/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2018 OpenCFD Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
Class
Foam::compressible::
turbulentTemperatureTwoPhaseRadCoupledMixedFvPatchScalarField
Description
Mixed boundary condition for temperature and radiation heat transfer
to be used for in multiregion cases with two phase Euler system
Usage
\table
Property | Description | Required | Default value
Tnbr | name of the field | no | T
qrNbr | name of the radiative flux in the nbr region | no | none
qr | name of the radiative flux in this region | no | none
region | region to which this BC belongs | yes
otherPhase | name of the vapour phase in the fluid region | yes
kappaMethod | inherited from temperatureCoupledBase | inherited |
kappa | inherited from temperatureCoupledBase | inherited |
\endtable
Example of the boundary condition specification on the fluid region:
\verbatim
{
type compressible::turbulentTemperatureTwoPhaseRadCoupledMixed;
Tnbr T;
qrNbr none;
qr none;
kappaMethod phaseSystem;
region fluid;
otherPhase gas;
value uniform 300;
}
\endverbatim
Example of the boundary condition specification on the solid region:
\verbatim
{
type compressible::turbulentTemperatureTwoPhaseRadCoupledMixed;
Tnbr T.liquid;
qrNbr none;
qr none;
kappaMethod solidThermo;
region solid;
otherPhase gas;
value uniform 300;
}
\endverbatim
Needs to be on underlying mapped(Wall)FvPatch.
SourceFiles
turbulentTemperatureTwoPhaseRadCoupledMixedFvPatchScalarField.C
\*---------------------------------------------------------------------------*/
#ifndef turbulentTemperatureTwoPhaseRadCoupledMixedFvPatchScalarField_H
#define turbulentTemperatureTwoPhaseRadCoupledMixedFvPatchScalarField_H
#include "mixedFvPatchFields.H"
#include "scalarList.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace compressible
{
/*---------------------------------------------------------------------------*\
Class turbulentTemperatureTwoPhaseRadCoupledMixedFvPatchScalarField Declaration
\*---------------------------------------------------------------------------*/
class turbulentTemperatureTwoPhaseRadCoupledMixedFvPatchScalarField
:
public mixedFvPatchScalarField
{
public:
// Public enumerations
//- Type of supplied Kappa
enum KMethodType
{
mtSolidThermo,
mtLookup,
mtPhaseSystem
};
// Data types
//- Enumeration listing the region
enum regionType
{
solid,
fluid
};
private:
// Private data
//- Heat source type names
static const Enum regionTypeNames_;
//- Kappa method types
static const Enum KMethodTypeNames_;
//- Heat source type
regionType regionType_;
//- How to get K
const KMethodType method_;
//- Name of thermal conductivity field (if looked up from database)
const word kappaName_;
//- name of the other phase (vapor/liquid phase)
word otherPhaseName_;
//- Name of field on the neighbour region
const word TnbrName_;
//- Name of the radiative heat flux in the neighbour region
const word qrNbrName_;
//- Name of the radiative heat flux in local region
const word qrName_;
// Private members
//- Given patch temperature calculate corresponding K field
tmp kappa(const scalarField& Tp) const;
public:
//- Runtime type information
TypeName("compressible::turbulentTemperatureTwoPhaseRadCoupledMixed");
// Constructors
//- Construct from patch and internal field
turbulentTemperatureTwoPhaseRadCoupledMixedFvPatchScalarField
(
const fvPatch&,
const DimensionedField&
);
//- Construct from patch, internal field and dictionary
turbulentTemperatureTwoPhaseRadCoupledMixedFvPatchScalarField
(
const fvPatch&,
const DimensionedField&,
const dictionary&
);
//- Construct by mapping given
// turbulentTemperatureCoupledBaffleMixedFvPatchScalarField onto a
// new patch
turbulentTemperatureTwoPhaseRadCoupledMixedFvPatchScalarField
(
const
turbulentTemperatureTwoPhaseRadCoupledMixedFvPatchScalarField&,
const fvPatch&,
const DimensionedField&,
const fvPatchFieldMapper&
);
//- Construct as copy setting internal field reference
turbulentTemperatureTwoPhaseRadCoupledMixedFvPatchScalarField
(
const turbulentTemperatureTwoPhaseRadCoupledMixedFvPatchScalarField&,
const DimensionedField&
);
//- Return a clone
virtual tmp> clone() const
{
return fvPatchField::Clone(*this);
}
//- Clone with an internal field reference
virtual tmp> clone
(
const DimensionedField& iF
) const
{
return fvPatchField::Clone(*this, iF);
}
// Member functions
//- Update the coefficients associated with the patch field
virtual void updateCoeffs();
//- Write
virtual void write(Ostream&) const;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace compressible
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //