/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2015-2021 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
\*---------------------------------------------------------------------------*/
#include "ConeNozzleInjection.H"
#include "Function1.H"
#include "unitConversion.H"
#include "distributionModel.H"
#include "axisAngleRotation.H"
using namespace Foam::constant;
template
const Foam::Enum
<
typename Foam::ConeNozzleInjection::injectionMethod
>
Foam::ConeNozzleInjection::injectionMethodNames
({
{ injectionMethod::imPoint, "point" },
{ injectionMethod::imDisc, "disc" },
{ injectionMethod::imDiscSegments, "discSegments" },
});
template
const Foam::Enum
<
typename Foam::ConeNozzleInjection::flowType
>
Foam::ConeNozzleInjection::flowTypeNames
({
{ flowType::ftConstantVelocity, "constantVelocity" },
{ flowType::ftPressureDrivenVelocity, "pressureDrivenVelocity" },
{ flowType::ftFlowRateAndDischarge, "flowRateAndDischarge" },
});
// * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * * //
template
void Foam::ConeNozzleInjection::setInjectionGeometry()
{
const auto& mesh = this->owner().mesh();
// Position
positionVsTime_.reset
(
Function1::New("position", this->coeffDict(), &mesh)
);
positionVsTime_->userTimeToTime(this->owner().time());
if (positionVsTime_->constant())
{
position_ = positionVsTime_->value(0);
}
// Direction
directionVsTime_.reset
(
Function1::New("direction", this->coeffDict(), &mesh)
);
directionVsTime_->userTimeToTime(this->owner().time());
if (directionVsTime_->constant())
{
direction_ = directionVsTime_->value(0);
direction_.normalise();
Random& rndGen = this->owner().rndGen();
// Determine direction vectors tangential to direction
vector tangent = Zero;
scalar magTangent = 0.0;
while(magTangent < SMALL)
{
vector v = rndGen.globalSample01();
tangent = v - (v & direction_)*direction_;
magTangent = mag(tangent);
}
tanVec1_ = tangent/magTangent;
tanVec2_ = direction_^tanVec1_;
}
}
template
void Foam::ConeNozzleInjection::setFlowType()
{
switch (flowType_)
{
case flowType::ftConstantVelocity:
{
this->coeffDict().readEntry("UMag", UMag_);
break;
}
case flowType::ftPressureDrivenVelocity:
{
Pinj_.reset
(
Function1::New
(
"Pinj",
this->coeffDict(),
&this->owner().mesh()
)
);
Pinj_->userTimeToTime(this->owner().time());
break;
}
case flowType::ftFlowRateAndDischarge:
{
Cd_.reset
(
Function1::New
(
"Cd",
this->coeffDict(),
&this->owner().mesh()
)
);
Cd_->userTimeToTime(this->owner().time());
break;
}
default:
{
FatalErrorInFunction
<< "Unhandled flow type "
<< flowTypeNames[flowType_]
<< exit(FatalError);
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template
Foam::ConeNozzleInjection::ConeNozzleInjection
(
const dictionary& dict,
CloudType& owner,
const word& modelName
)
:
InjectionModel(dict, owner, modelName, typeName),
injectionMethod_
(
injectionMethodNames.get("injectionMethod", this->coeffDict())
),
flowType_(flowTypeNames.get("flowType", this->coeffDict())),
outerDiameter_(this->coeffDict().getScalar("outerDiameter")),
innerDiameter_(this->coeffDict().getScalar("innerDiameter")),
duration_(this->coeffDict().getScalar("duration")),
positionVsTime_(nullptr),
position_(Zero),
injectorCell_(-1),
tetFacei_(-1),
tetPti_(-1),
directionVsTime_(nullptr),
direction_(Zero),
omegaPtr_
(
Function1::NewIfPresent
(
"omega",
this->coeffDict(),
&owner.mesh()
)
),
parcelsPerSecond_(this->coeffDict().getScalar("parcelsPerSecond")),
flowRateProfile_
(
Function1::New
(
"flowRateProfile",
this->coeffDict(),
&owner.mesh()
)
),
thetaInner_
(
Function1::New
(
"thetaInner",
this->coeffDict(),
&owner.mesh()
)
),
thetaOuter_
(
Function1::New
(
"thetaOuter",
this->coeffDict(),
&owner.mesh()
)
),
sizeDistribution_
(
distributionModel::New
(
this->coeffDict().subDict("sizeDistribution"),
owner.rndGen()
)
),
t0_(this->template getModelProperty("t0")),
nInjectors_
(
this->coeffDict().template getOrDefault("nInjectors", 1)
),
Uinjector_(Zero),
initialInjectorDir_
(
this->coeffDict().template getOrDefault
(
"initialInjectorDir",
Zero
)
),
tanVec1_(Zero),
tanVec2_(Zero),
normal_(Zero),
UMag_(0.0),
Cd_(nullptr),
Pinj_(nullptr)
{
if (innerDiameter_ >= outerDiameter_)
{
FatalErrorInFunction
<< "Inner diameter must be less than the outer diameter:" << nl
<< " innerDiameter: " << innerDiameter_ << nl
<< " outerDiameter: " << outerDiameter_
<< exit(FatalError);
}
if (nInjectors_ < SMALL)
{
FatalIOErrorInFunction(this->coeffDict())
