/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | www.openfoam.com \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2011-2016 OpenFOAM Foundation Copyright (C) 2020 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . \*---------------------------------------------------------------------------*/ #include "LiquidEvaporation.H" #include "specie.H" #include "mathematicalConstants.H" using namespace Foam::constant::mathematical; // * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * // template Foam::tmp Foam::LiquidEvaporation::calcXc ( const label celli ) const { scalarField Xc(this->owner().thermo().carrier().Y().size()); forAll(Xc, i) { Xc[i] = this->owner().thermo().carrier().Y()[i][celli] /this->owner().thermo().carrier().W(i); } return Xc/sum(Xc); } template Foam::scalar Foam::LiquidEvaporation::Sh ( const scalar Re, const scalar Sc ) const { return 2.0 + 0.6*Foam::sqrt(Re)*cbrt(Sc); } // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * // template Foam::LiquidEvaporation::LiquidEvaporation ( const dictionary& dict, CloudType& owner ) : PhaseChangeModel(dict, owner, typeName), liquids_(owner.thermo().liquids()), activeLiquids_(this->coeffDict().lookup("activeLiquids")), liqToCarrierMap_(activeLiquids_.size(), -1), liqToLiqMap_(activeLiquids_.size(), -1) { if (activeLiquids_.size() == 0) { WarningInFunction << "Evaporation model selected, but no active liquids defined" << nl << endl; } else { Info<< "Participating liquid species:" << endl; // Determine mapping between liquid and carrier phase species forAll(activeLiquids_, i) { Info<< " " << activeLiquids_[i] << endl; liqToCarrierMap_[i] = owner.composition().carrierId(activeLiquids_[i]); } // Determine mapping between model active liquids and global liquids const label idLiquid = owner.composition().idLiquid(); forAll(activeLiquids_, i) { liqToLiqMap_[i] = owner.composition().localId(idLiquid, activeLiquids_[i]); } } } template Foam::LiquidEvaporation::LiquidEvaporation ( const LiquidEvaporation& pcm ) : PhaseChangeModel(pcm), liquids_(pcm.owner().thermo().liquids()), activeLiquids_(pcm.activeLiquids_), liqToCarrierMap_(pcm.liqToCarrierMap_), liqToLiqMap_(pcm.liqToLiqMap_) {} // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * // template Foam::LiquidEvaporation::~LiquidEvaporation() {} // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * // template void Foam::LiquidEvaporation::calculate ( const scalar dt, const label celli, const scalar Re, const scalar Pr, const scalar d, const scalar nu, const scalar rho, const scalar T, const scalar Ts, const scalar pc, const scalar Tc, const scalarField& X, const scalarField& solMass, const scalarField& liqMass, scalarField& dMassPC ) const { // immediately evaporate mass that has reached critical condition if ((liquids_.Tc(X) - T) < SMALL) { if (debug) { WarningInFunction << "Parcel reached critical conditions: " << "evaporating all available mass" << endl; } forAll(activeLiquids_, i) { const label lid = liqToLiqMap_[i]; dMassPC[lid] = GREAT; } return; } // construct carrier phase species volume fractions for cell, celli const scalarField Xc(calcXc(celli)); // calculate mass transfer of each specie in liquid forAll(activeLiquids_, i) { const label gid = liqToCarrierMap_[i]; const label lid = liqToLiqMap_[i]; // vapour diffusivity [m2/s] const scalar Dab = liquids_.properties()[lid].D(pc, Ts); // saturation pressure for species i [pa] // - carrier phase pressure assumed equal to the liquid vapour pressure // close to the surface // NOTE: if pSat > pc then particle is superheated // calculated evaporation rate will be greater than that of a particle // at boiling point, but this is not a boiling model const scalar pSat = liquids_.properties()[lid].pv(pc, T); // Schmidt number const scalar Sc = nu/(Dab + ROOTVSMALL); // Sherwood number const scalar Sh = this->Sh(Re, Sc); // mass transfer coefficient [m/s] const scalar kc = Sh*Dab/(d + ROOTVSMALL); // vapour concentration at surface [kmol/m3] at film temperature const scalar Cs = pSat/(RR*Ts); // vapour concentration in bulk gas [kmol/m3] at film temperature const scalar Cinf = Xc[gid]*pc/(RR*Ts); // molar flux of vapour [kmol/m2/s] const scalar Ni = max(kc*(Cs - Cinf), 0.0); // mass transfer [kg] dMassPC[lid] += Ni*pi*sqr(d)*liquids_.properties()[lid].W()*dt; } } template Foam::scalar Foam::LiquidEvaporation::dh ( const label idc, const label idl, const scalar p, const scalar T ) const { scalar dh = 0; typedef PhaseChangeModel parent; switch (parent::enthalpyTransfer_) { case (parent::etLatentHeat): { dh = liquids_.properties()[idl].hl(p, T); break; } case (parent::etEnthalpyDifference): { scalar hc = this->owner().composition().carrier().Ha(idc, p, T); scalar hp = liquids_.properties()[idl].h(p, T); dh = hc - hp; break; } default: { FatalErrorInFunction << "Unknown enthalpyTransfer type" << abort(FatalError); } } return dh; } template Foam::scalar Foam::LiquidEvaporation::Tvap ( const scalarField& X ) const { return liquids_.Tpt(X); } template Foam::scalar Foam::LiquidEvaporation::TMax ( const scalar p, const scalarField& X ) const { return liquids_.pvInvert(p, X); } // ************************************************************************* //