/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | www.openfoam.com \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2011-2016 OpenFOAM Foundation Copyright (C) 2021 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . \*---------------------------------------------------------------------------*/ #include "PBiCCCG.H" // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * // template Foam::PBiCCCG::PBiCCCG ( const word& fieldName, const LduMatrix& matrix, const dictionary& solverDict ) : LduMatrix::solver ( fieldName, matrix, solverDict ) {} // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * // template Foam::SolverPerformance Foam::PBiCCCG::solve ( Field& psi ) const { const word preconditionerName(this->controlDict_.getWord("preconditioner")); // --- Setup class containing solver performance data SolverPerformance solverPerf ( preconditionerName + typeName, this->fieldName_ ); label nIter = 0; label nCells = psi.size(); Type* __restrict__ psiPtr = psi.begin(); Field pA(nCells); Type* __restrict__ pAPtr = pA.begin(); Field pT(nCells, Zero); Type* __restrict__ pTPtr = pT.begin(); Field wA(nCells); Type* __restrict__ wAPtr = wA.begin(); Field wT(nCells); Type* __restrict__ wTPtr = wT.begin(); scalar wArT = 1e15; //this->matrix_.great_; scalar wArTold = wArT; // --- Calculate A.psi and T.psi this->matrix_.Amul(wA, psi); this->matrix_.Tmul(wT, psi); // --- Calculate initial residual and transpose residual fields Field rA(this->matrix_.source() - wA); Field rT(this->matrix_.source() - wT); Type* __restrict__ rAPtr = rA.begin(); Type* __restrict__ rTPtr = rT.begin(); // --- Calculate normalisation factor Type normFactor = this->normFactor(psi, wA, pA); if ((this->log_ >= 2) || (LduMatrix::debug >= 2)) { Info<< " Normalisation factor = " << normFactor << endl; } // --- Calculate normalised residual norm solverPerf.initialResidual() = cmptDivide(gSumCmptMag(rA), normFactor); solverPerf.finalResidual() = solverPerf.initialResidual(); // --- Check convergence, solve if not converged if ( this->minIter_ > 0 || !solverPerf.checkConvergence ( this->tolerance_, this->relTol_, this->log_ ) ) { // --- Select and construct the preconditioner autoPtr::preconditioner> preconPtr = LduMatrix::preconditioner::New ( *this, this->controlDict_ ); // --- Solver iteration do { // --- Store previous wArT wArTold = wArT; // --- Precondition residuals preconPtr->precondition(wA, rA); preconPtr->preconditionT(wT, rT); // --- Update search directions: wArT = gSumProd(wA, rT); if (nIter == 0) { for (label cell=0; cellmatrix_.Amul(wA, pA); this->matrix_.Tmul(wT, pT); scalar wApT = gSumProd(wA, pT); // --- Test for singularity if ( solverPerf.checkSingularity ( cmptDivide(pTraits::one*mag(wApT), normFactor) ) ) { break; } // --- Update solution and residual: scalar alpha = wArT/wApT; for (label cell=0; cellmaxIter_ && !solverPerf.checkConvergence ( this->tolerance_, this->relTol_, this->log_ ) ) || nIter < this->minIter_ ); } solverPerf.nIterations() = pTraits::labelType>::one*nIter; return solverPerf; } // ************************************************************************* //