<< "Number of injectors in angular-segmented disc "
<< "must be positive" << nl
<< " nInjectors: " << nInjectors_ << nl
<< exit(FatalIOError);
}
// Convert from user time to reduce the number of time conversion calls
const Time& time = owner.db().time();
duration_ = time.userTimeToTime(duration_);
flowRateProfile_->userTimeToTime(time);
thetaInner_->userTimeToTime(time);
thetaOuter_->userTimeToTime(time);
if (omegaPtr_)
{
omegaPtr_->userTimeToTime(time);
}
setInjectionGeometry();
setFlowType();
// Set total volume to inject
this->volumeTotal_ = flowRateProfile_->integrate(0.0, duration_);
updateMesh();
}
template
Foam::ConeNozzleInjection::ConeNozzleInjection
(
const ConeNozzleInjection& im
)
:
InjectionModel(im),
injectionMethod_(im.injectionMethod_),
flowType_(im.flowType_),
outerDiameter_(im.outerDiameter_),
innerDiameter_(im.innerDiameter_),
duration_(im.duration_),
positionVsTime_(im.positionVsTime_.clone()),
position_(im.position_),
injectorCell_(im.injectorCell_),
tetFacei_(im.tetFacei_),
tetPti_(im.tetPti_),
directionVsTime_(im.directionVsTime_.clone()),
direction_(im.direction_),
omegaPtr_(im.omegaPtr_.clone()),
parcelsPerSecond_(im.parcelsPerSecond_),
flowRateProfile_(im.flowRateProfile_.clone()),
thetaInner_(im.thetaInner_.clone()),
thetaOuter_(im.thetaOuter_.clone()),
sizeDistribution_(im.sizeDistribution_.clone()),
t0_(im.t0_),
nInjectors_(im.nInjectors_),
Uinjector_(im.Uinjector_),
initialInjectorDir_(im.initialInjectorDir_),
tanVec1_(im.tanVec1_),
tanVec2_(im.tanVec2_),
normal_(im.normal_),
UMag_(im.UMag_),
Cd_(im.Cd_.clone()),
Pinj_(im.Pinj_.clone())
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template
void Foam::ConeNozzleInjection::updateMesh()
{
// Set/cache the injector cell info for static methods
if (positionVsTime_->constant())
{
position_ = positionVsTime_->value(0);
this->findCellAtPosition
(
injectorCell_,
tetFacei_,
tetPti_,
position_
);
}
}
template
Foam::scalar Foam::ConeNozzleInjection::timeEnd() const
{
return this->SOI_ + duration_;
}
template
Foam::label Foam::ConeNozzleInjection::parcelsToInject
(
const scalar time0,
const scalar time1
)
{
if ((time0 >= 0.0) && (time0 < duration_))
{
return floor((time1 - time0)*parcelsPerSecond_);
}
return 0;
}
template
Foam::scalar Foam::ConeNozzleInjection::volumeToInject
(
const scalar time0,
const scalar time1
)
{
if ((time0 >= 0.0) && (time0 < duration_))
{
return flowRateProfile_->integrate(time0, time1);
}
return 0.0;
}
template
void Foam::ConeNozzleInjection::setPositionAndCell
(
const label,
const label,
const scalar time,
vector& position,
label& cellOwner,
label& tetFacei,
label& tetPti
)
{
Random& rndGen = this->owner().rndGen();
const scalar t = time - this->SOI_;
if (!directionVsTime_->constant())
{
direction_ = directionVsTime_->value(t);
direction_.normalise();
// Determine direction vectors tangential to direction
vector tangent = Zero;
scalar magTangent = 0.0;
while(magTangent < SMALL)
{
vector v = rndGen.globalSample01();
tangent = v - (v & direction_)*direction_;
magTangent = mag(tangent);
}
tanVec1_ = tangent/magTangent;
tanVec2_ = direction_^tanVec1_;
}
scalar beta = mathematical::twoPi*rndGen.globalSample01();
normal_ = tanVec1_*cos(beta) + tanVec2_*sin(beta);
switch (injectionMethod_)
{
case injectionMethod::imPoint:
{
if (positionVsTime_->constant())
{
position = position_;
cellOwner = injectorCell_;
tetFacei = tetFacei_;
tetPti = tetPti_;
}
else
{
position = positionVsTime_->value(t);
// Estimate the moving injector velocity
const vector position0(positionVsTime_->value(t0_));
const scalar dt = t - t0_;
if (dt > 0)
{
Uinjector_ = (position - position0)/dt;
}
this->findCellAtPosition
(
cellOwner,
tetFacei,
tetPti,
position
);
}
break;
}
case injectionMethod::imDisc:
{
scalar frac = rndGen.globalSample01();
scalar dr = outerDiameter_ - innerDiameter_;
scalar r = 0.5*(innerDiameter_ + frac*dr);
position = positionVsTime_->value(t) + r*normal_;
// Estimate the moving injector velocity
const vector position0(positionVsTime_->value(t0_) + r*normal_);
const scalar dt = t - t0_;
if (dt > 0)
{
Uinjector_ = (position - position0)/dt;
}
this->findCellAtPosition
(
cellOwner,
tetFacei,
tetPti,
position
);
break;
}
case injectionMethod::imDiscSegments:
{
// Calculate the uniform angular increment in radians
const scalar angleIncrement = mathematical::twoPi/nInjectors_;
// Randomly set the index of injector angles
const label injectorIndex =
rndGen.globalPosition