/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2016 OpenFOAM Foundation
Copyright (C) 2019-2022 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
\*---------------------------------------------------------------------------*/
#include "projectFace.H"
#include "unitConversion.H"
#include "addToRunTimeSelectionTable.H"
#include "blockDescriptor.H"
#include "OBJstream.H"
#include "linearInterpolationWeights.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace blockFaces
{
defineTypeNameAndDebug(projectFace, 0);
addToRunTimeSelectionTable(blockFace, projectFace, Istream);
}
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
const Foam::searchableSurface& Foam::blockFaces::projectFace::lookupSurface
(
const searchableSurfaces& geometry,
Istream& is
) const
{
const word name(is);
for (const searchableSurface& geom : geometry)
{
if (geom.name() == name)
{
return geom;
}
}
FatalIOErrorInFunction(is)
<< "Cannot find surface " << name << " in geometry"
<< exit(FatalIOError);
return geometry[0];
}
Foam::label Foam::blockFaces::projectFace::index
(
const labelPair& n,
const labelPair& coord
)
{
return coord.first() + coord.second()*n.first();
}
void Foam::blockFaces::projectFace::calcLambdas
(
const labelPair& n,
const pointField& points,
scalarField& lambdaI,
scalarField& lambdaJ
) const
{
lambdaI.setSize(points.size());
lambdaI = 0.0;
lambdaJ.setSize(points.size());
lambdaJ = 0.0;
for (label i = 1; i < n.first(); i++)
{
for (label j = 1; j < n.second(); j++)
{
label ij = index(n, labelPair(i, j));
label iMin1j = index(n, labelPair(i-1, j));
lambdaI[ij] = lambdaI[iMin1j] + mag(points[ij]-points[iMin1j]);
label ijMin1 = index(n, labelPair(i, j-1));
lambdaJ[ij] = lambdaJ[ijMin1] + mag(points[ij]-points[ijMin1]);
}
}
for (label i = 1; i < n.first(); i++)
{
label ijLast = index(n, labelPair(i, n.second()-1));
for (label j = 1; j < n.second(); j++)
{
label ij = index(n, labelPair(i, j));
lambdaJ[ij] /= lambdaJ[ijLast];
}
}
for (label j = 1; j < n.second(); j++)
{
label iLastj = index(n, labelPair(n.first()-1, j));
for (label i = 1; i < n.first(); i++)
{
label ij = index(n, labelPair(i, j));
lambdaI[ij] /= lambdaI[iLastj];
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::blockFaces::projectFace::projectFace
(
const dictionary& dict,
const label index,
const searchableSurfaces& geometry,
Istream& is
)
:
blockFace(dict, index, is),
surface_(lookupSurface(geometry, is))
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::blockFaces::projectFace::project
(
const blockDescriptor& desc,
const label blockFacei,
pointField& points
) const
{
// For debugging to tag the output
static label fIter = 0;
autoPtr debugStr;
if (debug)
{
debugStr.reset
(
new OBJstream("projectFace_" + Foam::name(fIter++) + ".obj")
);
Info<< "Face:" << blockFacei << " on block:" << desc.blockShape()
<< " with verts:" << desc.vertices()
<< " writing lines from start points"
<< " to projected points to " << debugStr().name() << endl;
}
// Find out range of vertices in face
labelPair n(-1, -1);
switch (blockFacei)
{
case 0:
case 1:
{
n.first() = desc.density().y() + 1;
n.second() = desc.density().z() + 1;
}
break;
case 2:
case 3:
{
n.first() = desc.density().x() + 1;
n.second() = desc.density().z() + 1;
}
break;
case 4:
case 5:
{
n.first() = desc.density().x() + 1;
n.second() = desc.density().y() + 1;
}
break;
}
// Calculate initial normalised edge lengths (= u,v coordinates)
scalarField lambdaI(points.size(), Zero);
scalarField lambdaJ(points.size(), Zero);
calcLambdas(n, points, lambdaI, lambdaJ);
// Upper limit for number of iterations
const label maxIter = 10;
// Residual tolerance
const scalar relTol = 0.1;
scalar initialResidual = 0.0;
scalar iResidual = 0.0;
scalar jResidual = 0.0;
for (label iter = 0; iter < maxIter; iter++)
{
// Do projection
{
List hits;
scalarField nearestDistSqr
(
points.size(),
magSqr(points[0] - points[points.size()-1])
);
surface_.findNearest(points, nearestDistSqr, hits);
forAll(hits, i)
{
if (hits[i].hit())
{
if (debugStr)
{
debugStr().writeLine(points[i], hits[i].point());
}
points[i] = hits[i].point();
}
}
}
if (debug)
{
Pout<< "Iter:" << iter << " initialResidual:" << initialResidual
<< " iResidual+jResidual:" << iResidual+jResidual << endl;
}
if
(
iter > 0
&& (
initialResidual < ROOTVSMALL
|| ((iResidual+jResidual)/initialResidual < relTol)
)
)
{
break;
}
// Predict along i
vectorField residual(points.size(), Zero);
// Work arrays for interpolation
labelList indices;
scalarField weights;
for (label j = 1; j < n.second()-1; j++)
{
// Calculate actual lamdba along constant j line
scalarField projLambdas(n.first());
projLambdas[0] = 0.0;
for (label i = 1; i < n.first(); i++)
{
label ij = index(n, labelPair(i, j));
label iMin1j = index(n, labelPair(i-1, j));
projLambdas[i] =
projLambdas[i-1]
+mag(points[ij]-points[iMin1j]);
}
projLambdas /= projLambdas.last();
linearInterpolationWeights interpolator(projLambdas);
for (label i = 1; i < n.first()-1; i++)
{
label ij = index(n, labelPair(i, j));
interpolator.valueWeights(lambdaI[ij], indices, weights);
point predicted(Zero);
forAll(indices, indexi)
{
label ptIndex = index(n, labelPair(indices[indexi], j));
predicted += weights[indexi]*points[ptIndex];
}
residual[ij] = predicted-points[ij];
}
}
if (debugStr)
{
forAll(points, i)
{
const point predicted(points[i] + residual[i]);
debugStr().writeLine(points[i], predicted);
}
}
iResidual = sum(mag(residual));
// Update points before doing j. Note: is this needed? Complicates
// residual checking.
points += residual;
// Predict along j
residual = vector::zero;
for (label i = 1; i < n.first()-1; i++)
{
// Calculate actual lamdba along constant i line
scalarField projLambdas(n.second());
projLambdas[0] = 0.0;
for (label j = 1; j < n.second(); j++)
{
label ij = index(n, labelPair(i, j));
label ijMin1 = index(n, labelPair(i, j-1));
projLambdas[j] =
projLambdas[j-1]
+mag(points[ij]-points[ijMin1]);
}
projLambdas /= projLambdas.last();
linearInterpolationWeights interpolator(projLambdas);
for (label j = 1; j < n.second()-1; j++)
{
label ij = index(n, labelPair(i, j));
interpolator.valueWeights(lambdaJ[ij], indices, weights);
point predicted(Zero);
forAll(indices, indexi)
{
label ptIndex = index(n, labelPair(i, indices[indexi]));
predicted += weights[indexi]*points[ptIndex];
}
residual[ij] = predicted-points[ij];
}
}
if (debugStr)
{
forAll(points, i)
{
const point predicted(points[i] + residual[i]);
debugStr().writeLine(points[i], predicted);
}
}
jResidual = sum(mag(residual));
if (iter == 0)
{
initialResidual = iResidual + jResidual;
}
points += residual;
}
}
// ************************************************************************* //