/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2013-2017 OpenFOAM Foundation
Copyright (C) 2023 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
\*---------------------------------------------------------------------------*/
#include "Implicit.H"
#include "fixedValueFvsPatchField.H"
#include "fvmDdt.H"
#include "fvmDiv.H"
#include "fvmLaplacian.H"
#include "fvcReconstruct.H"
#include "volPointInterpolation.H"
#include "zeroGradientFvPatchFields.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template
Foam::PackingModels::Implicit::Implicit
(
const dictionary& dict,
CloudType& owner
)
:
PackingModel(dict, owner, typeName),
alpha_
(
IOobject
(
IOobject::scopedName(this->owner().name(), "alpha"),
this->owner().db().time().timeName(),
this->owner().mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
this->owner().mesh(),
dimensionedScalar(dimless, Zero),
fvPatchFieldBase::zeroGradientType()
),
phiCorrect_(nullptr),
uCorrect_(nullptr),
applyLimiting_(this->coeffDict().lookup("applyLimiting")),
applyGravity_(this->coeffDict().lookup("applyGravity")),
alphaMin_(this->coeffDict().getScalar("alphaMin")),
rhoMin_(this->coeffDict().getScalar("rhoMin"))
{
alpha_ = this->owner().theta();
alpha_.oldTime();
}
template
Foam::PackingModels::Implicit::Implicit
(
const Implicit& cm
)
:
PackingModel(cm),
alpha_(cm.alpha_),
phiCorrect_(cm.phiCorrect_()),
uCorrect_(cm.uCorrect_()),
applyLimiting_(cm.applyLimiting_),
applyGravity_(cm.applyGravity_),
alphaMin_(cm.alphaMin_),
rhoMin_(cm.rhoMin_)
{
alpha_.oldTime();
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
template
Foam::PackingModels::Implicit::~Implicit()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template
void Foam::PackingModels::Implicit::cacheFields(const bool store)
{
PackingModel::cacheFields(store);
if (store)
{
const fvMesh& mesh = this->owner().mesh();
const dimensionedScalar deltaT = this->owner().db().time().deltaT();
const word& cloudName = this->owner().name();
const dimensionedVector& g = this->owner().g();
const volScalarField& rhoc = this->owner().rho();
const auto& rhoAverage =
mesh.lookupObject>
(
IOobject::scopedName(cloudName, "rhoAverage")
);
const auto& uAverage =
mesh.lookupObject>
(
IOobject::scopedName(cloudName, "uAverage")
);
const auto& uSqrAverage =
mesh.lookupObject>
(
IOobject::scopedName(cloudName, "uSqrAverage")
);
mesh.setFluxRequired(alpha_.name());
// Property fields
// ~~~~~~~~~~~~~~~
// volume fraction field
alpha_ = max(this->owner().theta(), alphaMin_);
alpha_.correctBoundaryConditions();
// average density
auto trho = volScalarField::New
(
IOobject::scopedName(cloudName, "rho"),
mesh,
dimensionedScalar(dimDensity, Zero),
fvPatchFieldBase::zeroGradientType()
);
auto& rho = trho.ref();
rho.primitiveFieldRef() = max(rhoAverage.primitiveField(), rhoMin_);
rho.correctBoundaryConditions();
// Stress field
// ~~~~~~~~~~~~
// stress derivative wrt volume fraction
auto ttauPrime = volScalarField::New
(
IOobject::scopedName(cloudName, "tauPrime"),
mesh,
dimensionedScalar(dimPressure, Zero),
fvPatchFieldBase::zeroGradientType()
);
auto& tauPrime = ttauPrime.ref();
tauPrime.primitiveFieldRef() =
this->particleStressModel_->dTaudTheta
(
alpha_.primitiveField(),
rho.primitiveField(),
uSqrAverage.primitiveField()
)();
tauPrime.correctBoundaryConditions();
// Gravity flux
// ~~~~~~~~~~~~
tmp phiGByA;
if (applyGravity_)
{
phiGByA = surfaceScalarField::New
