/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2021-2022 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
\*---------------------------------------------------------------------------*/
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
template
void Foam::binModels::uniformBin::writeFileHeader
(
OFstream& os
) const
{
writeHeader(os, "bins");
const tensor& R = coordSysPtr_->R();
for (direction i = 0; i < vector::nComponents; ++i)
{
writeHeaderValue(os, "e" + Foam::name(i) + " bins", nBins_[i]);
writeHeaderValue(os, " start", binLimits_.min()[i]);
writeHeaderValue(os, " end", binLimits_.max()[i]);
writeHeaderValue(os, " delta", binWidth_[i]);
writeHeaderValue(os, " direction", R.col(i));
}
writeCommented(os, "bin end co-ordinates:");
os << nl;
// Compute and print bin end points in binning directions
for (direction i = 0; i < vector::nComponents; ++i)
{
scalar binEnd = binLimits_.min()[i];
writeCommented(os, "e"+Foam::name(i)+" co-ords :");
for (label j = 0; j < nBins_[i]; ++j)
{
binEnd += binWidth_[i];
os << tab << binEnd;
}
os << nl;
}
writeHeader(os, "");
writeCommented(os, "Time");
for (label i = 0; i < nBin_; ++i)
{
const word ibin(Foam::name(i) + ':');
writeTabbed(os, writeComponents("total" + ibin));
writeTabbed(os, writeComponents("internal" + ibin));
if (decomposePatchValues_)
{
writeTabbed(os, writeComponents("normal" + ibin));
writeTabbed(os, writeComponents("tangential" + ibin));
}
else
{
writeTabbed(os, writeComponents("patch" + ibin));
}
}
os << endl;
}
template
bool Foam::binModels::uniformBin::processField(const label fieldi)
{
const word& fieldName = fieldNames_[fieldi];
typedef GeometricField VolFieldType;
const VolFieldType* fieldPtr = mesh_.findObject(fieldName);
if (!fieldPtr)
{
return false;
}
if (writeToFile() && !writtenHeader_)
{
writeFileHeader(filePtrs_[fieldi]);
}
const VolFieldType& fld = *fieldPtr;
// Total number of fields
//
// 0: internal
// 1: patch total
//
// OR
//
// 0: internal
// 1: patch normal
// 2: patch tangential
label nField = 2;
if (decomposePatchValues_)
{
nField += 1;
}
List> data(nField);
for (auto& binList : data)
{
binList.resize(nBin_, Zero);
}
for (const label zonei : cellZoneIDs_)
{
const cellZone& cZone = mesh_.cellZones()[zonei];
for (const label celli : cZone)
{
const label bini = cellToBin_[celli];
if (bini >= 0)
{
data[0][bini] += fld[celli];
}
}
}
for (const label patchi : patchIDs_)
{
const polyPatch& pp = mesh_.boundaryMesh()[patchi];
const vectorField np(mesh_.boundary()[patchi].nf());
forAll(pp, facei)
{
const label localFacei =
pp.start() - mesh_.nInternalFaces() + facei;
const label bini = faceToBin_[localFacei];
if (bini >= 0)
{
const Type& v = fld.boundaryField()[patchi][facei];
if (!decomposePatchValues(data, bini, v, np[facei]))
{
data[1][bini] += v;
}
}
}
}
for (auto& binList : data)
{
reduce(binList, sumOp>());
}
if (writeToFile())
{
writeBinnedData(data, filePtrs_[fieldi]);
}
return true;
}
// ************************************************************************* //