/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | www.openfoam.com \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2016-2017 OpenFOAM Foundation Copyright (C) 2019-2021 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . \*---------------------------------------------------------------------------*/ #include "PBiCGStab.H" #include "PrecisionAdaptor.H" // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // namespace Foam { defineTypeNameAndDebug(PBiCGStab, 0); lduMatrix::solver::addsymMatrixConstructorToTable addPBiCGStabSymMatrixConstructorToTable_; lduMatrix::solver::addasymMatrixConstructorToTable addPBiCGStabAsymMatrixConstructorToTable_; } // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * // Foam::PBiCGStab::PBiCGStab ( const word& fieldName, const lduMatrix& matrix, const FieldField& interfaceBouCoeffs, const FieldField& interfaceIntCoeffs, const lduInterfaceFieldPtrsList& interfaces, const dictionary& solverControls ) : lduMatrix::solver ( fieldName, matrix, interfaceBouCoeffs, interfaceIntCoeffs, interfaces, solverControls ) {} // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * // Foam::solverPerformance Foam::PBiCGStab::scalarSolve ( solveScalarField& psi, const solveScalarField& source, const direction cmpt ) const { // --- Setup class containing solver performance data solverPerformance solverPerf ( lduMatrix::preconditioner::getName(controlDict_) + typeName, fieldName_ ); const label nCells = psi.size(); solveScalar* __restrict__ psiPtr = psi.begin(); solveScalarField pA(nCells); solveScalar* __restrict__ pAPtr = pA.begin(); solveScalarField yA(nCells); solveScalar* __restrict__ yAPtr = yA.begin(); // --- Calculate A.psi matrix_.Amul(yA, psi, interfaceBouCoeffs_, interfaces_, cmpt); // --- Calculate initial residual field solveScalarField rA(source - yA); solveScalar* __restrict__ rAPtr = rA.begin(); matrix().setResidualField ( ConstPrecisionAdaptor(rA)(), fieldName_, true ); // --- Calculate normalisation factor const solveScalar normFactor = this->normFactor(psi, source, yA, pA); if ((log_ >= 2) || (lduMatrix::debug >= 2)) { Info<< " Normalisation factor = " << normFactor << endl; } // --- Calculate normalised residual norm solverPerf.initialResidual() = gSumMag(rA, matrix().mesh().comm()) /normFactor; solverPerf.finalResidual() = solverPerf.initialResidual(); // --- Check convergence, solve if not converged if ( minIter_ > 0 || !solverPerf.checkConvergence(tolerance_, relTol_, log_) ) { solveScalarField AyA(nCells); solveScalar* __restrict__ AyAPtr = AyA.begin(); solveScalarField sA(nCells); solveScalar* __restrict__ sAPtr = sA.begin(); solveScalarField zA(nCells); solveScalar* __restrict__ zAPtr = zA.begin(); solveScalarField tA(nCells); solveScalar* __restrict__ tAPtr = tA.begin(); // --- Store initial residual const solveScalarField rA0(rA); // --- Initial values not used solveScalar rA0rA = 0; solveScalar alpha = 0; solveScalar omega = 0; // --- Select and construct the preconditioner if (!preconPtr_) { preconPtr_ = lduMatrix::preconditioner::New ( *this, controlDict_ ); } // --- Solver iteration do { // --- Store previous rA0rA const solveScalar rA0rAold = rA0rA; rA0rA = gSumProd(rA0, rA, matrix().mesh().comm()); // --- Test for singularity if (solverPerf.checkSingularity(mag(rA0rA))) { break; } // --- Update pA if (solverPerf.nIterations() == 0) { for (label cell=0; cellprecondition(yA, pA, cmpt); // --- Calculate AyA matrix_.Amul(AyA, yA, interfaceBouCoeffs_, interfaces_, cmpt); const solveScalar rA0AyA = gSumProd(rA0, AyA, matrix().mesh().comm()); alpha = rA0rA/rA0AyA; // --- Calculate sA for (label cell=0; cell= minIter_ && solverPerf.checkConvergence(tolerance_, relTol_, log_) ) { for (label cell=0; cellprecondition(zA, sA, cmpt); // --- Calculate tA matrix_.Amul(tA, zA, interfaceBouCoeffs_, interfaces_, cmpt); const solveScalar tAtA = gSumSqr(tA, matrix().mesh().comm()); // --- Calculate omega from tA and sA // (cheaper than using zA with preconditioned tA) omega = gSumProd(tA, sA, matrix().mesh().comm())/tAtA; // --- Update solution and residual for (label cell=0; cellsetFinished(solverPerf); } matrix().setResidualField ( ConstPrecisionAdaptor(rA)(), fieldName_, false ); return solverPerf; } Foam::solverPerformance Foam::PBiCGStab::solve ( scalarField& psi_s, const scalarField& source, const direction cmpt ) const { PrecisionAdaptor tpsi(psi_s); return scalarSolve ( tpsi.ref(), ConstPrecisionAdaptor(source)(), cmpt ); } // ************************************************************************* //