/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | www.openfoam.com \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2021-2023 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . \*---------------------------------------------------------------------------*/ #include "uniformBin.H" #include "addToRunTimeSelectionTable.H" // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // namespace Foam { namespace binModels { defineTypeNameAndDebug(uniformBin, 0); addToRunTimeSelectionTable(binModel, uniformBin, dictionary); } } // * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * // void Foam::binModels::uniformBin::initialise() { const polyBoundaryMesh& pbm = mesh_.boundaryMesh(); // Use geometry limits if not specified by the user { // Determine extents of patches/cells boundBox geomLimits; for (const label patchi : patchIDs_) { vectorField pts ( coordSysPtr_->localPosition(pbm[patchi].faceCentres()) ); MinMax limits(pts); geomLimits.add(limits.min(), limits.max()); } for (const label zonei : cellZoneIDs_) { const cellZone& cZone = mesh_.cellZones()[zonei]; const vectorField pts ( coordSysPtr_->localPosition(vectorField(mesh_.C(), cZone)) ); MinMax limits(pts); geomLimits.add(limits.min(), limits.max()); } // Globally consistent geomLimits.reduce(); // Slightly boost max so that region of interest is fully within bounds // TBD: could also adjust min? const vector adjust(1e-4*geomLimits.span()); geomLimits.max() += adjust; for (direction cmpt = 0; cmpt < vector::nComponents; ++cmpt) { // Use geometry limits if not specified by the user if (binLimits_.min()[cmpt] == GREAT) { binLimits_.min()[cmpt] = geomLimits.min()[cmpt]; } if (binLimits_.max()[cmpt] == GREAT) { binLimits_.max()[cmpt] = geomLimits.max()[cmpt]; } } } for (direction cmpt = 0; cmpt < vector::nComponents; ++cmpt) { if (binLimits_.min()[cmpt] > binLimits_.max()[cmpt]) { FatalErrorInFunction << "Max bounds must be greater than min bounds" << nl << " direction = " << cmpt << nl << " min = " << binLimits_.min()[cmpt] << nl << " max = " << binLimits_.max()[cmpt] << nl << exit(FatalError); } //- Compute bin widths in binning directions binWidth_[cmpt] = ( (binLimits_.max()[cmpt] - binLimits_.min()[cmpt]) / scalar(nBins_[cmpt]) ); if (binWidth_[cmpt] <= 0) { FatalErrorInFunction << "Bin widths must be greater than zero" << nl << " direction = " << cmpt << nl << " min bound = " << binLimits_.min()[cmpt] << nl << " max bound = " << binLimits_.max()[cmpt] << nl << " bin width = " << binWidth_[cmpt] << nl << exit(FatalError); } } setBinsAddressing(); } Foam::labelList Foam::binModels::uniformBin::binAddr(const vectorField& d) const { labelList binIndices(d.size(), -1); forAll(d, i) { // Avoid elements outside of the bin bool faceInside = true; for (direction cmpt = 0; cmpt < vector::nComponents; ++cmpt) { if ( d[i][cmpt] < binLimits_.min()[cmpt] || d[i][cmpt] > binLimits_.max()[cmpt] ) { faceInside = false; break; } } if (faceInside) { // Find the bin division corresponding to the element Vector