(
"phiGByA",
IOobject::NO_REGISTER,
deltaT*(g & mesh.Sf())*fvc::interpolate(1.0 - rhoc/rho)
);
}
// Implicit solution for the volume fraction
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
surfaceScalarField tauPrimeByRhoAf
(
"tauPrimeByRhoAf",
fvc::interpolate(deltaT*tauPrime/rho)
);
fvScalarMatrix alphaEqn
(
fvm::ddt(alpha_)
- fvc::ddt(alpha_)
- fvm::laplacian(tauPrimeByRhoAf, alpha_)
);
if (applyGravity_)
{
alphaEqn += fvm::div(phiGByA(), alpha_);
}
alphaEqn.solve();
// Generate correction fields
// ~~~~~~~~~~~~~~~~~
// correction volumetric flux
phiCorrect_ = surfaceScalarField::New
(
IOobject::scopedName(cloudName, "phiCorrect"),
IOobject::NO_REGISTER,
alphaEqn.flux()/fvc::interpolate(alpha_)
);
// limit the correction flux
if (applyLimiting_)
{
auto tU = volVectorField::New
(
IOobject::scopedName(cloudName, "U"),
IOobject::NO_REGISTER,
mesh,
dimensionedVector(dimVelocity, Zero),
fvPatchFieldBase::zeroGradientType()
);
auto& U = tU.ref();
U.primitiveFieldRef() = uAverage.primitiveField();
U.correctBoundaryConditions();
surfaceScalarField phi
(
IOobject::scopedName(cloudName, "phi"),
linearInterpolate(U) & mesh.Sf()
);
if (applyGravity_)
{
phiCorrect_.ref() -= phiGByA();
}
forAll(phiCorrect_(), facei)
{
// Current and correction fluxes
const scalar phiCurr = phi[facei];
scalar& phiCorr = phiCorrect_.ref()[facei];
// Don't limit if the correction is in the opposite direction to
// the flux. We need all the help we can get in this state.
if (phiCurr*phiCorr < 0)
{}
// If the correction and the flux are in the same direction then
// don't apply any more correction than is already present in
// the flux.
else if (phiCorr > 0)
{
phiCorr = max(phiCorr - phiCurr, 0);
}
else
{
phiCorr = min(phiCorr - phiCurr, 0);
}
}
if (applyGravity_)
{
phiCorrect_.ref() += phiGByA();
}
}
// correction velocity
uCorrect_ = volVectorField::New
(
IOobject::scopedName(cloudName, "uCorrect"),
IOobject::NO_REGISTER,
fvc::reconstruct(phiCorrect_())
);
uCorrect_->correctBoundaryConditions();
//Info << endl;
//Info << " alpha: " << alpha_.primitiveField() << endl;
//Info << "phiCorrect: " << phiCorrect_->primitiveField() << endl;
//Info << " uCorrect: " << uCorrect_->primitiveField() << endl;
//Info << endl;
}
else
{
alpha_.oldTime();
phiCorrect_.clear();
uCorrect_.clear();
}
}
template
Foam::vector Foam::PackingModels::Implicit::velocityCorrection
(
typename CloudType::parcelType& p,
const scalar deltaT
) const
{
const fvMesh& mesh = this->owner().mesh();
// containing tetrahedron and parcel coordinates within
const label celli = p.cell();
const label facei = p.tetFace();
// cell velocity
const vector U = uCorrect_()[celli];
// face geometry
vector nHat = mesh.faces()[facei].areaNormal(mesh.points());
const scalar nMag = mag(nHat);
nHat /= nMag;
// get face flux
scalar phi;
const label patchi = mesh.boundaryMesh().whichPatch(facei);
if (patchi == -1)
{
phi = phiCorrect_()[facei];
}
else
{
phi =
phiCorrect_().boundaryField()[patchi]
[
mesh.boundaryMesh()[patchi].whichFace(facei)
];
}
// interpolant equal to 1 at the cell centre and 0 at the face
const scalar t = p.coordinates()[0];
// the normal component of the velocity correction is interpolated linearly
// the tangential component is equal to that at the cell centre
return U + (1.0 - t)*nHat*(phi/nMag - (U & nHat));
}
// ************************************************************************* //