/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2017-2024 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
Class
Foam::fanFvPatchField
Group
grpCoupledBoundaryConditions
Description
This boundary condition provides a jump condition, using the \c cyclic
condition as a base.
The jump is specified as a \c Function1 type, to enable the use of, e.g.
constant, polynomial, table values.
The basis of the table is specified according to the \c mode:
- velocity: deltap = F(velocity per face) \[DEFAULT\]
- uniformVelocity: deltap = F(patch area-averaged velocity)
- volumeFlowRate: deltap = F(patch volume flow rate)
- nonDimensional: non-dim deltap = F(non-dim volume flow rate)
Non-dimensional operation:
As inputs it needs the fan RPM (rpm) and the mean diameter (dm).
The non-dimensional U for the table is calculated as follows:
\verbatim
phi = 120*Un/(PI^3*dm^3*rpm)
where:
dm is the mean diameter.
rpm is the RPM of the fan.
\endverbatim
The non-dimensional pressure:
\verbatim
Psi = 2 deltaP/(rho*(sqr(PI*omega*dm)))
where:
deltaP is the pressure drop
\endverbatim
The non-dimensional table should be given as Psi = F(phi).
Usage
\table
Property | Description | Required | Default
patchType | underlying patch type should be \c cyclic | yes |
mode | jump table operating mode (see above) | no | velocity
jumpTable | jump data, e.g. \c csvFile | yes |
phi | flux field name | no | phi
rho | density field name | no | rho
rpm | fan rpm (non-dimensional table) | no |
dm | mean diameter (non-dimensional table) | no |
\endtable
Example of the boundary condition specification:
\verbatim
{
type fan;
patchType cyclic;
jumpTable csvFile;
mode velocity;
jumpTableCoeffs
{
nHeaderLine 1;
refColumn 0;
componentColumns 1(1);
separator ",";
mergeSeparators no;
file "/UvsPressure";
}
value uniform 0;
}
\endverbatim
The above example shows the use of a comma separated (CSV) file to specify
the jump condition.
Note
The underlying \c patchType should be set to \c cyclic
See also
Foam::Function1Types
SourceFiles
fanFvPatchField.C
fanFvPatchFields.H
fanFvPatchFields.C
\*---------------------------------------------------------------------------*/
#ifndef foam_fanFvPatchField_H
#define foam_fanFvPatchField_H
#include "uniformJumpFvPatchField.H"
#include "Function1.H"
#include "Enum.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/*---------------------------------------------------------------------------*\
Class fanFvPatchField Declaration
\*---------------------------------------------------------------------------*/
template
class fanFvPatchField
:
public uniformJumpFvPatchField
{
public:
// Public Data Types
//- Enumeration defining the operating modes
enum class operatingMode
{
VELOCITY, //!< velocity-based lookup
UNIFORM_VELOCITY, //!< uniform velocity-based lookup
VOL_FLOW_RATE, //!< volume-flow-rate-based lookup
NON_DIMENSIONAL //!< non-dimensional-based lookup
};
//- Names for the operating modes
static const Enum operatingModeNames_;
private:
// Private Data
//- Operating mode
operatingMode operatingMode_;
//- Name of the flux transporting the field
word phiName_;
//- Name of the density field for normalising the mass flux if necessary
word rhoName_;
//- Fan rpm (for non-dimensional curve)
autoPtr> rpm_;
//- Fan mean diameter (for non-dimensional curve)
autoPtr> dm_;
// Private Member Functions
//- Calculate the fan pressure jump
void calcFanJump();
public:
//- Runtime type information
TypeName("fan");
// Constructors
//- Construct from patch and internal field
fanFvPatchField
(
const fvPatch&,
const DimensionedField&
);
//- Construct from patch, internal field and dictionary
fanFvPatchField
(
const fvPatch&,
const DimensionedField&,
const dictionary&
);
//- Construct by mapping given fanFvPatchField onto a new patch
fanFvPatchField
(
const fanFvPatchField&,
const fvPatch&,
const DimensionedField&,
const fvPatchFieldMapper&
);
//- Construct as copy
fanFvPatchField
(
const fanFvPatchField&
);
//- Construct as copy setting internal field reference
fanFvPatchField
(
const fanFvPatchField&,
const DimensionedField&
);
//- Return a clone
virtual tmp> clone() const
{
return fvPatchField::Clone(*this);
}
//- Clone with an internal field reference
virtual tmp> clone
(
const DimensionedField& iF
) const
{
return fvPatchField::Clone(*this, iF);
}
// Member functions
//- Update the coefficients associated with the patch field
virtual void updateCoeffs();
//- Write
virtual void write(Ostream& os) const;
};
//- Specialisation of the jump-condition for the pressure
template<>
void fanFvPatchField::calcFanJump();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef NoRepository
#include "fanFvPatchField.C"
#endif
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //