/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2016 OpenFOAM Foundation
Copyright (C) 2020-2022 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
\*---------------------------------------------------------------------------*/
#include "searchableSurfacesQueries.H"
#include "projectCurveEdge.H"
#include "unitConversion.H"
#include "addToRunTimeSelectionTable.H"
#include "pointConstraint.H"
#include "OBJstream.H"
#include "linearInterpolationWeights.H"
#include "searchableExtrudedCircle.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace blockEdges
{
defineTypeNameAndDebug(projectCurveEdge, 0);
addToRunTimeSelectionTable(blockEdge, projectCurveEdge, Istream);
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::blockEdges::projectCurveEdge::projectCurveEdge
(
const dictionary& dict,
const label index,
const searchableSurfaces& geometry,
const pointField& points,
Istream& is
)
:
blockEdge(dict, index, points, is),
geometry_(geometry)
{
wordList names(is);
surfaces_.resize(names.size());
forAll(names, i)
{
surfaces_[i] = geometry_.findSurfaceID(names[i]);
if (surfaces_[i] == -1)
{
FatalIOErrorInFunction(is)
<< "Cannot find surface " << names[i] << " in geometry"
<< exit(FatalIOError);
}
if (isA(geometry_[surfaces_[i]]))
{
Info<< type() << " : Using curved surface "
<< geometry_[surfaces_[i]].name()
<< " to predict starting points." << endl;
}
}
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::point
Foam::blockEdges::projectCurveEdge::position(const scalar) const
{
NotImplemented;
return point::max;
}
Foam::tmp
Foam::blockEdges::projectCurveEdge::position(const scalarList& lambdas) const
{
// For debugging to tag the output
static label eIter = 0;
autoPtr debugStr;
if (debug)
{
debugStr.reset
(
new OBJstream("projectCurveEdge_" + Foam::name(eIter++) + ".obj")
);
Info<< "Writing lines from straight-line start points"
<< " to projected points to " << debugStr().name() << endl;
}
auto tpoints = tmp::New(lambdas.size());
auto& points = tpoints.ref();
const scalar distSqr = Foam::magSqr(lastPoint()-firstPoint());
// Initial guess
forAll(lambdas, i)
{
points[i] = blockEdge::linearPosition(lambdas[i]);
}
// Use special interpolation to keep initial guess on same position on
// surface
forAll(surfaces_, i)
{
if (isA(geometry_[surfaces_[i]]))
{
const searchableExtrudedCircle& s =
refCast
(
geometry_[surfaces_[i]]
);
List nearInfo;
s.findParametricNearest
(
points[0],
points.last(),
scalarField(lambdas),
scalarField(points.size(), distSqr),
nearInfo
);
forAll(nearInfo, i)
{
if (nearInfo[i].hit())
{
points[i] = nearInfo[i].point();
}
}
break;
}
}
// Upper limit for number of iterations
constexpr label maxIter = 10;
// Residual tolerance
constexpr scalar relTol = 0.1;
constexpr scalar absTol = 1e-4;
scalar initialResidual = 0.0;
for (label iter = 0; iter < maxIter; iter++)
{
// Do projection
{
List constraints(lambdas.size());
pointField start(points);
searchableSurfacesQueries::findNearest
(
geometry_,
surfaces_,
start,
scalarField(start.size(), distSqr),
points,
constraints
);
// Reset start and end point
if (lambdas[0] < SMALL)
{
points[0] = firstPoint();
}
if (lambdas.last() > 1.0-SMALL)
{
points.last() = lastPoint();
}
if (debugStr)
{
forAll(points, i)
{
debugStr().writeLine(start[i], points[i]);
}
}
}
// Calculate lambdas (normalised coordinate along edge)
scalarField projLambdas(points.size());
{
projLambdas[0] = 0.0;
for (label i = 1; i < points.size(); i++)
{
projLambdas[i] = projLambdas[i-1] + mag(points[i]-points[i-1]);
}
projLambdas /= projLambdas.last();
}
linearInterpolationWeights interpolator(projLambdas);
// Compare actual distances and move points (along straight line;
// not along surface)
vectorField residual(points.size(), Zero);
labelList indices;
scalarField weights;
for (label i = 1; i < points.size() - 1; i++)
{
interpolator.valueWeights(lambdas[i], indices, weights);
point predicted(Zero);
forAll(indices, indexi)
{
predicted += weights[indexi]*points[indices[indexi]];
}
residual[i] = predicted-points[i];
}
scalar scalarResidual = sum(mag(residual));
if (debug)
{
Pout<< "Iter:" << iter << " initialResidual:" << initialResidual
<< " residual:" << scalarResidual << endl;
}
if (scalarResidual < absTol*0.5*lambdas.size())
{
break;
}
else if (iter == 0)
{
initialResidual = scalarResidual;
}
else if (scalarResidual/initialResidual < relTol)
{
break;
}
if (debugStr)
{
forAll(points, i)
{
const point predicted(points[i] + residual[i]);
debugStr().writeLine(points[i], predicted);
}
}
points += residual;
}
return tpoints;
}
Foam::scalar Foam::blockEdges::projectCurveEdge::length() const
{
NotImplemented;
return 1;
}
// ************************************************************************* //