turbulenceModel::New ( UInst(), phiInst(), laminarTransport() ).ptr() ); RASModelVariables_.reset ( incompressible::RASModelVariables::New ( mesh_, solverControl_ ).ptr() ); renameTurbulenceFields(); if (correctBoundaryConditions_) { correctTurbulentBoundaryConditions(); } } void incompressibleVars::setInitFields() { // Store init fields // only mean flow here since turbulent quantities // are allocated automatically in RASModelVariables if (solverControl_.storeInitValues()) { pInitPtr_.reset(new volScalarField(pInst().name() + "Init", pInst())); UInitPtr_.reset(new volVectorField(UInst().name() + "Init", UInst())); phiInitPtr_.reset ( new surfaceScalarField(phiInst().name() + "Init", phiInst()) ); } } void incompressibleVars::setMeanFields() { // Allocate mean fields // only mean flow here since turbulent quantities // are allocated automatically in RASModelVariables if (solverControl_.average()) { Info<< "Allocating Mean Primal Fields" << endl; pMeanPtr_.reset ( new volScalarField ( IOobject ( pInst().name()+"Mean", mesh_.time().timeName(), mesh_, IOobject::READ_IF_PRESENT, IOobject::AUTO_WRITE, IOobject::REGISTER ), pInst() ) ); UMeanPtr_.reset ( new volVectorField ( IOobject ( UInst().name()+"Mean", mesh_.time().timeName(), mesh_, IOobject::READ_IF_PRESENT, IOobject::AUTO_WRITE, IOobject::REGISTER ), UInst() ) ); phiMeanPtr_.reset ( new surfaceScalarField ( IOobject ( phiInst().name()+"Mean", mesh_.time().timeName(), mesh_, IOobject::READ_IF_PRESENT, IOobject::AUTO_WRITE, IOobject::REGISTER ), phiInst() ) ); // Correct boundary conditions if necessary if (correctBoundaryConditions_) { pMeanPtr_().correctBoundaryConditions(); UMeanPtr_().correctBoundaryConditions(); } } } void incompressibleVars::renameTurbulenceFields() { // Turbulence model always reads fields with the prescribed name // If a custom name is supplied, check whether this field exists, // copy it to the field known by the turbulence model // and re-name the latter if (useSolverNameForFields_) { incompressible::RASModelVariables& rasVars = RASModelVariables_(); if (rasVars.hasTMVar1()) { renameTurbulenceField(rasVars.TMVar1Inst(), solverName_); } if (rasVars.hasTMVar2()) { renameTurbulenceField(rasVars.TMVar2Inst(), solverName_); } if (rasVars.hasNut()) { renameTurbulenceField(rasVars.nutRefInst(), solverName_); } } } void incompressibleVars::correctNonTurbulentBoundaryConditions() { Info<< "Correcting (U,p) boundary conditions " << endl; pInst().correctBoundaryConditions(); UInst().correctBoundaryConditions(); if (solverControl_.average()) { pMeanPtr_().correctBoundaryConditions(); UMeanPtr_().correctBoundaryConditions(); } } void incompressibleVars::correctTurbulentBoundaryConditions() { // If required, correct boundary conditions of turbulent fields. // Includes the correction of boundary conditions for averaged fields, // if any Info<< "Correcting boundary conditions of turbulent fields" << endl; RASModelVariables_().correctBoundaryConditions(turbulence_()); } // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * // incompressibleVars::incompressibleVars ( fvMesh& mesh, solverControl& SolverControl ) : variablesSet(mesh, SolverControl.solverDict()), solverControl_(SolverControl), pPtr_(nullptr), UPtr_(nullptr), phiPtr_(nullptr), laminarTransportPtr_(nullptr), turbulence_(nullptr), RASModelVariables_(nullptr), pInitPtr_(nullptr), UInitPtr_(nullptr), phiInitPtr_(nullptr), pMeanPtr_(nullptr), UMeanPtr_(nullptr), phiMeanPtr_(nullptr), correctBoundaryConditions_ ( SolverControl.solverDict().subOrEmptyDict("fieldReconstruction"). getOrDefault("reconstruct", false) ) { setFields(); setInitFields(); setMeanFields(); } incompressibleVars::incompressibleVars ( const incompressibleVars& vs ) : variablesSet(vs.mesh_, vs.solverControl_.solverDict()), solverControl_(vs.solverControl_), pPtr_(allocateRenamedField(vs.pPtr_)), UPtr_(allocateRenamedField(vs.UPtr_)), phiPtr_(allocateRenamedField(vs.phiPtr_)), laminarTransportPtr_(nullptr), turbulence_(nullptr), RASModelVariables_(vs.RASModelVariables_.clone()), pInitPtr_(allocateRenamedField(vs.pInitPtr_)), UInitPtr_(allocateRenamedField(vs.UInitPtr_)), phiInitPtr_(allocateRenamedField(vs.phiInitPtr_)), pMeanPtr_(allocateRenamedField(vs.pMeanPtr_)), UMeanPtr_(allocateRenamedField(UMeanPtr_)), phiMeanPtr_(allocateRenamedField(vs.phiMeanPtr_)), correctBoundaryConditions_(vs.correctBoundaryConditions_) { DebugInfo << "Calling incompressibleVars copy constructor" << endl; } autoPtr incompressibleVars::clone() const { DebugInfo << "Calling incompressibleVars::clone" << endl; return autoPtr(new incompressibleVars(*this)); } // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * // const volScalarField& incompressibleVars::p() const { if (solverControl_.useAveragedFields()) { return pMeanPtr_(); } else { return pPtr_(); } } volScalarField& incompressibleVars::p() { if (solverControl_.useAveragedFields()) { return pMeanPtr_(); } else { return pPtr_(); } } const volVectorField& incompressibleVars::U() const { if (solverControl_.useAveragedFields()) { return UMeanPtr_(); } else { return UPtr_(); } } volVectorField& incompressibleVars::U() { if (solverControl_.useAveragedFields()) { return UMeanPtr_(); } else { return UPtr_(); } } const surfaceScalarField& incompressibleVars::phi() const { if (solverControl_.useAveragedFields()) { return phiMeanPtr_(); } else { return phiPtr_(); } } surfaceScalarField& incompressibleVars::phi() { if (solverControl_.useAveragedFields()) { return phiMeanPtr_(); } else { return phiPtr_(); } } void incompressibleVars::restoreInitValues() { if (solverControl_.storeInitValues()) { Info<< "Restoring field values to initial ones" << endl; pInst() == pInitPtr_(); UInst() == UInitPtr_(); phiInst() == phiInitPtr_(); RASModelVariables_().restoreInitValues(); } } void incompressibleVars::resetMeanFields() { if (solverControl_.average()) { Info<< "Resetting mean fields to zero" << endl; // Reset fields to zero pMeanPtr_() == dimensionedScalar(pInst().dimensions(), Zero); UMeanPtr_() == dimensionedVector(UInst().dimensions(), Zero); phiMeanPtr_() == dimensionedScalar(phiInst().dimensions(), Zero); RASModelVariables_().resetMeanFields(); // Reset averaging iteration index to 0 solverControl_.averageIter() = 0; } } void incompressibleVars::computeMeanFields() { if (solverControl_.doAverageIter()) { Info<< "Averaging fields" << endl; label& iAverageIter = solverControl_.averageIter(); scalar avIter(iAverageIter); scalar oneOverItP1 = 1./(avIter + 1); scalar mult = avIter*oneOverItP1; pMeanPtr_() == pMeanPtr_()*mult + pInst()*oneOverItP1; UMeanPtr_() == UMeanPtr_()*mult + UInst()*oneOverItP1; phiMeanPtr_() == phiMeanPtr_()*mult + phiInst()*oneOverItP1; RASModelVariables_().computeMeanFields(); ++iAverageIter; } } void incompressibleVars::correctBoundaryConditions() { correctNonTurbulentBoundaryConditions(); RASModelVariables_().correctBoundaryConditions(turbulence_()); } bool incompressibleVars::storeInitValues() const { return solverControl_.storeInitValues(); } bool incompressibleVars::computeMeanFields() const { return solverControl_.average(); } void incompressibleVars::transfer(variablesSet& vars) { incompressibleVars& incoVars = refCast(vars); // Copy source fields to the ones known by the object swapAndRename(pPtr_, incoVars.pPtr_); swapAndRename(UPtr_, incoVars.UPtr_); swapAndRename(phiPtr_, incoVars.phiPtr_); // Transfer turbulent fields. Copies fields since original fields are // not owned by RASModelVariables but from the turbulence model RASModelVariables_->transfer(incoVars.RASModelVariables()()); } bool incompressibleVars::write() const { // Write dummy fields, for continuation only if (useSolverNameForFields_) { if (RASModelVariables_().hasTMVar1()) { createZeroFieldPtr ( mesh_, RASModelVariables_().TMVar1BaseName(), RASModelVariables_().TMVar1Inst().dimensions() )().write(); } if (RASModelVariables_().hasTMVar2()) { createZeroFieldPtr ( mesh_, RASModelVariables_().TMVar2BaseName(), RASModelVariables_().TMVar2Inst().dimensions() )().write(); } if (RASModelVariables_().hasNut()) { createZeroFieldPtr ( mesh_, RASModelVariables_().nutBaseName(), RASModelVariables_().nutRefInst().dimensions() )().write(); } return true; } return false; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // } // End namespace Foam // ************************************************************************* //