/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2022 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
\*---------------------------------------------------------------------------*/
#include "faceZoneReferenceTemperature.H"
#include "surfaceInterpolate.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace heatTransferCoeffModels
{
defineTypeNameAndDebug(faceZoneReferenceTemperature, 0);
addToRunTimeSelectionTable
(
heatTransferCoeffModel,
faceZoneReferenceTemperature,
dictionary
);
}
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::heatTransferCoeffModels::faceZoneReferenceTemperature::
setFaceZoneFaces(const dictionary& dict)
{
const auto& mesh =
mesh_.objectRegistry::db().lookupObject(refRegionName_);
const word faceZoneName(dict.get("referenceFaceZone"));
faceZonei_ = mesh.faceZones().findZoneID(faceZoneName);
if (faceZonei_ < 0)
{
FatalIOErrorInFunction(dict)
<< "referenceFaceZone: " << faceZoneName
<< " does not exist in referenceRegion: " << refRegionName_
<< exit(FatalIOError);
}
const faceZone& fZone = mesh.faceZones()[faceZonei_];
label numFaces = fZone.size();
if (!returnReduceOr(numFaces))
{
FatalIOErrorInFunction(dict)
<< "referenceFaceZone: " << faceZoneName
<< " contains no faces."
<< exit(FatalIOError);
}
faceId_.resize_nocopy(numFaces);
facePatchId_.resize_nocopy(numFaces);
numFaces = 0;
// TDB: handle multiple zones
{
forAll(fZone, i)
{
const label meshFacei = fZone[i];
// Internal faces
label faceId = meshFacei;
label facePatchId = -1;
// Boundary faces
if (!mesh.isInternalFace(meshFacei))
{
facePatchId = mesh.boundaryMesh().whichPatch(meshFacei);
const polyPatch& pp = mesh.boundaryMesh()[facePatchId];
if (isA(pp))
{
continue; // Ignore empty patch
}
const auto* cpp = isA(pp);
if (cpp && !cpp->owner())
{
continue; // Ignore neighbour side
}
faceId = pp.whichFace(meshFacei);
}
if (faceId >= 0)
{
faceId_[numFaces] = faceId;
facePatchId_[numFaces] = facePatchId;
++numFaces;
}
}
}
// Shrink to size used
faceId_.resize(numFaces);
facePatchId_.resize(numFaces);
}
Foam::scalar Foam::heatTransferCoeffModels::faceZoneReferenceTemperature::
faceZoneAverageTemperature()
{
const auto& mesh =
mesh_.objectRegistry::db().lookupObject(refRegionName_);
const auto& T = mesh.lookupObject(TName_);
const surfaceScalarField Tf(fvc::interpolate(T));
const surfaceScalarField& magSf = mesh.magSf();
scalar Tmean = 0;
scalar sumMagSf = 0;
forAll(faceId_, i)
{
const label facei = faceId_[i];
if (facePatchId_[i] != -1)
{
const label patchi = facePatchId_[i];
const scalar sf = magSf.boundaryField()[patchi][facei];
Tmean += Tf.boundaryField()[patchi][facei]*sf;
sumMagSf += sf;
}
else
{
const scalar sf = magSf[facei];
Tmean += Tf[facei]*sf;
sumMagSf += sf;
}
}
reduce(Tmean, sumOp());
reduce(sumMagSf, sumOp());
Tmean /= sumMagSf;
return Tmean;
}
void Foam::heatTransferCoeffModels::faceZoneReferenceTemperature::htc
(
volScalarField& htc,
const FieldField& q
)
{
// Retrieve temperature boundary fields for current region
const auto& T = mesh_.lookupObject(TName_);
const volScalarField::Boundary& Tbf = T.boundaryField();
// Retrieve heat-transfer coefficient boundary fields for current region
volScalarField::Boundary& htcBf = htc.boundaryFieldRef();
// Calculate area-averaged temperature field
// for the reference face zone and region
// (reference region can be different from current region)
const scalar Tref = faceZoneAverageTemperature();
// Calculate heat-transfer coefficient boundary fields for current region
for (const label patchi : patchIDs_)
{
htcBf[patchi] = q[patchi]/(Tref - Tbf[patchi] + ROOTVSMALL);
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::heatTransferCoeffModels::faceZoneReferenceTemperature::
faceZoneReferenceTemperature
(
const dictionary& dict,
const fvMesh& mesh,
const word& TName
)
:
heatTransferCoeffModel(dict, mesh, TName),
faceZonei_(-1),
refRegionName_(polyMesh::defaultRegion),
faceId_(),
facePatchId_()
{
read(dict);
}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
bool Foam::heatTransferCoeffModels::faceZoneReferenceTemperature::read
(
const dictionary& dict
)
{
if (!heatTransferCoeffModel::read(dict))
{
return false;
}
dict.readIfPresent("referenceRegion", refRegionName_);
setFaceZoneFaces(dict);
return true;
}
// ************************************************************************* //