/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
\*---------------------------------------------------------------------------*/
#include "volFields.H"
#include "surfaceFields.H"
#include "fvcGrad.H"
#include "coupledFvPatchFields.H"
#include "surfaceInterpolate.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
template
Foam::tmp
Foam::PhiScheme::limiter
(
const GeometricField& phi
) const
{
const fvMesh& mesh = this->mesh();
tmp tLimiter
(
new surfaceScalarField
(
IOobject
(
"PhiLimiter",
mesh.time().timeName(),
mesh
),
mesh,
dimless
)
);
surfaceScalarField& Limiter = tLimiter.ref();
const surfaceScalarField& CDweights = mesh.surfaceInterpolation::weights();
const surfaceVectorField& Sf = mesh.Sf();
const surfaceScalarField& magSf = mesh.magSf();
const labelUList& owner = mesh.owner();
const labelUList& neighbour = mesh.neighbour();
tmp tUflux = this->faceFlux_;
if (this->faceFlux_.dimensions() == dimMass/dimTime)
{
const volScalarField& rho =
phi.db().objectRegistry::template lookupObject
("rho");
tUflux = this->faceFlux_/fvc::interpolate(rho);
}
else if (this->faceFlux_.dimensions() != dimVolume/dimTime)
{
FatalErrorInFunction
<< "dimensions of faceFlux are not correct"
<< exit(FatalError);
}
const surfaceScalarField& Uflux = tUflux();
scalarField& pLimiter = Limiter.primitiveFieldRef();
forAll(pLimiter, face)
{
pLimiter[face] = PhiLimiter::limiter
(
CDweights[face],
Uflux[face],
phi[owner[face]],
phi[neighbour[face]],
Sf[face],
magSf[face]
);
}
surfaceScalarField::Boundary& bLimiter =
Limiter.boundaryFieldRef();
forAll(bLimiter, patchi)
{
scalarField& pLimiter = bLimiter[patchi];
if (bLimiter[patchi].coupled())
{
const scalarField& pCDweights = CDweights.boundaryField()[patchi];
const vectorField& pSf = Sf.boundaryField()[patchi];
const scalarField& pmagSf = magSf.boundaryField()[patchi];
const scalarField& pFaceFlux = Uflux.boundaryField()[patchi];
const Field pphiP
(
phi.boundaryField()[patchi].patchInternalField()
);
const Field pphiN
(
phi.boundaryField()[patchi].patchNeighbourField()
);
forAll(pLimiter, face)
{
pLimiter[face] = PhiLimiter::limiter
(
pCDweights[face],
pFaceFlux[face],
pphiP[face],
pphiN[face],
pSf[face],
pmagSf[face]
);
}
}
else
{
pLimiter = 1.0;
}
}
return tLimiter;
}
// ************************************************************************* //